
CS 445

Dynamic Programming

Some of the slides are courtesy of Charles Leiserson with small changes by
Carola Wenk

We look at sequences of characters (strings)

e.g. x=“ABCA”

Def: A subsequence of x is an sequence obtained from x by possibly
deleting some of its characters (but without changing their order

Examples:
“ABC”, “ACA”, “AA”, “ABCA”

Def A prefix of x, denoted x[1..m], is the sequence of the first m
characters of x

Examples:
x[1..4]=“ABCA” x[1..3]=“ABC” x[1..2]=“AB”
x[1..1]=“A” x[1..0]=“”

Dynamic Programming:
Example 1: Longest Common Subsequence

 Longest Common Subsequence (LCS) problem:
• Given two sequences x[1 . . m] and y[1 . . n], find a

longest subsequence common to them both.

x: A B C B D A B

y: B D C A B A

“a” not “the”

BCBA =
LCS(x, y)

Different phrasing: Find a set of a maximum number of segments,
such that
•Each segment connects a character of x to an identical character of y,
•Each character is used at most once
•Segments do not intersect.

cs445
salute

Cs445 salute

Brute-force LCS algorithm

Checking every subsequence of x whether it is
also a subsequence of y.

Analysis
• Checking = Θ(m+n) time per subsequence.
• 2m subsequences of x

Worst-case running time = Θ ((m+n)2m)
 = exponential time.

Towards a better algorithm
Simplification:
1. Look at the length of a longest-common

subsequence.
2. Extend the algorithm to find the LCS itself.

Strategy: Consider prefixes of x and y.
• Define c[i, j] = | LCS(x[1 . . i], y[1 . . j]) |.
• Then, c[m, n] = | LCS(x, y) |.

Notation: Denote the length of a sequence s
by | s |.

Recursive formulation
Observation:
It is impossible that
 x[m] is matched to an element in y[1..n-1] and
simultaneously
 y[n] is matched to an element in x[1..m-1]
(since it must create a pair of crossing segments).

Conclusion – either x[m] is matched to y[n], or one at least of them
is unmatched in OPT.
{OPT – the optimal solution}

1 2 m

1 2 n
x:

y:

Lets just consider the last character of of x and of y
Case (I): x[m] = y[n]. Claim: c[m, n]=c[m-1,n-1]+1.

We claim that there is a max matching that matches x[m] to y[n].

Indeed, if x[m] is matched to y[k] (for k<m) then y[n] is unmatched (otherwise we
have two crossing segments). Hence we can obtain another matching of the same
cardinality by matching x[m] to y[n].

This implies that we can find an optimal matching of
 LCS(x[1..m-1] to y[1..n-1], and add the segment (x[m],y[n]).
So c[m,n]=c[m-1,n-1]+1

Proof.
1 2 m

1 2 n
x:

y:
=

Recursive formaula

Recursive formulation-cont
Case (II): x[m] ≠ y[n] Claim: c[m,n]=max{c[m,n-1], c[m-1,n]}

Recall - in LCS(x[1 . . m], y[1 . . n]) it cannot be that both x[m]
and y[n] are both matched.

If x[m] is unmatched in OPT then
 LCS(x[1 . . m], y[1 . . n])= LCS(x[1 . . m-1], y[1. .n])
If y[j] is unmatched in OPT then
 LCS(x[1 . . m], y[1 . . n])= LCS(x[1 . . m], y[1 . . n-1])

So c[m,n]= max{c[m–1, n], c[m, n–1]}

1 2

1 2 n
x:

y:

m

 c[i,j] For general i,j
Since we only care for OPT matching the prefixes, then
Case (I): x[i] = y[j].
Claim: if x[i] = y[j] then c[i, j]=c[i-1,j-1]+1.

We claim that there is a max matching that matches x[i] to y[j].

Indeed, if x[i] is matched to y[k] (for k<j) then y[j] is unmatched
(otherwise we have two crossing segments). Hence we can obtain
another matching of the same cardinality by match x[i] to y[j].

