
CS 445 

Dynamic Programming 

Some of the slides are courtesy of Charles Leiserson with small changes by 
Carola Wenk 

 
We look at sequences of characters (strings)  
 
e.g.     x=“ABCA” 
 
Def: A subsequence of x is an sequence obtained from x by possibly 
deleting some of its characters (but without changing their order 
 
Examples:  
“ABC”,   “ACA”,   “AA”,  “ABCA” 
 
Def A prefix of x, denoted x[1..m], is the sequence of the first m 
characters of x  
 
Examples: 
x[1..4]=“ABCA”   x[1..3]=“ABC”  x[1..2]=“AB” 
x[1..1]=“A”  x[1..0]=“”

Dynamic Programming:  
Example 1: Longest Common Subsequence 

 Longest Common Subsequence (LCS) problem: 
• Given two sequences x[1 . . m] and y[1 . . n], find a 

longest subsequence common to them both.

x: A B C B D A B

y: B D C A B A

“a” not  “the”

BCBA = 
LCS(x, y)

Different phrasing: Find a set of a maximum number of segments,  
such that  
•Each segment connects a character of x to an identical character of y,    
•Each character is used at most once 
•Segments do not intersect. 

cs445 
salute 



Cs445 salute 

Brute-force LCS algorithm

Checking every subsequence of x whether it is 
also a subsequence of  y. 

Analysis 
• Checking = Θ(m+n) time per subsequence. 
• 2m subsequences of x  

Worst-case running time = Θ ((m+n)2m) 
 = exponential time.

Towards a better algorithm
Simplification: 
1. Look at the length of a longest-common 

subsequence.   
2. Extend the algorithm to find the LCS itself.

Strategy: Consider prefixes of x and y. 
• Define c[i, j] = | LCS(x[1 . . i], y[1 . . j]) |. 
• Then, c[m, n] = | LCS(x, y) |.

Notation: Denote the length of a sequence s 
by | s |.



Recursive formulation
Observation:  
It is impossible that  
 x[m] is matched to an element in y[1..n-1] and   
simultaneously  
 y[n] is matched to an element in x[1..m-1] 
(since it must create a pair of crossing segments).  

Conclusion – either x[m] is matched to y[n], or one at least of them 
is unmatched in OPT.  
{OPT – the optimal solution}

1 2 m

1 2 n
x:

y:

Lets just consider the last character of of x and of y 
Case (I):  x[m] = y[n].    Claim: c[m, n]=c[m-1,n-1]+1.

We claim that there is a max matching that matches x[m] to y[n].  

Indeed, if x[m] is matched to y[k] (for k<m) then y[n] is unmatched (otherwise we 
have two crossing segments). Hence we can obtain another matching of the same 
cardinality by matching x[m] to y[n]. 

This implies that we can find an optimal matching of   
 LCS(x[1..m-1] to y[1..n-1], and add the segment  (x[m],y[n]).   
So c[m,n]=c[m-1,n-1]+1  

Proof.  
1 2 m

1 2 n
x:

y:
=

Recursive formaula 

Recursive formulation-cont
Case (II): x[m] ≠ y[n]   Claim:  c[m,n]=max{c[m,n-1], c[m-1,n]} 

Recall -  in  LCS(x[1 . . m], y[1 . . n]) it cannot be that both x[m] 
and y[n] are both matched.  

If x[m] is unmatched  in OPT then   
  LCS(x[1 . . m], y[1 . . n])= LCS(x[1 . . m-1], y[1. .n] ) 
If y[j] is unmatched  in OPT then   
  LCS(x[1 . . m], y[1 . . n])= LCS(x[1 . . m], y[1 . . n-1] ) 

So c[m,n]= max{c[m–1, n], c[m, n–1]}

1 2

1 2 n
x:

y:

m



 c[i,j] For general i,j
Since we only care for OPT matching the prefixes, then    
Case (I):  x[i] = y[j].     
Claim: if x[i] = y[j] then c[i, j]=c[i-1,j-1]+1.

