Dynamic Programming

Some of the slides are courtesy of Charles Leiserson with small changes by Carola Wenk

We look at sequences of characters (strings)
e.g. \(x = "ABCA" \)

Def: A subsequence of \(x \) is an sequence obtained from \(x \) by possibly deleting some of its characters (but without changing their order)

Examples:
- "ABC",
- "ACA",
- "AA",
- "ABCA"

Def: A prefix of \(x \), denoted \(x[1..m] \), is the sequence of the first \(m \) characters of \(x \)

Examples:
- \(x[1..4] = "ABCA" \)
- \(x[1..3] = "ABC" \)
- \(x[1..2] = "AB" \)
- \(x[1..1] = "A" \)
- \(x[1..0] = "" \)

Longest Common Subsequence (LCS) problem:
- Given two sequences \(x[1..m] \) and \(y[1..n] \), find a longest subsequence common to them both.

\[\text{BCBA} = \text{LCS}(x, y) \]

Different phrasing: Find a set of a maximum number of segments, such that
- Each segment connects a character of \(x \) to an identical character of \(y \),
- Each character is used at most once
- Segments do not intersect.
Cs445 salute

Brute-force LCS algorithm

Checking every subsequence of x whether it is also a subsequence of y.

Analysis

• Checking $= \Theta(m+n)$ time per subsequence.
• 2^m subsequences of x

Worst-case running time $= \Theta((m+n)2^m)$

$= \text{exponential time.}$

Towards a better algorithm

Simplification:
1. Look at the length of a longest-common subsequence.
2. Extend the algorithm to find the LCS itself.

Notation: Denote the length of a sequence s by $|s|$.

Strategy: Consider prefixes of x and y.
• Define $c[i, j] = |\text{LCS}(x[1..i], y[1..j])|$.
• Then, $c[m, n] = |\text{LCS}(x, y)|$.
Recursive formulation

Observation:
It is impossible that
\(x[m] \) is matched to an element in \(y[1..n-1] \) and simultaneously
\(y[n] \) is matched to an element in \(x[1..m-1] \)
(since it must create a pair of crossing segments).

Conclusion – either \(x[m] \) is matched to \(y[n] \), or one at least of them is unmatched in \(OPT \).
\(\{ OPT – the optimal solution \} \)

Recursive formula

Let's just consider the last character of \(x \) and \(y \)

Case (I): \(x[m] = y[n] \). Claim: \(c[m, n] = c[m-1, n-1] + 1 \).

Proof:

We claim that there is a max matching that matches \(x[m] \) to \(y[n] \).

Indeed, if \(x[m] \) is matched to \(y[k] \) (for \(k < m \)) then \(y[n] \) is unmatched (otherwise we have two crossing segments). Hence we can obtain another matching of the same cardinality by matching \(x[m] \) to \(y[n] \). This implies that we can find an optimal matching of
\(LCS(x[1..m-1], y[1..n-1]) \), and add the segment \((x[m], y[n]) \).
So \(c[m, n] = c[m-1, n-1] + 1 \)

Recursive formulation-cont

Case (II): \(x[m] \neq y[n] \) Claim: \(c[m, n] = \max \{ c[m-1, n], c[m, n-1] \} \)

Recall - in \(LCS(x[1..m], y[1..n]) \) it cannot be that both \(x[m] \) and \(y[n] \) are both matched.

If \(x[m] \) is unmatched in \(OPT \) then
\(LCS(x[1..m], y[1..n]) = LCS(x[1..m-1], y[1..n]) \)
If \(y[n] \) is unmatched in \(OPT \) then
\(LCS(x[1..m], y[1..n]) = LCS(x[1..m], y[1..n-1]) \)
So \(c[m, n] = \max \{ c[m-1, n], c[m, n-1] \} \)
c[i,j] For general i,j, since we only care for OPT matching the prefixes, then

Case (I): x[i] = y[j].

Claim: if x[i] = y[j] then c[i, j] = c[i-1, j-1] + 1.