This implies that we can match x[1..i-1] to y[1..j-1], and add the
match (x[i],y[j]). So c[i, j]=c[i-1,j-1]+1

���
1 2 i m

���
1 2 j n

x:

y:
=

Recursive formulation-cont
Case (II): if x[i] ≠ y[j] then c[i, j]=max{c[i–1, j], c[i, j–1]}

Recall - in LCS(x[1 . . i], y[1 . . j]) it cannot be that both x[i] and
y[j] are both matched.

���

1 2 i m

���

1 2 j n

x:

y:
=

If x[i] is unmatched then
 LCS(x[1 . . i], y[1 . . j])= LCS(x[1 . . i-1], y[1 . . j])
If y[j] is unmatched then
 LCS(x[1 . . i], y[1 . . j])= LCS(x[1 . . i], y[1 . . j-1])

So c[i, j]= max{c[i–1, j], c[i, j–1]}

Dynamic-programming hallmark
#1

Optimal substructure
An optimal solution to a problem

(instance) contains optimal
solutions to subproblems.

If z = LCS(x, y), then any prefix of z is
an LCS of a prefix of x and a prefix of y.

Recursive algorithm for LCS
LCS(x, y, i, j)
 if (i==0 or j=0) return 0

if x[i] = y[j]
then return LCS(x, y, i–1, j–1) + 1
else return max{LCS(x, y, i–1, j), LCS(x, y, i, j–1)}

To call the function LCS(x, y, m,n)

Worst-case: x[i] ≠ y[j], for all i,j in which case
the algorithm evaluates two subproblems, each
with only one parameter decremented.

same
subproblem

but we’re solving subproblems already solved!

Recursion tree
m = 3, n = 4: 3,4

2,4

1,4

3,3

3,22,3

1,3 2,2

Height = m + n ⇒ work potentially 2m+n exponential.

2,3

1,3 2,2

m+n

Dynamic-programming hallmark
#2

Overlapping subproblems
A recursive solution contains a

“small” number of distinct
subproblems repeated many times.

The number of distinct LCS subproblems for
two strings of lengths m and n is only m n.

Memoization algorithm
Memoization: After computing a solution to a
subproblem, store it in a table. Subsequent calls check
the table to avoid redoing work.

Time = Θ(m n) = constant work per table entry.
Space = Θ(m n).

LCS(x, y)
for i=0 to m c[i, 0] = 0
for j=0 to n c[0, j] = 0

for i=1 to m
 for j=1 to n
 if (x[i] = y[j])

then c[i, j] ← c[i–1, j–1] + 1
else c[i, j] ← max{ c[i–1, j], c[i, j–1] }

D
C
A
B

A

LCS: Dynamic-programming algorithm

A B C B D B

B

A

0 0 0 0 0

0 0 1 1 1

0 0 0

1 1 1

0 0 1 1 1 2 2 2

0 0 1 2 2 2 2 2

0 1 1 2 2 2 3 3

0 1 2 2 3 3 3 4

0 1 2 2 3 3 4 4

1 2 3 4 5 6 7Y=

1

2

3

4

5

6

X
=

LCS(X,Y)=“BCBA”

X=B D C A B A

Y=A B C B D A B

Reconstruction z=LCS(x,y)
IDEA: Compute the table bottom-up. Fill z backward.

0 0 0 0 0 0 0 0
0 0 1 1 1 1 1 1
0 0 1 1 1 2 2D 2
0 0 1 2 2 2 2C 2
0 1 1 2 2 2 3A 3
0 1 2 2 3 3 3B 4
0 1 2 2 3 3

AA B C B D B

B

A 4 44

0 0
B

B

A

1

C

C

2

B

B

3

A

A

D

1

A

2

D

3

B

4

LCS(x,y)=“BCBA”
Observation: c[i;j]≥c[i-1;j] and c[i;j] ≥c[i;j-1]
Proof Sketch: We use a longer prefix, so there
are more chars to be match.