We claim that there is a max matching that matches x[i] to y[j].  

Indeed, if x[i] is matched to y[k] (for k<j) then y[j] is unmatched 
(otherwise we have two crossing segments). Hence we can obtain 
another matching of the same cardinality by match x[i] to y[j]. 

This implies that we can match x[1..i-1] to y[1..j-1], and add the 
match (x[i],y[j]).  So c[i, j]=c[i-1,j-1]+1  

���
1 2 i m

���
1 2 j n

x:

y:
=

Recursive formulation-cont
Case (II):  if x[i] ≠ y[ j]   then   c[i, j]=max{c[i–1, j], c[i, j–1]} 

Recall -  in  LCS(x[1 . . i], y[1 . . j]) it cannot be that both x[i] and 
y[j] are both matched.  

���

1 2 i m

���

1 2 j n

x:

y:
=

If x[i] is unmatched then   
  LCS(x[1 . . i], y[1 . . j])= LCS(x[1 . . i-1], y[1 . . j] ) 
If y[j] is unmatched then   
  LCS(x[1 . . i], y[1 . . j])= LCS(x[1 . . i], y[1 . . j-1] ) 

So c[i, j]= max{c[i–1, j], c[i, j–1]}

Dynamic-programming hallmark 
#1

Optimal substructure 
An optimal solution to a problem 

(instance) contains optimal 
solutions to subproblems.

If z = LCS(x, y), then any prefix of z is 
an LCS of a prefix of x and a prefix of y.



Recursive algorithm for LCS
LCS(x, y, i, j) 
     if ( i==0 or j=0) return 0  

if x[i] = y[ j]  
then return  LCS(x, y, i–1, j–1) + 1 
else return max{LCS(x, y, i–1, j),  LCS(x, y, i, j–1)} 

To call the function LCS(x, y, m,n ) 

Worst-case: x[i] ≠ y[ j],  for all i,j in which case 
the algorithm evaluates two subproblems, each 
with only one parameter decremented.

same 
subproblem

but we’re solving subproblems already solved!

Recursion tree
m = 3, n = 4: 3,4

2,4

1,4

3,3

3,22,3

1,3 2,2

Height = m + n ⇒ work potentially 2m+n exponential.

2,3

1,3 2,2

m+n

Dynamic-programming hallmark 
#2

Overlapping subproblems 
A recursive solution contains a 

“small” number of distinct 
subproblems repeated many times.

The number of distinct LCS subproblems for 
two strings of lengths m and n is only m n.



Memoization algorithm
Memoization:  After computing a solution to a 
subproblem, store it in a table.  Subsequent calls check 
the table to avoid redoing work.

Time = Θ(m n) = constant work per table entry. 
Space = Θ(m n). 

LCS(x, y) 
for i=0 to m   c[i, 0] = 0 
for j=0 to n    c[0, j] = 0 

for i=1 to m   
   for j=1 to n   
       if (x[i] = y[j] ) 

then c[i, j] ← c[ i–1, j–1]  + 1 
else c[i, j] ← max{ c[ i–1, j],  c[i, j–1] } 

D
C
A
B

A

LCS: Dynamic-programming algorithm
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LCS(X,Y)=“BCBA”

X=B D C A B A

Y=A B C B D A B

Reconstruction z=LCS(x,y)
IDEA:  Compute the table bottom-up. Fill z backward. 

0 0 0 0 0 0 0 0
0 0 1 1 1 1 1 1
0 0 1 1 1 2 2D 2
0 0 1 2 2 2 2C 2
0 1 1 2 2 2 3A 3
0 1 2 2 3 3 3B 4
0 1 2 2 3 3

AA B C B D B

B

A 4 44
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D
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LCS(x,y)=“BCBA”
Observation:  c[i;j]≥c[i-1;j] and c[i;j] ≥c[i;j-1]  
Proof Sketch: We use a longer prefix, so there 
are more chars to be match.  