Recursion

We claim that there is a max matching that matches x[i] to y[j]. Indeed, if x[i] is matched to y[k] (for k<i) then y[j] is unmatched (otherwise we have two crossing segments). Hence we can obtain another matching of the same cardinality by match x[i] to y[j].

This implies that we can match x[1..i-1] to y[1..j-1], and add the match (x[i], y[j]). So c[i, j] = c[i-1, j-1] + 1

Recursive formulation-cont

Case (II): if x[i] ≠ y[j] then c[i, j] = max{c[i-1, j], c[i, j-1]}

Recall - in LCS(x[1 . . i], y[1 . . j]) it cannot be that both x[i] and y[j] are both matched.

If x[i] is unmatched then LCS(x[1 . . i], y[1 . . j]) = LCS(x[1 . . i-1], y[1 . . j])
If y[j] is unmatched then LCS(x[1 . . i], y[1 . . j]) = LCS(x[1 . . i], y[1 . . j-1])
So c[i, j] = max{c[i-1, j], c[i, j-1]}

Dynamic-programming hallmark #1

Optimal substructure

An optimal solution to a problem (instance) contains optimal solutions to subproblems.

If z = LCS(x, y), then any prefix of z is an LCS of a prefix of x and a prefix of y.
Recursive algorithm for LCS

LCS(x, y, i, j)
 if (i==0 or j==0) return 0
 if x[i] = y[j]
 then return LCS(x, y, i–1, j–1) + 1
 else return max{LCS(x, y, i–1, j), LCS(x, y, i, j–1)}

To call the function LCS(x, y, m,n)

Worst-case: x[i] ≠ y[j], for all i,j in which case the algorithm evaluates two subproblems, each with only one parameter decremented.

Recursion tree

\[m = 3, \ n = 4:\]

\[m + n \Rightarrow \text{work potentially } 2^{m+n} \text{ exponential.} \]

but we’re solving subproblems already solved!

Dynamic-programming hallmark #2

Overlapping subproblems

A recursive solution contains a “small” number of distinct subproblems repeated many times.

The number of distinct LCS subproblems for two strings of lengths \(m \) and \(n \) is only \(mn \).
Memoization algorithm

Memoization: After computing a solution to a subproblem, store it in a table. Subsequent calls check the table to avoid redoing work.

```plaintext
LCS(x, y)  
for i=0 to m  
c[i, 0] = 0  
for j=0 to n  
c[0, j] = 0  
for i=1 to m  
for j=1 to n  
if (x[i] = y[j])  
then c[i, j] ← c[i-1, j-1] + 1  
else c[i, j] ← max{ c[i-1, j], c[i, j-1] }
```

Time = $\Theta(mn)$ = constant work per table entry.
Space = $\Theta(mn)$.

LCS: Dynamic-programming algorithm

LCS(X,Y)=“BCBA”

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>B</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>B</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>B</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Reconstruction $z=LCS(x,y)$

IDEA: Compute the table bottom-up. Fill z backward.

Observation: $c[i,j]=c[i-1,j]$ and $c[i,j]=c[i,j-1]$
Proof Sketch: We use a longer prefix, so there are more chars to be match.

LCS Reconstruction:
Set $i=m$; $j=n$; $k=c[i,j]$
While($k>0$)
if ($c[i,j]>c[i-1,j]$) and $c[i,j]>c[i,j-1]$) {
 $z[k]=x[i]$;
 $i--; j--; k--$
} else (c[i,j]=c[i-1,j] or c[i,j]=c[i,j-1])
if ($c[i,j]=c[i,j-1]$) $j--;$ else $i--;$
}
Reconstructing $z=LCS(X,Y)$

Another idea – While filling $c[i,j]$ add arrows to each cell $c[i,j]$ specifying which neighboring cell $c[i,j]$ it got its value.

- $c[i,j].flag = \text{"\hspace*{2mm}"}$ if $c[i,j]=c[i-1,j-1]+1$
- $c[i,j].flag = \text{"↑\hspace*{1mm}"}$ if $c[i,j]=c[i-1,j]$
- $c[i,j].flag = \text{"←\hspace*{1mm}"}$ if $c[i,j]=c[i,j-1]$

Example 2: Edit distance

Given strings X,Y, the edit distance $ed(X,Y)$ between X and Y is defined as the minimum number of operations that we need to perform on X, in order to obtain Y.

