CS 445

Dynamic Programming

Some of the slides are courtesy of Charles Leiserson with small changes by
Carola Wenk

Dynamic Programming:
Example 1: Longest Common Subsequence

We look at sequences of characters (strings)
e.g. x="“ABCA”

Def: A subsequence of x is an sequence obtained from x by possibly
deleting some of its characters (but without changing their order

Examples:

IKABC),, IKACA),’ ({AA)” IKABCA »
Def A prefix of x, denoted x/1..m/, is the sequence of the first m
characters of x

Examples:
x[1..4]="ABCA” x[1..3]="ABC” x[1.2]="“AB”
x[1.1]="A4" x[1..0]=""

Longest Common Subsequence (LCS)

* Given two sequences x[1 .. m]and y[1 . . ], find a longest
subsequence common to them both.

xA B C B D A B
BCBA =
N

+»BE D C A B A LCS(x, »)

Longest Common Subsequence (LCS)
* Given two sequences x[1 .. m|and y[1 .. n], find a longest
subsequence common to them both.

C‘a’, not “the”

A B C B D A B
BCBA =
N

»BE D C A B A LCS@, »)

Different phrasing: Find a set of a maximum number of segments,
such that

*Each segment connects a character of x to an identical character of y,
*Each character is used at most once

*Segments do not intersect.

Different phrasing: Find a set of a maximum number of segments,
such that

*Each segment connects a character of x to an identical character of y,
*Each character is used at most once

*Segments do not intersect.
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Brute-force LCS algorithm

Checking every subsequence of x whether it 1s
also a subsequence of y.

Brute-force LCS algorithm

Checking every subsequence of x whether it is
also a subsequence of y.

Analysis

 Checking = ©(m+n) time per subsequence.

« 2m subsequences of x

Worst-case running time = © ((m+n)2m)
= exponential time.

Towards a better algorithm

Simplification:

1. Look at the length of a longest-common
subsequence.

2. Extend the algorithm to find the LCS itself.
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Simplification:

1. Look at the length of a longest-common
subsequence.
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Notation: Denote the length of a sequence s
by [s].

Towards a better algorithm

Simplification:

1. Look at the /ength of a longest-common
subsequence.

2. Extend the algorithm to find the LCS itself.

Notation: Denote the length of a sequence s

by [s].

Strategy: Consider prefixes of x and y.
* Define c[7, j] = |LCS(x[1 .. ], y[1../]].
* Then, c[m, n] = | LCS(x, y) |

Recursive formulation

Observation:
It is impossible that

x/m] is matched to an element in y//..n-1] and
simultaneously

y[n] is matched to an element in x/1..m-1]
(since it must create a pair of crossing segments).

Conclusion — either x[m] is matched to y[n], or one at least of them
is unmatched in OPT.
{OPT — the optimal solution}

Recursive formaula

Lets just consider the last character of of x and of y

Case (I): x[m]=y[n].

Proof.

X

y:

|

2

Claim: ¢/m, n]=c[m-1,n-1]+1.

m

1

2




Recursive formaula

Lets just consider the last character of of x and of y
Case (I): x[m]=y[n]. Claim: ¢/m, n]=c/m-1,n-1]+1.
Proof.

1 2 m

X. { \ '\
12 N\ =

n

We claim that there is a max matching that matches x/m/ to y/n/.

Indeed, if x/m/ is matched to y/k/ (for k<m) then y/n/ is unmatched (otherwise we
have two crossing segments). Hence we can obtain another matching of the same
cardinality by matching x/m/ to y/n/.

This implies that we can find an optimal matching of
LCS(x/1..m-1] to y[1..n-1], and add the segment (x/m/,y[n]).
So c¢/m,n]=c[m-1,n-1]+1

Recursive formulation-cont

Case (II): x[m] = y[n] Claim: c[m,n|=max{c[m,n-1], c[m-1,n]}

Recall - in LCS(x[1 ..m], y[1..n]) it cannot be that both x[1]
and y[n] are both matched.