x=B D C A B A

y=A B C B D A B
LCS Reconstruction:  
Set i=m;  j=n;  k=c[i;j]  
While(k>0){ 
   if (c[i;j]>c[i-1;j] and c[i;j]>c[i;j-1] ) { 
     z[k] = x[i] ; 
 i--; j-- ; k--  ;  
   }else // c[i;j]=c[i-1;j] or c[i;j]=c[i-1;j]  
   if  (c[i;j]==c[i;j-1])  j-- ;  
   else i--  ;  
}

1
2

3

4
5
6

1 2 3 4 5 6 7



Reconstructing z=LCS(X,Y)
Another idea – While filling c[], add arrows to each cell 
c[i,j]  specifying which neighboring cell c[i,j] it got its 
value.  
•  c[i,j].flag = “\ “ if c[i,,j]=c[ i-1;j-1]+1  
•  c[i,j].flag = “↑ “ if c[i,,j]=c[i-1;j ] 
•c[i,j].flag = “←“ if c[i,,j]=c[i-1;j ]

0 0 0 0 0 0 0 0

0 ↑0 1 ←1 1 1 1 1

0 ↑0 1 ←1 ←1 2 2D 2

0 ↑0 ↑1 2 ←2 ←2 2C 2

0 1 ↑1 2 ←2 2 3A 3

0 ↑1 2 ←2 3 3 3B 4

0 1 ↑2 ←2 ↑3 ←3

AA B C B D B

B

A 4 4

0
A

←4

←0
B

B
↑1

C

C

↑2
B

B

←3

A

A

D
1

A
2

D

3

B

4

Example 2: Edit distance
Given strings X,Y,  the edit distance  ed(X,Y) between X and Y  is 
defined as the minimum number of operations that we need to 
perform on X, in order to obtain Y.    

Defintion: An Operations (in this context)  Insertion/Deletion/
Replacement of a single character. 

Examples:  
ed(“aaba”, “aaba”)  = 0 
 ed(“aaa”, “aaba”)  = 1 
 ed(“aaaa”, “abaa”)  = 1 
 ed(“baaa”, “”)  =4 
 ed(“baaa”, “aaab”)  =2  

Note that the term “distance” 
is a bit misleading: We need 
both the value (how many 
operations) as well as 
knowing which operations.  

Example 3’: 
``Priced’’ Edit distance ed(X,Y)

Assume also given 
 InsCost, - the cost of a single insertion into x.   
 DelCost - the cost of a single deletion from x, and  
 RepCost - the cost of  replacing one character of x    
       by a different character.  
Definition: Given strings X,Y,  the edit distance  ed(X,Y) between X 
and Y  is the cheapest sequence of operations, starting on X and ending 
at Y.    

Problem: Compute ed(X,Y),  (both the value and the optimal sequence 
of operations.  ) 

Definition: c[i,j ] = Cost( ed( X[1..i], Y[1..j] ) ). 

Will first compute Cost( c[m,n] ). Then will recover the sequence.



Thm:
Let c[i,j] = ed( x[1..i], y[1..j] ).  
Assume c[i-1,j-1], c[i-1,j-1] , c[i-1,j]    are already computed.   
  
If X[i]=Y[j]  then  c[i,j] = c[i-1,j-1] 
Else //  X[i]≠Y[j]   
   c[i,j] = min{   
 c[i-1,j-1]+RepCost, //convert X[1..i-1]➔Y[1..j-1], and replace y[j] 
by x[i] 
  c[i-1, j ] +DelCost,  //delete X[i] and convert X[1..i-1]➔ Y[1..j] 
 c[ i,j-1]+InsCost     //convert X[1..i,]➔ Y[1..j-1], and insert Y[i] 
 } 
} 

Algorithm
Memoization:  After computing a solution to a subproblem, store 
it in a table.  Subsequent calls check the table to avoid redoing 
work.

