1. Create a trie for the set of words $S = \{ab, ba, ca, caa, caaa, baa\}$ over the alphabet $\Sigma = \{a, b, c\}$.

2. Consider a text B, and the suffix tree T for B. Show that a word w appears as a substring in B if and only if there is a path in T from the root to some nodes, and this path corresponds to w.

3. Create a suffix tree for the text $B = \{abaabaaab\}$ over the alphabet $\Sigma = \{a, b\}$.

4. How would you change the structure of the trie, so that you can perform the following operations on this trie:
 (a) Given a set $S = \{w_1 \ldots w_n\}$ of words, construct the trie for S in time $O(\Sigma_{i=1}^n |w_i|)$.
 (b) Given a word w (not necessarily of S), find how many words in S have w as a prefix. You should be able to answer this query in time $O(|w|)$.

5. Given a text B of n characters, suggest a modification of the suffix tree data structure for B, such that the following query operation could be performed. Given a query word w, report how many times w appears (as a contiguous substring in B). For example

 $B = "ccaaaabaaa"

 then the query word $w = "c"$ appears twice in B, the query word $w = "cc"$ appears once, and $w = "aaa"$ appears 3 times.

 $B = "ccaaaabaaa", "ccaaabaa", "ccaaabaa"$

 The preprocessing time (the time for creating the structure) is $O(n^2)$, and the space required after for storing the data structure is $O(n)$.

6. Let k, n be given parameters, where $n = 2^i$ for some integer i. Suggest a set of words $S = \{w_1, \ldots, w_n\}$ over an alphabet $\Sigma = \{a, b\}$, where $|w_i| \leq k$, such that the number of nodes in a trie storing S is as large as possible. What is this number?