Problem definition

Given: A set of atoms $S = \{1, 2, \ldots, n\}$

E.g. each represents a commercial name of a drugs. This set consists of different disjoint subsets.

Problem: suggest a data structures that efficiently supports two operations

- **Find(i,j)** – reports if the atom i and atom j belong to the same set.

- **Union(i,j)** – unify (merged) all elements of the set containing i with the set containing j.

Example – on the board.

Naïve attempts

Idea: Each element “known” to which set it belongs

(recall – each atom belongs to exactly one set)

Bad idea: once two sets are merged, we need to scan all elements of one set and “tell” them that they belong to a different set – requires lots of work if the set is large.
A Promising Attempt

- Store a forest of trees.
- Each set is stored as a tree (each node is an atom)
- Every node points to the parent (different than standard trees)

Only the root “knows” the name of the set.

So the 'name' of the set \(\{2,3,4,1\} \) is 2.
The name of the set of \(\{5,6,7,8\} \) is 8.
The name of the set of \(\{9\} \) is 9.
The name of the set of \(\{11,12\} \) is 12.

To find if two atoms belong to the same set, just check if they belong to same tree: Follow the parent pointers from each of them up all the way to the root. Check if this is the same root.

Disjoint sets forests - cont

Find_root(j){
 If (p[j] ≠ j) return Find_root(p[j]);
 Else return j;
}

Find(i,j){
 just check if Find_root(i) == Find_root(j)
}

Example – Union(5,11)

It this efficient?

Time per operation depends on the height of the tree. Might be \(\Theta(n) \) in the worst case.

(Prove)

So \(n \) operations takes \(\Theta(n^2) \)
Could we do better?

Improved union operation – version 1

First improvement

```c
Union(i,j){
  Let r = Find_root(j)
  p[r]=Find_root(i)
  /* rather than p[r]= i ; */
}
```

Note that we can also do

```c
Union(i,j){
  Let r = Find_root(i)
  p[r]=Find_root(j)
}
```

Keeping tracks of # nodes

Every root (only roots) stores the number of nodes in its tree.
Let n denote this field in the root r.

```c
Union(i,j){
  Let r1 = Find_root(i); Let r2 = Find_root(j);
  /* connect the root of the small tree as a child of the root of
   the larger tree */
  if (r1.n < r2.n)  {    p[r1]=r2; r2.n += r1.n; }
  else  {   p[r2]=r1; r1.n += r2.n }
}
```

Example: Union(9,3)

Proving bounds on the height

Assume we start from a forest where each node is a singleton
(a set of one element), and we perform a sequence of union operations.

Lemma: The height of every tree is \(\leq \log_2 n \). \(n \) – number of atoms

Proof: Show by induction that every tree of height \(h \) has \(\geq 2^h \) nodes.

Assume true for every tree of height \(h < h \), and assume that after
merging trees \(T_1, T_2 \), we created a tree of height exactly \(h \).

\(T_2 \) has height exactly \(h-1 \), so it has \(\geq 2^{h-1} \) nodes.

\(T_1 \) also has \(2^{h-1} \) nodes, (why?)

Together they have

\(2^{h-1} + 2^{h-1} = 2^h \) nodes.
Further improvement: path compression

So far we know that every tree has height $O(\log n)$, so this bounds the time for each operation.

Path compression: during either union or find operation, we scan a sequence of nodes on our way from a node j to the root.

Idea: set the parent pointer of all these nodes to point to the root. (Slightly more work to perform it, but pays off in next operations)

```
Find_root( j ){
    If p[j] ≠ j then p[j]=Find_root(p[j]);
    return p[j]
}
```

Make sense – but how fast is it?

Thm: Consider a set of n atoms

Any sequence of m U/F operations takes $O(m \alpha(n))$.

Here $\alpha(n)$ is the inverse function of Ackerman function, and is approaching infinity as n approaching infinity.

However, it does it very slowly.

$\alpha(n) < 4$ when $n < 10^8$

Connected Components in Undirected graphs

Let $G(V,E)$ be a graph.

We say that a subset C of V is a connected component (CC) if

1. for every pair $u,v \in C$, there is a path connecting them, and all the vertices of this path belong to C. And in addition
2. For any vertex $u \not\in C$, and any vertex v that does not belong to C, there is no path in $G(V,E)$ connecting u to v.

Examples 1: If $G(V,E)$ is connected then V is a CC.

Example 2: If $G(V,E)$ contains no edges, then every node is CC, which contains only itself.

Example 3: If $G(V,E)$ is a tree, and we deleted an edge from E, then in the resulting graph there are 2 CCs.
Minimum Spanning Trees

$G(V,E)$ with positive weights on its edges.

A Minimum spanning tree (MST) is any graph T such that

1. Every vertex of V appears in T, and
2. T is connected (has a path between every two vertices)
3. T is a subset of E
4. Sum of weights of its edges are as small as possible

Application: Kruskal algorithm

Kruskal algorithm for finding a MST.
Input: Graph $G(V,E)$. Output: Minimal Spanning Tree for G.

1) Assume $E=\{e_1, e_2, ..., e_m\}$ is sorted from cheapest edge to most expensive edge.
2) Set $S=EmptySet$.
3) For $i=1..m$
4) If $e_i \cup S$ does not contain a cycle, add e_i to S
/* We use U/F structure to answer last test */

If E is sorted, then the time is $O(|E| \alpha(|E|))$