Time = Θ(m n) = constant work per table entry. Space = Θ(m n). 
Homework: Compute the sequence of operations. 
Compute which characters in x matches which chars in y.

ed(X, Y) 
for i=0 to m   c[i, 0] = i DelCost  
for j=0 to n    c[0, j] = j InsCost 

for i=1 to m   
   for j=1 to n   
       if (X[i] == Y[j] ) 

then c[i, j] ← c[ i–1, j–1] 
else c[i, j] ←min{ c[ i-1 , j ]    +  DelCost,  
 c[ i-1, j-1 ] +  RepCost,  
 c[ i , j-1]    +  InsCost  
 }

Polygonal Path - definition

We definite a polygonal path P={p1…pn }  where  
•Each vertex  pi is a point in the plane,  
•Vertex  p1 is the first vertex , pn is the last,  
•Vertex pi is connected to the next vertex  pi+1 by a straight 
segment.   

P
p1

p2

p3

p4

pn



Good ways to measure distance between 
curves 

• Should not be effected by how curves are sampled  
• Should reflect the “order” of the points along the curves. 

P

Q

p1

p2

p3

p4

pn

P[1..i] is the polygonal line with the first i vertices of P  

Q[1..j] is the polygonal line with the first j vertices of P 

Problem: Computing the Frechet Distance between polylines  
Frechet(P, Q,r) 

Definition of Frechet(P,Q, r)    
Assume a person walks on P={p1…pn}  
while a dog walks on Q={q1..qn }. 
r is the leash length (part of input).    
The   person starts at p1 and ends at pn 
The  dog       starts at q1 and ends at qn 

At each time stamp,   
•either the person jumps to the next 
vertex  
•Or the dog jumps to the next vertex  
•Or both jumps to the next vertex 

P

Q

p1

p2

p3

p4

pnq1 q3

q2

• Every instance they stop, we 
measure whether the distance 
between person↔dog (the 
length of the leash) ≤ r.  

• Frechet(P,Q,r)=YES  if the 
answer is positive for all time 
stamps.  

• (if not, a longer leash is need. 
If yes, maybe a shorter one is 
sufficient.  

• So we could use binary search. 

Computing Frechet(P,Q,r)  

Frechet(P,Q,r) 
// c[1..n, 1..n] –  boolean array 
// c[i,j]= Frechet(P[1..i],Q[1..j ],  r  )  

Init:  
c[1,1]=  (|| p1 – q1 || ≤ r ) (YES/NO)  
For i=2 to n  c[i,1]=  (|| pi – q1 || ≤ r ) AND c[i-1,1]  (YES/NO)  
For j=2 to n c[1,j]=   ( || p1 – qj ||  ≤ r ) AND c[1,j-1] 



Computing Frechet (P,Q,r)  (cont.)
// c[1..n, 1..n] –  boolean array 

Init- previous slide 

For i=2 to n  
    For j=2 to n   

c[i,j] = ( || pi - qj || ≤ r) AND  
{  c[i-1,j-1], // both jumps  
 OR c[i-1, j ] , // person jumped from pi-1 to pi  , dog stays at qj  
 OR c[ i,j-1] . // person stayed at pi  , dog jumped from qj-1 to qj-  
 } 

Return c[n.n]  
Note – this is only the cost (that is the distance itself. We still need to find 
what is the series of steps that yield this cost

Comments 
• This is actually the Discrete Frechet Distance (only distances between 

vertices counts).  We do not discuss the continuous version. 
• This is only the Decision problem – we actually want the shortest leash. 

We could use a binary search to approximate it. Exact algorithm outside 
the scope of this course  

• If person/dog could move backward, the problem is called the weak 
Frechet.  

Maurice René Fréchet

Problem: Computing  
Dynamic Time Warping  dtw(P,Q) between polylines 

Given 2 polygonal curves  
 P={p1…pn}    and    Q={q1..qm},  
The input is the locations of their vertices (e.g. GIS coordinates)  

How similar are P to Q ?  