x=B D C A B A

y=A B C B D A B
LCS Reconstruction:
Set i=m; j=n; k=c[i;j]
While(k>0){
 if (c[i;j]>c[i-1;j] and c[i;j]>c[i;j-1]) {
 z[k] = x[i] ;
 i--; j-- ; k-- ;
 }else // c[i;j]=c[i-1;j] or c[i;j]=c[i-1;j]
 if (c[i;j]==c[i;j-1]) j-- ;
 else i-- ;
}

1
2

3

4
5
6

1 2 3 4 5 6 7

Reconstructing z=LCS(X,Y)
Another idea – While filling c[], add arrows to each cell
c[i,j] specifying which neighboring cell c[i,j] it got its
value.
• c[i,j].flag = “\ “ if c[i,,j]=c[i-1;j-1]+1
• c[i,j].flag = “↑ “ if c[i,,j]=c[i-1;j]
•c[i,j].flag = “←“ if c[i,,j]=c[i-1;j]

0 0 0 0 0 0 0 0

0 ↑0 1 ←1 1 1 1 1

0 ↑0 1 ←1 ←1 2 2D 2

0 ↑0 ↑1 2 ←2 ←2 2C 2

0 1 ↑1 2 ←2 2 3A 3

0 ↑1 2 ←2 3 3 3B 4

0 1 ↑2 ←2 ↑3 ←3

AA B C B D B

B

A 4 4

0
A

←4

←0
B

B
↑1

C

C

↑2
B

B

←3

A

A

D
1

A
2

D

3

B

4

Example 2: Edit distance
Given strings X,Y, the edit distance ed(X,Y) between X and Y is
defined as the minimum number of operations that we need to
perform on X, in order to obtain Y.

Defintion: An Operations (in this context) Insertion/Deletion/
Replacement of a single character.

Examples:
ed(“aaba”, “aaba”) = 0
 ed(“aaa”, “aaba”) = 1
 ed(“aaaa”, “abaa”) = 1
 ed(“baaa”, “”) =4
 ed(“baaa”, “aaab”) =2

Note that the term “distance”
is a bit misleading: We need
both the value (how many
operations) as well as
knowing which operations.

Example 3’:
``Priced’’ Edit distance ed(X,Y)

Assume also given
 InsCost, - the cost of a single insertion into x.
 DelCost - the cost of a single deletion from x, and
 RepCost - the cost of replacing one character of x
 by a different character.
Definition: Given strings X,Y, the edit distance ed(X,Y) between X
and Y is the cheapest sequence of operations, starting on X and ending
at Y.

Problem: Compute ed(X,Y), (both the value and the optimal sequence
of operations.)

Definition: c[i,j] = Cost(ed(X[1..i], Y[1..j])).

Will first compute Cost(c[m,n]). Then will recover the sequence.

Thm:
Let c[i,j] = ed(x[1..i], y[1..j]).
Assume c[i-1,j-1], c[i-1,j-1] , c[i-1,j] are already computed.

If X[i]=Y[j] then c[i,j] = c[i-1,j-1]
Else // X[i]≠Y[j]
 c[i,j] = min{
 c[i-1,j-1]+RepCost, //convert X[1..i-1]➔Y[1..j-1], and replace y[j]
by x[i]
 c[i-1, j] +DelCost, //delete X[i] and convert X[1..i-1]➔ Y[1..j]
 c[i,j-1]+InsCost //convert X[1..i,]➔ Y[1..j-1], and insert Y[i]
 }
}

Algorithm
Memoization: After computing a solution to a subproblem, store
it in a table. Subsequent calls check the table to avoid redoing
work.