Definition: An Operations (in this context) Insertion/Deletion/Replacement of a single character.

Examples:

- $ed(\text{"aaaa"}, \text{"aaab"}) = 0$
- $ed(\text{"aaa"}, \text{"aab"}) = 1$
- $ed(\text{"aaaa"}, \text{"abaa"}) = 1$
- $ed(\text{"baaa"}, \text{""}) = 4$
- $ed(\text{"baaa"}, \text{"aaab"}) = 2$

Note that the term "distance" is a bit misleading: We need both the value (how many operations) as well as knowing which operations.

Example 3: `Priced` Edit distance $ed(X,Y)$

Assume also given

- $InsCost$ - the cost of a single insertion into x.
- $DelCost$ - the cost of a single deletion from x, and
- $RepCost$ - the cost of replacing one character of x by a different character.

Definition: Given strings X,Y, the edit distance $ed(X,Y)$ between X and Y is the cheapest sequence of operations, starting on X and ending at Y.

Problem: Compute $ed(X,Y)$, (both the value and the optimal sequence of operations.)

Definition: $c[i,j] = Cost(ed(X[1..i], Y[1..j]))$.

Will first compute $Cost(c[m,n])$. Then will recover the sequence.
Thm:

Let \(c[i,j] = \text{ed}(x[1..i], y[1..j]) \).
Assume \(c[i-1,j-1], c[i-1,j-1], c[i-1,j] \) are already computed.

If \(X[i]=Y[j] \) then \(c[i,j] = c[i-1,j-1] \)
Else // \(X[i] \neq Y[j] \)
\[
c[i,j] = \min\{ \\
 c[i-1,j-1]+\text{RepCost}, \quad \text{//convert } X[1..i-1]\rightarrow Y[1..j-1], \text{ and replace } y[j] \text{ by } x[i] \\
 c[i-1,j]+\text{DelCost}, \quad \text{//delete } X[i] \text{ and convert } X[1..i-1]\rightarrow Y[1..j] \\
 c[i,j-1]+\text{InsCost} \quad \text{//convert } X[1..i]\rightarrow Y[1..j-1], \text{ and insert } Y[i] \\
\}
\]

Algorithm

Memoization: After computing a solution to a subproblem, store it in a table. Subsequent calls check the table to avoid redoing work.

\[
\text{ed}(X, Y) \\
\begin{align*}
\text{for } i &= 0 \text{ to } m & c[i, 0] &= i \text{ DelCost} \\
\text{for } j &= 0 \text{ to } n & c[0, j] &= j \text{ InsCost} \\
\text{for } i &= 1 \text{ to } m \\
\text{for } j &= 1 \text{ to } n \\
\text{if } (X[i] = Y[j]) & \text{ then } c[i,j] \leftarrow c[i-1,j-1] \\
\text{else } c[i,j] \leftarrow \min\{ & c[i-1,j] + \text{DelCost}, \\
& c[i-1,j-1] + \text{RepCost}, \\
& c[i,j-1] + \text{InsCost} \}
\end{align*}
\]

Time = \(\Theta(m n) \) = constant work per table entry. Space = \(\Theta(m n) \).
Homework: Compute the sequence of operations.
Compute which characters in \(x \) matches which chars in \(y \).

Polygonal Path - definition

We define a polygonal path \(P = \{p_1, \ldots, p_n\} \) where
- Each vertex \(p_1 \) is a point in the plane,
- Vertex \(p_1 \) is the first vertex, \(p_n \) is the last,
- Vertex \(p_i \) is connected to the next vertex \(p_{i+1} \) by a straight segment.
Good ways to measure distance between curves

- Should not be affected by how curves are sampled
- Should reflect the “order” of the points along the curves.