1 2 m
X: »
S

y:

If x/m] is unmatched in OPT then

LCS(x[1 ..m], y[1..n])=LCS(x[1..m-1],y[l..n])
If y/j] is unmatched in OPT then

LCS(x[1..m], y[1..n])=LCS(x[1..m],y[l..n-1])

So c[m,n]= max{c[m—1, n], c[m, n—1]}

c[i,j] For general i,j
Since we only care for OPT matching the prefixes, then

Case (I): x[i] =y[/].
Claim: if x[i] = y[j] then ¢/i, j]=c[i-1,j-1]+ 1.

c[1,j] For general i,j
Since we only care for OPT matching the prefixes, then

Case (I): x[i]] =y[/].
Claim: if x[i] = y[j] then ¢/i, j]=c[i-1,j-1]+1.

1 2 i m
X: N EEE
J n

AN
y: N




c[1,)] For general i,j
Since we only care for OPT matching the prefixes, then
Case (): x[i] =y[/]-
Claim: if x[{] = y[j] then ¢/i, j]=c[i-1,j-1]+ 1.

1 2 i m

X NEN [~
1 2 N\ =\ n
v NN [~(~])(~]

We claim that there is a max matching that matches x/i/ to y/j/.

Indeed, if x/i/ is matched to y/k/ (for k<) then y/j/ is unmatched
(otherwise we have two crossing segments). Hence we can obtain
another matching of the same cardinality by match x/i/ to y/j/.

This implies that we can match x//..i-// to y[/..j-1], and add the
match (x/i/,y/j]). So c[i, j]=c[i-1,j-1]+1

Recursive formulation-cont
Case (II): if x[i] = y[j] then c[i, j]=max{c[i-1, /], c[i, 1]}

Recall - in LCS(x[1 .. 7], [l ../]) it cannot be that both x[/] and
v|/] are both matched.

| i m
x: » EEE
DN i
y: 7 >
I 2 J n

If x/i] is unmatched then

LCS(x[1..d],y[1..j)=LCS(x[1..&-I],»[1..j])
If y/j] is unmatched then

LCS([1 .. ], [l .. jD)=LCSG(1 .. i, y[1 .. j-1])

So C[Z,J]: maX{C[i—],j], C[Z,J_]]}

Dynamic-programming hallmark
#1

oy

(0

Optimal substructure
An optimal solution to a problem
(instance) contains optimal
solutions to subproblems.

Dynamic-programming hallmark

oy

Optimal substructure
An optimal solution to a problem
(instance) contains optimal
solutions to subproblems.

If z = LCS(x, y), then any prefix of z is
an LCS of a prefix of x and a prefix of y.




Recursive algorithm for LCS

LCS(x, y, i, j)
if (i==0 or j=0) return 0
if x[i] = y[ j]
then return LCS(x,y, i-1, j-1) +1
else return max{LCS(x, y, i-1, j), LCS(x, y, i, j—1)}

To call the function LCS(x, y, m,n )

Recursive algorithm for LCS

LCS(x, y, 1, )
if (i==0 or j=0) return 0
if x[i] =yl ]
then return LCS(x,y, i-1,j-1)+1
else return max{LCS(x, y, i-1, j), LCS(x, y, i, j-1)}

To call the function LCS(x, y, m,n )

Worst-case: x[i] = y[ j], forall i,j in which case
the algorithm evaluates two subproblems, each
with only one parameter decremented.

Recursion tree

Recursion tree

Height = m + n = work potentially 2m*n exponential.




Recursion tree

same
subproblem

Height = m + n = work potentially 2m+n exponential.
but we’re solving subproblems already solved!

Dynamic-programming hallmark
#2

M
=

9 Overlapping subproblems
A recursive solution contains a
“small” number of distinct
subproblems repeated many times. |

Dynamic-programming hallmark
#2

%y

© Overlapping subproblems
A recursive solution contains a
“small” number of distinct
subproblems repeated many times.

J

The number of distinct LCS subproblems for
two strings of lengths 7 and 7 is only mn.

Memoization algorithm

Memoization: After computing a solution to a
subproblem, store it in a table. Subsequent calls check
the table to avoid redoing work.




Memoization algorithm

Memoization: After computing a solution to a
subproblem, store it in a table. Subsequent calls check
the table to avoid redoing work.