Need to come up with a number dtw(P,Q)? 
So if dtw(P,Q)< dtw(P,Q’), then P is more similar to Q  

P

Q

p1

p2

p3

p4

pn

Q’

q1

qn



Dynamic Time Warping  dtw(P,Q) 

Definition of dtw(P,Q)    
Assume a person walks on P={p1…pn}  
while a dog walks on Q={q1..qm}. 

They person starts at p1 and ends at pn 
They dog      starts at q1 and ends at qn 

At each time stamp,   
•either the person jumps to the next 
vertex  
•Or the dog jumps to the next vertex  
•Or both jumps to the next vertex 

P

Q

p1

p2

p3

p4

pnq1 q3

q2

• Every instance they stop, 
we measure the distance 
(the length of the leash) 
person↔dog. 

• We sum the lengths of all 
leashes. 

• dtw(P,Q) is the smallest 
sum (over all possible 
sequences) 

Motivation:

Definition of dtw(P,Q)    
Assume a person walks on P={p1…pn}  
while a dog walks on Q={q1..qm}. 

Distance between trajectoris enables 
finding nearest neighbor, and clustering  

But two very similar trajectories might 
have vertices in very different places 

P

Q

p1

p2

p3

p4

pnq1 q3

q2

DTW is used in  
• Signal processing (speech 

reco)  
• Signature verification 
• Analysis of vehicles 

trajectories for roads 
networks  

• Improving locations-
based services  

• Animals migrations 
patters  

• Stocks analysis 

Thm 1:
Let c[i,j] = dtw( P[1..i], Q[1..j] ).  
  
Let || pi - qj || be the between the points  pi and qj  

 That is, the length of the leash.   

For every i>1 ,j>1  
c[1,1]=   || p1 – q1 || 

c[1,j] = c[1,j-1] + || p1 - qj || 

c[i,1] = c[i-1,1] + || pi – q1 || 



Thm 2:
Assume at some time, the person is at pi while dog at qj.  
Assume i>1 and j>1.  

What (might have) happened one step ago ?  

Three possibilities  
  

 Both person and the dog jumped (from pi-1  and from qj ) OR  
  Person jumped from pi-1 to pi  , dog stays at qj  OR  
 Person stayed at pi  , dog jumped from qj-1 to qj-  

  

Thm 2 cont:
Let c[i,j] = dtw( P[1..i], Q[1..j] ).  
  
If i>1 and j>1 then  

c[i,j] = || pi - qj || +  
 min{   
 c[i-1,j-1], // both jumps  
  c[i-1, j ] , // person jumped from pi-1 to pi  , dog stays at qj  
 c[ i,j-1] . // person stayed at pi  , dog jumped from qj-1 to qj-  
 } 

Since we are not sure that when the person is at pi the dog is at qj  we 
will compute all such pairs i,j – one of them must happened

Algorithm for computing dtw(P,Q) 
Init according to Thm 1.  

Fot i=2 to n  
    For j=2 to n   

c[i,j] = || pi - qj || +  
 min{   
 c[i-1,j-1], // both jumps  
  c[i-1, j ] , // person jumped from pi-1 to pi  , dog stays at qj 
 c[ i,j-1] // person stayed at pi  , dog jumped from qj-1 to qj-  
 } 

Return c[n.n]  
Note – this is only the cost (that is the distance itself. We still need to find 
what is the series of steps that yield this cost



Problem: Computing the Frechet Distance between polylines  
Frechet(P, Q,r) 

Definition of Frechet(P,Q, r)    
Assume a person walks on P={p1…pn}  
while a dog walks on Q={q1..qn }. 
r is the leash length (part of input).    
The   person starts at p1 and ends at pn 
The  dog       starts at q1 and ends at qn 

At each time stamp,   
•either the person jumps to the next 
vertex  
•Or the dog jumps to the next vertex  
•Or both jumps to the next vertex 

P

Q

p1

p2

p3

p4

pnq1 q3

q2

• Every instance they stop, we 
measure whether the distance 
between person↔dog (the 
length of the leash) ≤ r.  

• Frechet(P,Q,r)=YES  if the 
answer is positive for all time 
stamps.  