\(P[1..i] \) is the polygonal line with the first \(i \) vertices of \(P \)

\(Q[1..j] \) is the polygonal line with the first \(j \) vertices of \(P \)

Problem: Computing the Frechet Distance between polylines

\(\text{Frechet}(P,Q,r) \)

Definition of \(\text{Frechet}(P,Q,r) \)

Assume a person walks on \(P = \{p_1,\ldots,p_n\} \) while a dog walks on \(Q = \{q_1,\ldots,q_n\} \).

\(r \) is the leash length (part of input).

The **person** starts at \(p_1 \) and ends at \(p_n \)

The **dog** starts at \(q_1 \) and ends at \(q_n \)

At each time stamp,
- either the **person** jumps to the next vertex
- Or the **dog** jumps to the next vertex
- Or both jumps to the next vertex

- Every instance they stop, we measure whether the distance between person–dog (the length of the leash) \(\leq r \).
- \(\text{Frechet}(P,Q,r)=YES \) if the answer is positive for all time stamps.
- (If not, a longer leash is needed. If yes, maybe a shorter one is sufficient.)
- So we could use binary search.

Computing \(\text{Frechet}(P,Q,r) \)

\(\text{Frechet}(P,Q,r) \)

// \(c[1..n, 1..n] \) – boolean array

// \(c[i,j] = \text{Frechet}(P[1..i],Q[1..j], r) \)

Init:

\(c[1,1] = (|| p_1 - q_1 || \leq r) \) (YES/NO)

For \(i = 2 \) to \(n \) \(c[i,1] = (|| p_i - q_1 || \leq r) \) AND \(c[i-1,1] \) (YES/NO)

For \(j = 2 \) to \(n \) \(c[1,j] = (|| p_1 - q_j || \leq r) \) AND \(c[1,j-1] \)
Computing Frechet (P,Q,r) (cont.)

// c[1..n, 1..n] – boolean array

Init - previous slide

For i = 2 to n
 For j = 2 to n
 c[i,j] = (∥p_i - q_j∥ ≤ r) AND
 c[i-1,j-1], // both jumps
 OR c[i-1, j], // person jumped from p_{i-1} to p_i , dog stays at q_j
 OR c[i, j-1]. // person stayed at p_i , dog jumped from q_{j-1} to q_j
 }

Return c[n,n]

Note – this is only the cost (that is the distance itself. We still need to find what is the series of steps that yield this cost

Comments

• This is actually the Discrete Frechet Distance (only distances between vertices counts). We do not discuss the continuous version.
• This is only the Decision problem – we actually want the shortest leash. We could use a binary search to approximate it. Exact algorithm outside the scope of this course
• If person/dog could move backward, the problem is called the weak Frechet.

Maurice René Fréchet

Problem: Computing Dynamic Time Warping \(\text{dtw}(P,Q) \) between polylines

Given 2 polygonal curves

\[P = \{p_1, \ldots, p_n\} \quad \text{and} \quad Q = \{q_1, \ldots, q_m\}, \]

The input is the locations of their vertices (e.g. GIS coordinates)

How similar are \(P \) to \(Q \)?

Need to come up with a number \(\text{dtw}(P,Q) \)?
So if \(\text{dtw}(P,Q) < \text{dtw}(P,Q') \), then \(P \) is more similar to \(Q \)
Dynamic Time Warping

Definition of $dtw(P,Q)$

Assume a person walks on $P=[p_1,...,p_n]$ while a dog walks on $Q=[q_1,...,q_m]$.

They **person** starts at p_1 and ends at p_n.

They **dog** starts at q_1 and ends at q_m.

At each time stamp,
- either the **person** jumps to the next vertex
- or the **dog** jumps to the next vertex
- or both jumps to the next vertex.

- Every instance they stop, we measure the distance (the length of the leash) person->dog.
- We sum the lengths of all leashes.
- $dtw(P,Q)$ is the smallest sum (over all possible sequences).