LCS(x, y)
fori=0tom c[i, 0] =
for j=0ton c[0,)]=

for i=1 to m
for j=1ton
if (:[1] = y1/])
then c[i, j| <= c[i~1,j-1] +1
else c[i, j] < max{ c[ i-1, /], c[i,j—1]}

Memoization algorithm

Memoization: After computing a solution to a
subproblem, store it in a table. Subsequent calls check
the table to avoid redoing work.

LCS(x, y)
fori=0tom c[i,0]=0
for j=0ton c[0,j]=0

for i=1 to m
for j=1ton
if (x[1] = /)
then c[i, j]| <= c[i-1,/-1] +1
else c[i, j/] < max{ c[ i-1, /], c[i,j—1]}

Time = O(mn) = constant work per table entry.
Space = O(mn).

LCS: Dynamic-programming algorithm

LCS(X,Y)=“BCBA” .

y=1 2 4 5 6 7
A B C B D A B

Il 0 0 0 0 0 0 0 0

X=BDCA iBlo o | 1t | 1| 1| 1] 1]1
YZA&JDB2D00111222

Reconstruction z=LCS(x,y)
IDEA: Compute the table bottom-up. Fill z backward.

y—ABC/ {A

Lcs(x,y)=“BCBA”

= =o|lo|lo|lol—

l\)l\)l\)l\)v—‘»—‘o-)w

.l;.lkwt\)l\.)»—O(;u\]




Reconstruction z=LCS(x,y)

IDEA: Compute the table bottom-up. Fill z backward.
Lcs(x,y)=“BCBA”

y=AB C/ {Aé

W WIN|N == Oms
W W[N] — Otle
AW (WIN|N|— O:1>c\
B IR (W=D

DN NN — [ — | O

Reconstruction z=LCS(x,y)
IDEA: Compute the table bottom-up. Fill z backward.

y—ABJ {A

LCs(x,y)=“BCBA”

I:

== =ololo|lol—
DB === | — | O
DN N — | — | O M
W WIN N — | = Ogs
W[N] — | oW
o R S N e Pl =N

I PSRV IOY FOY S POY e

Reconstruction z=LCS(x,y)

IDEA: Compute the table bottom-up. Fill z backward.
Lcs(x,y)=“BCBA”

y—ABC/ {Aél

—_—

NN | = [ = | = | = Syro
BN (N — [ — | O rw
WL (| — | — | O
W[W (N[N~ o fw
.pwwmwh‘o»o\
A Nlwp | =olba

[l el el el Rawl Rl el

(el el fel fel el el N}

Reconstruction z=LCS(x,y)
IDEA: Compute the table bottom-up. Fill z backward.

y—ABJ {A

Lcs(x,y)=“BCBA”

b i P e el el P 2

W[N] — O

R[N = — | orw

Bl PAR WP =D




Reconstruction z=LCS(x,y)

IDEA: Compute the table bottom-up. Fill z backward.
Lcs(x,y)=“BCBA”

y=AB C/ {Aé

L

[l Bl ol el Hen ) Nan ) el SN
WL — | — | Ogs
BIWIWININ—Opo
B IR (W=D

DI N — | — | O
WIWIN NN | — D

=l ol Rl el el Ne) o)

Reconstruction z=LCS(x,y)

IDEA: Compute the table bottom-up. Fill z backward.
Lcs(x,y)=“BCBA”

y—ABJ {A

I:

== =ololo|lol—
DB | === — | O
DI — | — | O M
W[N] = = Ome
WL I (NN — | O
o R S N e Pl =N
A Rlw v =o)

Reconstruction z=LCS(x,y)

IDEA: Compute the table bottom-up. Fill z backward.
Lcs(x,y)=“BCBA”

y—ABC/ {Aél

—_—

Reconstruction z=LCS(x,y)