Time = Θ(m n) = constant work per table entry. Space = Θ(m n).
Homework: Compute the sequence of operations.
Compute which characters in x matches which chars in y.

ed(X, Y)
for i=0 to m c[i, 0] = i DelCost
for j=0 to n c[0, j] = j InsCost

for i=1 to m
 for j=1 to n
 if (X[i] == Y[j])

then c[i, j] ← c[i–1, j–1]
else c[i, j] ←min{ c[i-1 , j] + DelCost,
 c[i-1, j-1] + RepCost,
 c[i , j-1] + InsCost
 }

Polygonal Path - definition

We definite a polygonal path P={p1…pn } where
•Each vertex pi is a point in the plane,
•Vertex p1 is the first vertex , pn is the last,
•Vertex pi is connected to the next vertex pi+1 by a straight
segment.

P
p1

p2

p3

p4

pn

Good ways to measure distance between
curves

• Should not be effected by how curves are sampled
• Should reflect the “order” of the points along the curves.

P

Q

p1

p2

p3

p4

pn

P[1..i] is the polygonal line with the first i vertices of P

Q[1..j] is the polygonal line with the first j vertices of P

Problem: Computing the Frechet Distance between polylines
Frechet(P, Q,r)

Definition of Frechet(P,Q, r)
Assume a person walks on P={p1…pn}
while a dog walks on Q={q1..qn }.
r is the leash length (part of input).
The person starts at p1 and ends at pn
The dog starts at q1 and ends at qn

At each time stamp,
•either the person jumps to the next
vertex
•Or the dog jumps to the next vertex
•Or both jumps to the next vertex

P

Q

p1

p2

p3

p4

pnq1 q3

q2

• Every instance they stop, we
measure whether the distance
between person↔dog (the
length of the leash) ≤ r.

• Frechet(P,Q,r)=YES if the
answer is positive for all time
stamps.

• (if not, a longer leash is need.
If yes, maybe a shorter one is
sufficient.

• So we could use binary search.

Computing Frechet(P,Q,r)

Frechet(P,Q,r)
// c[1..n, 1..n] – boolean array
// c[i,j]= Frechet(P[1..i],Q[1..j], r)

Init:
c[1,1]= (|| p1 – q1 || ≤ r) (YES/NO)
For i=2 to n c[i,1]= (|| pi – q1 || ≤ r) AND c[i-1,1] (YES/NO)
For j=2 to n c[1,j]= (|| p1 – qj || ≤ r) AND c[1,j-1]

Computing Frechet (P,Q,r) (cont.)
// c[1..n, 1..n] – boolean array

Init- previous slide

For i=2 to n
 For j=2 to n

c[i,j] = (|| pi - qj || ≤ r) AND
{ c[i-1,j-1], // both jumps
 OR c[i-1, j] , // person jumped from pi-1 to pi , dog stays at qj
 OR c[i,j-1] . // person stayed at pi , dog jumped from qj-1 to qj-
 }

Return c[n.n]
Note – this is only the cost (that is the distance itself. We still need to find
what is the series of steps that yield this cost

Comments
• This is actually the Discrete Frechet Distance (only distances between

vertices counts). We do not discuss the continuous version.
• This is only the Decision problem – we actually want the shortest leash.

We could use a binary search to approximate it. Exact algorithm outside
the scope of this course

• If person/dog could move backward, the problem is called the weak
Frechet.

Maurice René Fréchet

Problem: Computing
Dynamic Time Warping dtw(P,Q) between polylines

Given 2 polygonal curves
 P={p1…pn} and Q={q1..qm},
The input is the locations of their vertices (e.g. GIS coordinates)

How similar are P to Q ?

Need to come up with a number dtw(P,Q)?
So if dtw(P,Q)< dtw(P,Q’), then P is more similar to Q

P

Q

p1

p2

p3

p4

pn

Q’

q1

qn

Dynamic Time Warping dtw(P,Q)

Definition of dtw(P,Q)
Assume a person walks on P={p1…pn}
while a dog walks on Q={q1..qm}.

They person starts at p1 and ends at pn
They dog starts at q1 and ends at qn

At each time stamp,
•either the person jumps to the next
vertex
•Or the dog jumps to the next vertex
•Or both jumps to the next vertex

P

Q

p1

p2

p3

p4

pnq1 q3

q2

• Every instance they stop,
we measure the distance
(the length of the leash)
person↔dog.

