Dynamic programming

- Dynamic programming is an algorithm design technique that is often applied to combinatorial optimization problems where

 1. an optimal solution can be decomposed into an optimal solution to a subproblem of the same form, and

 2. a sequential structure can be imposed on a solution.

Eg
- Maximum-Sum Subarray
- Longest Common-Subsequence
- Matrix-Chain Multiplication
Dynamic programming framework

Solving a problem by dynamic programming consists of carrying out 4 steps:

(1) Characterize the recursive structure of an optimal solution.

Aside To characterize the structure of a solution, ask the 10^6 question: “How does an optimal solution end?”

(2) Write a recurrence for the value of an optimal solution.

Aside To derive a recurrence for the solution value, first determine how to describe a subproblem.

(Evaluation phase) (3) Evaluate the recurrence bottom-up in a table.

(Recovery phase) (4) Recover an optimal solution from the table of solution values.
Computing an LCS by dynamic programming

(1) The structure of an LCS

For input strings $A[1:m] = a_1, a_2, \ldots, a_m$ and $B[1:n] = b_1, b_2, \ldots, b_n$, there are 3 ways an LCS of A and B could end:

Case 1. The LCS of A and B ends by using both characters a_m and b_n:

In this situation, characters a_m and b_n cannot be matched to other characters in B and A in the LCS,

\[
\begin{align*}
A & \quad \ldots \quad \ldots \quad a_m \\
B & \quad \ldots \quad \ldots \quad b_n
\end{align*}
\]

Impossible, since matched chars must appear in same order in A and B

So we must have

\[
\begin{align*}
A & \quad \ldots \quad \ldots \quad a_m \\
B & \quad \ldots \quad \ldots \quad b_n
\end{align*}
\]

which further implies that we must have $a_m = b_n$.

Case 1 cont'd

Thus for this case the LCS has the form:

\[
\begin{align*}
 a_1, & \ a_2 & \ldots & \ a_{m-1} \quad a_m \\
 b_1, & \ b_2 & \ldots & \ b_{n-1} \quad b_n
\end{align*}
\]

Must be an LCS of
A[1:m-1] and B[1:n-1]

(since otherwise, replacing the initial portion by the LCS of A[1:m-1] and B[1:n-1] would yield a longer solution — a contradiction).

Case 2 The LCS of A and B does not use \(a_m\):

\[
\begin{align*}
 a_1, & \ a_2 & \ldots & \ a_{m-1} & a_m \\
 b_1, & \ b_2 & \ldots & \ b_{n-1} & b_n
\end{align*}
\]

Must be an LCS of A[1:m-1] and B[1:n]

Case 3 The LCS does not use \(b_n\):

Symmetric to Case 2, the LCS must be an LCS of A[1:n] and B[1:m-1]
(2) Recurrence for the value of an LCS

- The recursive subproblem that arises is one of computing an LCS over a prefix of A and a prefix of B. This subproblem can be specified by giving the lengths i, j of the prefixes.

- So let

\[
L(i,j) := \text{the length of an LCS of } A[1:i] \text{ and } B[1:j].
\]

Then by the 3 cases,

\[
L(i,j) = \begin{cases}
(L(i-1,j-1)+1 \text{ if } A[i]=B[j],) \\
\max \{L(i-1,j), L(i,j-1)\} \\
0,
\end{cases}
\]

i \geq 1 \text{ and } j \geq 1;

i \leq 0 \text{ or } j \leq 0.

- The solution value for the original problem is \(L(m,n)\).
(3) Compute the solution value bottom-up, using a table

- We evaluate \(L(i,j) \) in a table \(L[0:m, 0:n] \).

```
0 1 ... j ... n
```

```
0 1
```

```
i
```

```
m```

Want to determine entry \((m,n)\).

In general, entry \((i,j)\) depends on the 3 entries \((i-1,j)\), \((i,j-1)\), and \((i-1,j-1)\).

- If we fill in the table in row-major order or column-major order or anti-diagonal-major order, then these 3 entries will have already been evaluated when evaluating entry \((i,j)\).
procedure \text{EvaluateLCS} (A, B, L, m, n) \begin{align*}
&L[0, 0] := 0 \\
&\text{for } j := 1 \text{ to } n \text{ do} \\
&\quad L[0, j] := 0 \\
&\text{for } i := 1 \text{ to } m \text{ do} \\
&\quad L[i, 0] := 0 \\
&\text{for } i := 1 \text{ to } m \text{ do} \\
&\quad \text{for } j := 1 \text{ to } n \text{ do} \\
&\quad \quad \text{if } A[i] = B[j] \text{ then} \\
&\quad \quad \quad L[i, j] := \max \{ L[i-1, j-1]+1, L[i-1, j], L[i, j-1] \} \\
&\quad \quad \quad \text{else} \\
&\quad \quad \quad L[i, j] := \max \{ L[i-1, j], L[i, j-1] \}\end{align*}
end

- \Theta(mn) \text{ time} \\
- Fill in table \(L[0:m,0:n]\) \\
- Evaluate \(L(i, j)\) by the recurrence in row-major order. \\
- Initialize boundary values

\text{Analysis}

- \(\Theta(m+n+mn) = \Theta(mn)\) time \quad (expensive, but tolerable) \\
- \(\Theta(mn)\) space \quad (very costly for long strings)
(4) Recover an LCS from the table of solution values

```plaintext
procedure RecoverLCS (A, B, L, i, j) begin
 if i ≤ 0 or j ≤ 0 then
 return
 if A[i] = B[j] and L[i,j] = L[i-1,j-1]+1 then begin
 RecoverLCS (A, B, L, i-1, j-1)
 output A[i]
 end else if L[i,j] = L[i-1,j] then
 RecoverLCS (A, B, L, i-1, j)
 else
 RecoverLCS (A, B, L, i, j-1)
end
```

Analysis

- Each call decrements i or j and expends Θ(i) time.
- Starting with i=m and j=n takes Θ(m+n) total time.
(4) Recovering an LCS, cont'd

- Putting it all together, the whole algorithm is,

```
procedure LCS (A, B, m, n) begin

L := Array(0, m, 0, n)
Evaluate LCS (A, B, L, m, n)
Recover LCS (A, B, L, m, n)
Destroy (L)
end
```