Motivation:

- Distance between trajectories enables finding nearest neighbor, and clustering
- But two very similar trajectories might have vertices in very different places

DTW is used in
- Signal processing (speech reco)
- Signature verification
- Analysis of vehicles trajectories for roads networks
- **Improving locations-based services**
- Animals migrations patterns
- Stocks analysis

Thm 1:

Let $c[i,j] = dtw(P[1..i], Q[1..j])$.

Let $||p_i-q_j||$ be the between the points p_i and q_j.

That is, the length of the leash.

For every $i>1, j>1$

$c[1,1] = ||p_1-q_1||$

$c[i,1] = c[i-1,1] + ||p_i-q_1||$

$c[i,j] = c[i-1,j-1] + ||p_i-q_j||$
Thm 2:
Assume at some time, the person is at \(p_i \) while dog at \(q_j \).
Assume \(i>1 \) and \(j>1 \).

What (might have) happened one step ago?

Three possibilities

- Both person and the dog jumped (from \(p_{i-1} \) and from \(q_{j-1} \)) OR
- Person jumped from \(p_{i-1} \) to \(p_i \), dog stays at \(q_j \) OR
- Person stayed at \(p_i \), dog jumped from \(q_{j-1} \) to \(q_j \).

Thm 2 cont:
Let \(c[i,j] = \text{dtw}(P[1..i], Q[1..j]) \).

If \(i>1 \) and \(j>1 \) then

\[
c[i,j] = ||p_i - q_j|| + \\
\min/ \\
c[i-1,j-1], // both jumps \\
c[i-1,j], // person jumped from \(p_{i-1} \) to \(p_i \), dog stays at \(q_j \) \\
c[i,j-1], // person stayed at \(p_i \), dog jumped from \(q_{j-1} \) to \(q_j \)
\]

Since we are not sure that when the person is at \(p_i \) the dog is at \(q_j \) we will compute all such pairs \(i,j \) – one of them must happened.

Algorithm for computing dtw(P,Q)

Init according to Thm 1.

For \(i=2 \) to \(n \)
 For \(j=2 \) to \(n \)
 \[
 c[i,j] = ||p_i - q_j|| + \\
 \min/ \\
 c[i-1,j-1], // both jumps \\
 c[i-1,j], // person jumped from \(p_{i-1} \) to \(p_i \), dog stays at \(q_j \) \\
 c[i,j-1], // person stayed at \(p_i \), dog jumped from \(q_{j-1} \) to \(q_j \)
 \]

Return \(c[n,n] \)

Note – this is only the cost (that is the distance itself. We still need to find what is the series of steps that yield this cost.
Problem: Computing the Frechet Distance between polylines

Definition of \(\text{Frechet}(P, Q, r) \)

Assume a person walks on \(P = \{p_1, \ldots, p_n\} \) while a dog walks on \(Q = \{q_1, \ldots, q_n\} \).
r is the leash length (part of input).
The person starts at \(p_1 \) and ends at \(p_n \).
The dog starts at \(q_1 \) and ends at \(q_n \).

At each time stamp,
- either the person jumps to the next vertex,
- or the dog jumps to the next vertex,
- or both jumps to the next vertex.

Every instance they stop, we measure whether the distance between person–dog (the length of the leash) \(\leq r \).

\(\text{Frechet}(P, Q, r) = \text{YES} \) if the answer is positive for all time stamps.

(if not, a longer leash is need.
If yes, maybe a shorter one is sufficient.
So we could use binary search.

Computing Frechet(P,Q,r)

\[
\text{Frechet}(P, Q, r) = \begin{cases}
\text{YES} & (||p_i - q_i|| \leq r) \text{ (YES/NO)} \\
\text{NO} & \text{otherwise}
\end{cases}
\]

Init:
\[
c_{1,1} = \text{yes} \\
\text{for } i = 2 \text{ to } n \\
\quad \quad \quad c_{i,1} = (||p_i - q_1|| \leq r) \text{ AND } c_{i-1,1} \text{ (YES/NO)}
\]
\[
\text{for } j = 2 \text{ to } n \\
\quad \quad \quad c_{1,j} = (||p_1 - q_j|| \leq r) \text{ AND } c_{1,j-1} \text{ (YES/NO)}
\]