• We sum the lengths of all
leashes.

• dtw(P,Q) is the smallest
sum (over all possible
sequences)

Motivation:

Definition of dtw(P,Q)
Assume a person walks on P={p1…pn}
while a dog walks on Q={q1..qm}.

Distance between trajectoris enables
finding nearest neighbor, and clustering

But two very similar trajectories might
have vertices in very different places

P

Q

p1

p2

p3

p4

pnq1 q3

q2

DTW is used in
• Signal processing (speech

reco)
• Signature verification
• Analysis of vehicles

trajectories for roads
networks

• Improving locations-
based services

• Animals migrations
patters

• Stocks analysis

Thm 1:
Let c[i,j] = dtw(P[1..i], Q[1..j]).

Let || pi - qj || be the between the points pi and qj

 That is, the length of the leash.

For every i>1 ,j>1
c[1,1]= || p1 – q1 ||

c[1,j] = c[1,j-1] + || p1 - qj ||

c[i,1] = c[i-1,1] + || pi – q1 ||

Thm 2:
Assume at some time, the person is at pi while dog at qj.
Assume i>1 and j>1.

What (might have) happened one step ago ?

Three possibilities

 Both person and the dog jumped (from pi-1 and from qj) OR
 Person jumped from pi-1 to pi , dog stays at qj OR
 Person stayed at pi , dog jumped from qj-1 to qj-

Thm 2 cont:
Let c[i,j] = dtw(P[1..i], Q[1..j]).

If i>1 and j>1 then

c[i,j] = || pi - qj || +
 min{
 c[i-1,j-1], // both jumps
 c[i-1, j] , // person jumped from pi-1 to pi , dog stays at qj
 c[i,j-1] . // person stayed at pi , dog jumped from qj-1 to qj-
 }

Since we are not sure that when the person is at pi the dog is at qj we
will compute all such pairs i,j – one of them must happened

Algorithm for computing dtw(P,Q)
Init according to Thm 1.

Fot i=2 to n
 For j=2 to n

c[i,j] = || pi - qj || +
 min{
 c[i-1,j-1], // both jumps
 c[i-1, j] , // person jumped from pi-1 to pi , dog stays at qj
 c[i,j-1] // person stayed at pi , dog jumped from qj-1 to qj-
 }

Return c[n.n]
Note – this is only the cost (that is the distance itself. We still need to find
what is the series of steps that yield this cost

Problem: Computing the Frechet Distance between polylines
Frechet(P, Q,r)

Definition of Frechet(P,Q, r)
Assume a person walks on P={p1…pn}
while a dog walks on Q={q1..qn }.
r is the leash length (part of input).
The person starts at p1 and ends at pn
The dog starts at q1 and ends at qn

At each time stamp,
•either the person jumps to the next
vertex
•Or the dog jumps to the next vertex
•Or both jumps to the next vertex

P

Q

p1

p2

p3

p4

pnq1 q3

q2

• Every instance they stop, we
measure whether the distance
between person↔dog (the
length of the leash) ≤ r.

• Frechet(P,Q,r)=YES if the
answer is positive for all time
stamps.

• (if not, a longer leash is need.
If yes, maybe a shorter one is
sufficient.

• So we could use binary search.

Computing Frechet(P,Q,r)

Frechet(P,Q,r)
// c[1..n, 1..n] – boolean array
// c[i,j]= Frechet(P[1..i],Q[1..j], r)

Init:
c[1,1]= (|| p1 – q1 || ≤ r) (YES/NO)
For i=2 to n c[i,1]= (|| pi – q1 || ≤ r) AND c[i-1,1] (YES/NO)
For j=2 to n c[1,j]= (|| p1 – qj || ≤ r) AND c[1,j-1]