IDEA: Compute the table bottom-up. Fill z backward.
Lcs(x,y)=“BCBA”

el Mol Bl el Henll Hewll el
DO — [ — | O Ew
R I W(WIN[ND|—|[O :>o\

Wlw (| N = ol w

(el el fel fel el el N}

BRI = O

y—ABJ {A

1 23 45 67
B CB A
o[oJo]olo]o
B L1l
. 1J1]12]2]2
3C 12]2]2]2]2
2 1]2]2]2[3]3
0 112]23[3[3[4
eal0[1]2]2]3]3]4]4




Reconstructing z=LCS(X,Y)

Another idea — While filling ¢//, add arrows to each cell
c/i,j] specifying which neighboring cell ¢/i,j] it got its
value.

s c[ij].flag=“\“if c[i,j]=c[ i-1;j-1]+1

* c[ij] flag =1 “if c[i, j]=c[i-1,] ]

ec[ij] flag="“<="“if c[i, j]=c[i-1,j ]

Example 2: Edit distance

Given strings X, Y, the edit distance ed(X,Y) between X and Y is
defined as the minimum number of operations that we need to
perform on X, in order to obtain Y.

Defintion: An Operations (in this context) Insertion/Deletion/

BCB A Replacement of a single character.
0-Qolojojoflo]o
BL° 1011 <111t Exa‘r‘nplesi’ . . Note that the term “distance”
0 40l ll<1l<1l 2|22 ed(“aaba’, “aaba’) =0 is a bit misleading: We need
T T d 113 s b ’ . ]
0 100+ 152 12 2 | 2 ¢ (“aaa » @asa ) - both the value (how many
C o == ed(“aaaa”, “abaa”) =1 operations) as well as
0 |1t 1 .22 3 3 ed(“baaa”, "") =4 knowing which operations.
Bl° 11121213 <33 4 ed(““baaa”, “aaab”) =2
Ao T 1212133144
Example 3’:

“Priced” Edit distance ed(X,Y)

Assume also given

InsCost, - the cost of a single insertion into x.

DelCost - the cost of a single deletion from x, and

RepCost - the cost of replacing one character of x

by a different character.

Definition: Given strings X, Y, the edit distance ed(X,Y) between X
and Y is the cheapest sequence of operations, starting on X and ending
at Y.

Problem: Compute ed(X,Y), (both the value and the optimal sequence
of operations. )

Definition: ¢/i,j | = Cost( ed( X/1..iJ, Y[1..j] ) ).

Will first compute Cost( ¢/m,n] ). Then will recover the sequence.

Thm:

Let c/i,j] =ed(x/1..i], y[1.j] ).
Assume c/i-1,j-1], c[i-1,j-1], c[i-1,j] are already computed.

If X/i]=Y/[j] then c[ij] = c[i-1,j-1]
Else // X[i]=Y[j]
c/i,j] = min{
cfi-1,j-1]+RepCost, //convert X[1..i-1]=>Y/[1..j-1], and replace y/]
by x/i]

cfi-1, j | +DelCost, //delete X[i] and convert X/1..i-1]-> Y[1..j]
c[ i,j-1]+InsCost  //convert X[1..i,]=> Y[1.j-1], and insert Y/i]
/




Algorithm

Memoization: After computing a solution to a subproblem, store

it in a table. Subsequent calls check the table to avoid redoing
work.

Algorithm

Memoization: After computing a solution to a subproblem, store

it in a table. Subsequent calls check the table to avoid redoing
work.

ed(X, 1)
for i=0 to m c[i, 0] =i DelCost
for j=0ton [0, )] =] InsCost

for i=1 to m
for j=1 ton
if (X[i] == Y[/1)
then c[i, j] <= ¢[ i~1, 1]
else c[i, /| <=min{ c[i-1,j] + DelCost,
c[i-1,j-1]+ RepCost,
}c[i,j—]] + InsCost

Algorithm

Memoization: After computing a solution to a subproblem, store
it in a table. Subsequent calls check the table to avoid redoing
work.

ed(X, 1)
for i=0 to m cl[i, 0] =i DelCost
forj=0ton c[0,j]| =] InsCost

for i=1 to m
for j=1ton
if (X[i] == Y1)
then c[i, /] < c[ i1, j-1]
else c[i, j| < min{ c[i-1,j] + DelCost,
c[i-1,j-1]+ RepCost,
}c[i,j—]] + InsCost

Time = ©(m n) = constant work per table entry. Space = O(m n).
Homework: Compute the sequence of operations.
Compute which characters in x matches which chars in y.

