Finding the k^{th}-smallest in $\Theta(n)$ worst-case time

- Like the randomized algorithm, we recursively partition the array. But now we guarantee a good split in 5 steps:

1. Divide the n elements into $\lceil \frac{n}{5} \rceil$ groups of 5 elements, and ≤ 1 group of <5 elements.

 \[
 \begin{array}{c}
 5 \\
 \{ \cdot \cdot \cdot \cdot x \cdot \cdot \cdot \cdot \cdot \cdot \cdot \} \\
 \{ \cdot \cdot \cdot \cdot \cdot \cdot \cdot \} \\
 \{ \ \} \\
 \{ \ \} \\
 \{ \ \} \\
 \{ \ \} \\
 \end{array}
 \]
 \[
 \lceil \frac{n}{5} \rceil \text{ groups}
 \]

2. Find the median of each group (by say running insertion sort on the ≤ 5 elements and taking the middle element).
Finding the k^{th}-smallest, cont'd

(3) Recursively find the median x of the $\lceil \frac{n}{5} \rceil$ medians found in step (2) (by recursively calling the algorithm with $k' = \left\lceil \frac{\lceil \frac{n}{5} \rceil + 1}{2} \right\rceil$).

(4) Partition the input array A around element x from step (3):

\[
\begin{array}{c}
\text{A} \\
\text{\{low side\} \{high side\}}
\end{array}
\]

(5) Let i be the rank of x.

- $k = i$: Return x.
- $k < i$: Recursively find k^{th}-smallest in the low side of A.
- $k > i$: Recursively find $(k-i)^{\text{th}}$-smallest in the high side.