Computing Frechet (P,Q,r) (cont.)
// c[1..n, 1..n] – boolean array

Init- previous slide

For i=2 to n
 For j=2 to n

c[i,j] = (|| pi - qj || ≤ r) AND
{ c[i-1,j-1], // both jumps
 OR c[i-1, j] , // person jumped from pi-1 to pi , dog stays at qj
 OR c[i,j-1] . // person stayed at pi , dog jumped from qj-1 to qj-
 }

Return c[n.n]
Note – this is only the cost (that is the distance itself. We still need to find
what is the series of steps that yield this cost

Comments
• This is actually the Discrete Frechet Distance (only distances between

vertices counts). We do not discuss the continuous version.
• This is only the Decision problem – we actually want the shortest leash.

We could use a binary search to approximate it. Exact algorithm outside
the scope of this course

• If person/dog could move backward, the problem is called the weak
Frechet.

Maurice René Fréchet

Dynamic-programming hallmark #1

(we saw this slide already)

Optimal substructure
An optimal solution to a problem

(instance) contains optimal
solutions to subproblems.

If z = LCS(x, y), then any prefix of z is
an LCS of a prefix of x and a prefix of y.

Dynamic-programming hallmark
#2

Overlapping subproblems
A recursive solution contains a

“small” number of distinct
subproblems repeated many times.

The number of distinct LCS subproblems for
two strings of lengths m and n is only m n.

Another application of DP: Clustering
(source: Kleinberg & Tardos 6.3)

The fitting error

Clustering Problem

n
2

Given a point set sorted from left to right, and a cluster penalty .
Problem: Find a partition of P into runs (clusters)

and lines such that the total clustering cost, is as small as possible. We define the
total clustering cost, the sum of k penalties , plus the sum of the fitting errors
between the points in each cluster and the line the fit them best;

 is defined as the value

Note that if (no penalty on new clusters) then the optimum clustering uses runs:

. If R is huge, then the opt uses only one cluster, containing all the
points.

In the example on top,

P = {p1…pn} R > 0

ℓ1…ℓk tct({p1…pn})
tct({p1…pn}) (k ⋅ R)

tct({p1…pn})

R = 0
n
2

(p1, p2), (p3…p4), …, (pn−1…pn)

k = 3, i1 = 5, i2 = 8

(p1, p2…pi1), (pi1+1, pi1+2…pi2), …, (pik−1+1, pik−1+2…pn)

R+Err(ℓ1, {p1, p2…pi1})+ R+Err(ℓ2, {pi1+1, pi1+2…pi2
}) + …+R+Err(ℓk, {pik−1+1, pik−1+2…pi1})

• Preprocessing: for every pair of i and j (where) compute the line that best fit the points
. Store in a table the value

• Let c[i] = cost of the cost of the opt clustering of the points . This term includes both
the sum of errors and the sum of penalties. At the i’th step of the algorithm, we assume that

 are already computed, and using these values, we will compute c[i].
• We will also use an array its role is similar to the value in Dijkstra alg’.

Algorithm:
1. Init: c[0]=0 ; ;
2. For i=2 to n do {

2.1.For j=0 to i-1
2.2.

2.2.1.
2.2.2. //The rightmost point in the previous cluster.

3. Return c[0]=n

Idea: must belong to a cluster. We pay R for this cluster. The inner loop finds
what is the best point to be the leftmost point of this cluster.

j < i ℓj,i
{pj, pj+1, pj+2…pi} e[j, i] = Err(ℓji , {pj, pj+1…pi})

{p1…pi}

c[0], c[1], c[2], …c[i − 1]
Π[1..n] Π[v]

c[i] = ∞ and Π[i] = NULL, for every i > 1 Π[i] = NULL

 If c[i] > c[j] + R + e[j + 1,i] then
c[i] = c[j] + R + e[j + 1,i]
Π[i] = j

pi
pj+1

Algorithm

Summarizing

• The algorithm takes O(n3) and O(n2) space
• (for preprocessing d[j,i])
• Note – we did not discuss how to reconstruct

the solution itself. We only calculated its
cost