Polygonal Path - definition

We definite a polygonal path P=/p,...p,} where
«Each vertex p; is a point in the plane,
«Vertex p,1is the first vertex , p,, is the last,

«Vertex p; 1s connected to the next vertex p, , by a straight
segment.

sz Py




Good ways to measure distance between
curves

) 4

Problem: Computing the Frechet Distance between polylines
Frechet(P, O,r)

4

P
0

Py

» Should not be effected by how curves are sampled
» Should reflect the “order” of the points along the curves.

P

N\

P[] .. l] is the polygonal line with the first i vertices of P

Q [ ] . J] is the polygonal line with the first j vertices of P

Definition of Frechet(P,0, r)

Assume a person walks on P={p,...p,}
while a dog walks on 0={4,..q,, /.

r is the leash length (part of input).
The person starts at p, and ends at p,,
The dog  starts at ¢, and ends at ¢,

At each time stamp,

scither the person jumps to the next
vertex

*Or the dog jumps to the next vertex
*Or both jumps to the next vertex

Pr

Every instance they stop, we
measure whether the distance
between person<>dog (the
length of the leash) <r.

Frechet(P,Q,r)=YES if the
answer is positive for all time
stamps.

(if not, a longer leash is need.
If yes, maybe a shorter one is
sufficient.

So we could use binary search.

Problem: Computing the Frechet Distance between polylines
Frechet(P, Q,r)

q;
Definition of Frechet(ﬁ,@ r)
Assume a person walks on P={p,...p,}
while a dog walks on 0={q,..q, }.
r is the leash length (part of input).
The person starts at p, and ends at p,
The dog  starts at ¢, and ends at ¢,

At each time stamp,

scither the person jumps to the next
vertex

*Or the dog jumps to the next vertex
*Or both jumps to the next vertex

Problem: Computing the Frechet Distance between polylines
Frechet(F, Q,r)

Every instance they stop, we
measure whether the distance
between person<—dog (the
length of the leash) < r.

Frechet(P,Q,r)=YES if the
answer is positive for all time
stamps.

(if not, a longer leash is need.
If yes, maybe a shorter one is
sufficient.

So we could use binary search.

Definition of F rechet([é@ r)
Assume a person walks on P=/p,...p,}
while a dog walks on 0={q,..q, }.

r is the leash length (part of input).
The person starts at p, and ends at p,
The dog  starts at ¢, and ends at ¢,

At each time stamp,

ecither the person jumps to the next
vertex

*Or the dog jumps to the next vertex
*Or both jumps to the next vertex

Every instance they stop, we
measure whether the distance
between person«>dog (the
length of the leash) < r.

Frechet(P,Q,r)=YES if the
answer is positive for all time
stamps.

(if not, a longer leash is need.
If yes, maybe a shorter one is
sufficient.

So we could use binary search.




Computing Frechet(P,Q,r)

Frechet(P,Q,r)
// ¢[1..n, 1..n] — boolean array
/I ¢[i,j]= Frechet(P[1..i1,Q[1.,j ], r )

Init:

c[L1]= (| p;—q; | <r) (YES/NO)

Fori=2ton cfi,l]= (|| p;—q;|| <r) AND c[i-1,1] (YES/NO)
For j=2tonc[Ljl= (|lp,—q;|l <r)AND c[1,-1]

Computing Frechet (P,Q,r) (cont.)

// ¢[1..n, 1.n] — boolean array
Init- previous slide

Fori=2ton
Forj=2ton
cfijl = (|l p;i- ¢; |l <) AND
{ cli-1,j-1], // both jumps

OR cfi-1,j ], // person jumped from p, , to p; , dog stays at g;
OR c[ ij-1] . // person stayed at p, , dog jumped from g, , fo g,
/

Return c/n.nj/
Note — this is only the cost (that is the distance itself. We still need to find
what is the series of steps that yield this cost

Comments

* This is actually the Discrete Frechet Distance (only distances between
vertices counts). We do not discuss the continuous version.