Computing Frechet (P,Q,r) (cont.)

\[
\text{for } i = 2 \text{ to } n \\
\quad \quad \quad \text{for } j = 2 \text{ to } n \\
\quad \quad \quad \quad \quad \quad c_{i,j} = (||p_i - q_j|| \leq r) \text{ AND }
\quad \quad \quad \quad \quad \quad \quad \quad \{ \text{ c}_{i-1,j-1} \text{ // both jumps} \}
\quad \quad \quad \quad \quad \quad \quad \quad \quad \text{ OR } \text{ c}_{i-1,j} \text{ // person jumped from } p_{i-1} \text{ to } p_i \text{, dog stays at } q_j \}
\quad \quad \quad \quad \quad \quad \quad \quad \quad \text{ OR } \text{ c}_{i,j-1} \text{ // person stayed at } p_i \text{, dog jumped from } q_{j-1} \text{ to } q_j \}
\]

Return \(c_{n,n} \)

Note – this is only the cost (that is the distance itself. We still need to find what is the series of steps that yield this cost
Comments

- This is actually the Discrete Frechet Distance (only distances between vertices counts). We do not discuss the continuous version.
- This is only the Decision problem – we actually want the shortest leash. We could use a binary search to approximate it. Exact algorithm outside the scope of this course.
- If person/dog could move backward, the problem is called the weak Frechet.

Dynamic-programming hallmark #1

Optimal substructure

An optimal solution to a problem (instance) contains optimal solutions to subproblems.

If \(z = LCS(x, y) \), then any prefix of \(z \) is an LCS of a prefix of \(x \) and a prefix of \(y \).

Dynamic-programming hallmark #2

Overlapping subproblems

A recursive solution contains a “small” number of distinct subproblems repeated many times.

The number of distinct LCS subproblems for two strings of lengths \(m \) and \(n \) is only \(mn \).
Another application of DP: Clustering
(source: Kleinberg & Tardos 6.3)

Given a point set $P = \{p_1, \ldots, p_n\}$ sorted from left to right, and a cluster penalty $R > 0$. Problem: Find a partition of P into k runs (clusters) $\{p_1, p_2, \ldots, p_i\}, \{p_{i+1}, p_{i+2}, \ldots, p_j\}, \ldots, \{p_{n-1}, p_n\}$ and k such that the total clustering cost $tc(L)$ is as small as possible. We define the total clustering cost $tc(L)$ as the sum of k penalties $k \cdot R$ plus the sum of the fitting errors between the points in each cluster and the line the fit them best.

$tc(L) = k \cdot R + \sum_{i=1}^{k} \text{Err}(\ell_i, \{p_i, \ldots, p_j\})$

Note that if $R = 0$ (no penalty on new clusters) then the optimum clustering uses $\frac{n}{2}$ runs:

$\{p_1, p_2, \ldots, p_{n/2}\}, \{p_{n/2+1}, p_{n/2+2}, \ldots, p_n\}$. If R is huge, then the opt uses only one cluster, containing all the points.

In the example on top, $k = 3$, $i_1 = 5$, $i_2 = 8$

Algorithm

1. Let $\Pi(0) = 0$; $\Pi[1] = \text{NULL}$ for every $i > 1$; $\Pi[i] = \text{NULL}$
2. For $i = 2$ to n do
 2.1. For $j = 0$ to $i-1$
 2.2. If $\alpha(i) > \alpha(j) + R + \epsilon(j + 1)$ then
 2.2.1. $\alpha(i) = \alpha(j) + R + \epsilon(j) + 1$
 2.2.2. $\Pi(i) = j$ //The rightmost point in the previous cluster.
3. Return $\alpha[0] = \alpha[n]$

Idea: p_i must belong to a cluster. We pay R for this cluster. The inner loop finds what is the best point p_{i+1} to be the leftmost point of this cluster.
Summarizing

- The algorithm takes $O(n^3)$ and $O(n^2)$ space
- (for preprocessing $d[j,i]$)
- Note – we did not discuss how to reconstruct the solution itself. We only calculated its cost