» This is only the Decision problem — we actually want the shortest leash.
We could use a binary search to approximate it. Exact algorithm outside
the scope of this course

» If person/dog could move backward, the problem is called the weak
Frechet.

Maurice René Fréchet

Problem: Computing
Dynamic Time Warping diw(P,Q) between polylines

BP 4

Given 2 polygonal curves qn
P={p;...p,} and 0={q,.q,},
The input is the locations of their vertices (e.g. GIS coordinates)

How similar are P to O ?

Need to come up with a number dtw(P,Q)?
So if dtw(P.Q)< dtw(P,Q’), then P is more similar to Q

\Ne—




Problem: Computing
Dynamic Time Warping dmw(P,Q) between polylines

Given 2 polygonal curves

P={p,...p,} and O0={q,..q,}

4y

The input is the locations of their vertices (e.g. GIS coordinates)

How similar are P to Q ?

Need to come up with a number dtw(P,Q)?

So if dtw(P.Q)< dtw(P.Q’), then P is more similar to Q

A

Dynamic Time Warping dmw(P,Q)
B/P 4

3 Pr

Definition of dtw(P,Q)

* Every instance they stop,
we measure the distance
(the length of the leash)
person«—dog.

Assume a person walks on P={p,...p,}
while a dog walks on 0={g,..q,,}.

They person starts at p, and ends at p,,

e W the lengths of all
They dog  starts at ¢, and ends at ¢, © sum the Jeigths ot a

leashes.
At each time stamp, e dtw(P,Q) is the smallest
ecither the person jumps to the next sum (over all possible
vertex sequences)

*Or the dog jumps to the next vertex
*Or both jumps to the next vertex

Dynamic Time Warping dmw(P,Q)

VY
10 q3

Definition of dtw(P,Q)
Assume a person walks on P=/p,...p,}

while a dog walks on 0={q,..q,,}.

They person starts at p, and ends at p,
They dog  starts at ¢, and ends at ¢,

At each time stamp,

scither the person jumps to the next
vertex

*Or the dog jumps to the next vertex
*Or both jumps to the next vertex

Every instance they stop,
we measure the distance
(the length of the leash)

person«>dog.

We sum the lengths of all
leashes.

dtw(P,Q) is the smallest
sum (over all possible
sequences)

Motivation:
PP 4
q>
P
3 D,
10 q;
Definition of dtw(P,Q) DTW is used 1in . .
Assume a person walks on P={p,...p,} ¢ rselcg(r)l)a processing (speec
while a dog walks on 0={q,..q,,}. * Signature verification

* Analysis of vehicles

. . . trajectories for roads

Distance between trajectoris enables networks

finding nearest neighbor, and clustering * TImproving locations-
based services

* Animals migrations

. . . . patters

But two very similar trajectories might «  Stocks analysis

have vertices in very different places




Thm 1:
Let ¢/i,j] = dtw( P[1..i], Q[1.j] ).

Let || p;- g; || be the between the points p;and q;
That is, the length of the leash.

For every i>1 ,j>1
c[LI]= |lp,—q,|

CII’.]] = C[],j-]] + ”p]' qj ”

C[i)1] = C[i—l,]] + ”pi_ql ”

Thm 2:

Assume at some time, the person is at p; while dog at g;
Assume i>/ and j>1.

What (might have) happened one step ago ?

Three possibilities

Both person and the dog jumped (from p, ; and from ;) OR
Person jumped from p, , to p; , dog stays at g, OR
Person stayed at p; , dog jumped from g, , fo g;.

Thm 2 cont:
Let ¢/i,j] = dtw( P[1..i], O[1..j] ).

If i>1 and j>1 then

clijl = p;- q; |l +
min{
cfi-1,j-1}], /7 both jumps
cfi-1,j ], // person jumped from p, , to p; , dog stays at g;
c[ i,j-1] . // person stayed at p; , dog jumped from g, , o g;.

/

Since we are not sure that when the person is at p; the dog is at g; we
will compute all such pairs i,j — one of them must happened

Algorithm for computing dtw(P,Q)

Init according to Thm 1.

Foti=2 ton
Forj=2ton
clij/ =l p;-q; 1l +
min{
cfi-1,j-1], // both jumps
cfi-1,j ] , // person jumped from p, , to p; , dog stays at g;
¢/ i,j-1] // person stayed at p; , dog jumped from g, , o g;.
/
Return c/n.nj/
Note — this is only the cost (that is the distance itself. We still need to find
what is the series of steps that yield this cost




Dynamic-programming hallmark #1

(we saw this slide already)

<y
© Optimal substructure
An optimal solution to a problem
(instance) contains optimal
solutions to subproblems.
/

Dynamic-programming hallmark #1

(we saw this slide already)

oy

o)

Optimal substructure
An optimal solution to a problem
(instance) contains optimal
solutions to subproblems.

If z = LCS(x, y), then any prefix of z is
an LCS of a prefix of x and a prefix of y.

Dynamic-programming hallmark
#2

%y

© Overlapping subproblems
A recursive solution contains a
“small” number of distinct
subproblems repeated many times.

J

Dynamic-programming hallmark

N
M

© Overlapping subproblems
A recursive solution contains a
“small” number of distinct
subproblems repeated many times.

)

The number of distinct LCS subproblems for
two strings of lengths 7 and 7 1s only mn.




Another application of DP: Clustering
(source: Kleinberg & Tardos 6.3)

(T, Un)
{ is the line y = ax + b

[ ]
(v3,43) @

o Given points P = {(x1,y1), (22, 42), - - (0 yn) }
find a line minimizing Err(¢, P)
[ ]
n «
Err((,P) = ¥ (y; — ax; — b)’
=1
that is, the sum of squares of vertical distances
from each (z;,y;) to .
e Solution
nay — (Ca)(Sy)

ST
nsa? — (Sa;)?

Clustering Problem

o
D7 oo o7 L
Do pit
ohi oP3 . 9
e, P6

o

e Given points P = (py, pa, . .. pn) sorted from left to right, and a
panelty R. find optimal k, and partition of P into k runs
(P, 02 D) (Piy 11, Pig2 -+ Pin)s (Pig1s -+ Pig) + - (Diy_y41 -+ D)
and lines £; ... {}. (one per each run) So that the sum

R+ Err(t, {pi,p2...pi,})+

R+ Err(lo, {pi+2. .. pin})+ ) The penalty R
' R+ Err(le, (py_ys1---pa}) \1uy,,
is as small as possible @Jj{j‘/é»'

&

* Note that if R=0, we will probably use n/2 runs (p; p2), (p3.p4), ... (Pn-1. ).
« If R is huge, we can afford only one penalty, so only one run (p;....px).
* In the example, k=3, ;-5 i>-8

» Worth mentioning: There is no correct value of the penalty R. Instead, think that the user could slowly
increase R from 0 to oo, watch the number of clusters increases, and stop when the lines seems

appropriate.

» The Geogabra applet link could help visualizing this process

Yy —axw,
b= .,
sl
Algorithm A or e ¥ . .
© T e, Summarlzlng

« Preprocessing: for every pair of i and j (where j < i) compute the line 7/ ; that

best fit the points {p;, p;, 1, Pjyo---P;}

« Let c[i] = cost of the cost of the opt clustering of the points {p;...p;}. This
term includes both the sum of errors and the sum of penalties. At the i’th step
of the algorithm, we assume that c[0], c[1], c[2], ...c[i — 1] are already
computed, and using these values, we will compute c/iJ.

* Init: c[0]=0

» fori=2 ton do {

e c[i] = min{c[j]+ R+e[j+ 1,i] suchthat j=0,1,2...i—1}
* ¢[i] could also ‘remember’ for which value of j the minimum is obtained.

}

Idea: p; must belong to a cluster. We pay R for this cluster. The inner loop finds
what is the best point p;,; to be the leftmost point of this cluster.

* The algorithm takes O(n3) and O(n?) space
* (for preprocessing d/fj,i] )

¢ Note — we did not discuss how to reconstruct
the solution itself. We only calculated its
cost