• (if not, a longer leash is need. 
If yes, maybe a shorter one is 
sufficient.  

• So we could use binary search. 

Computing Frechet(P,Q,r)  

Frechet(P,Q,r) 
// c[1..n, 1..n] –  boolean array 
// c[i,j]= Frechet(P[1..i],Q[1..j ],  r  )  

Init:  
c[1,1]=  (|| p1 – q1 || ≤ r ) (YES/NO)  
For i=2 to n  c[i,1]=  (|| pi – q1 || ≤ r ) AND c[i-1,1]  (YES/NO)  
For j=2 to n c[1,j]=   ( || p1 – qj ||  ≤ r ) AND c[1,j-1] 

Computing Frechet (P,Q,r)  (cont.)
// c[1..n, 1..n] –  boolean array 

Init- previous slide 

For i=2 to n  
    For j=2 to n   

c[i,j] = ( || pi - qj || ≤ r) AND  
{  c[i-1,j-1], // both jumps  
 OR c[i-1, j ] , // person jumped from pi-1 to pi  , dog stays at qj  
 OR c[ i,j-1] . // person stayed at pi  , dog jumped from qj-1 to qj-  
 } 

Return c[n.n]  
Note – this is only the cost (that is the distance itself. We still need to find 
what is the series of steps that yield this cost



Comments 
• This is actually the Discrete Frechet Distance (only distances between 

vertices counts).  We do not discuss the continuous version. 
• This is only the Decision problem – we actually want the shortest leash. 

We could use a binary search to approximate it. Exact algorithm outside 
the scope of this course  

• If person/dog could move backward, the problem is called the weak 
Frechet.  

Maurice René Fréchet

Dynamic-programming hallmark #1  
 

(we saw this slide already)

Optimal substructure 
An optimal solution to a problem 

(instance) contains optimal 
solutions to subproblems.

If z = LCS(x, y), then any prefix of z is 
an LCS of a prefix of x and a prefix of y.

Dynamic-programming hallmark 
#2

Overlapping subproblems 
A recursive solution contains a 

“small” number of distinct 
subproblems repeated many times.

The number of distinct LCS subproblems for 
two strings of lengths m and n is only m n.



Another application of DP:  Clustering 
(source: Kleinberg & Tardos 6.3) 

The fitting error

Clustering Problem

n
2

Given a point set  sorted from left to right, and a cluster penalty  . 
Problem: Find a partition of P into runs (clusters) 

and lines  such that the total clustering cost,  is as small as possible. We define the 
total clustering cost,  the sum of k penalties  , plus the sum of the fitting errors 
between the points in each cluster and the line the fit them best;  

 is defined as the value 

Note that if  (no penalty on new clusters) then the optimum clustering uses  runs:  

. If R is huge, then the opt uses only one cluster, containing all the 
points.  

In the example on top,  

P = {p1…pn} R > 0

ℓ1…ℓk tct({p1…pn})
tct({p1…pn}) (k ⋅ R)

tct({p1…pn})

R = 0
n
2

(p1, p2), (p3…p4), …, (pn−1…pn)

k = 3, i1 = 5, i2 = 8

(p1, p2…pi1), (pi1+1, pi1+2…pi2), …, (pik−1+1, pik−1+2…pn)

R+Err(ℓ1, {p1, p2…pi1})+ R+Err(ℓ2, {pi1+1, pi1+2…pi2
}) + …+R+Err(ℓk, {pik−1+1, pik−1+2…pi1})

• Preprocessing: for every pair of i and j (where ) compute the line  that best fit the points 
. Store in a table the value  

• Let c[i] = cost of the cost of the opt clustering of the points . This term includes both 
the sum of errors and the sum of penalties.  At the i’th step of the algorithm, we assume that 

 are already computed, and using these values, we will compute c[i].  
• We will also use an array  its role is similar to the value  in Dijkstra alg’. 

Algorithm:   
1. Init: c[0]=0 ;   ;  
2. For i=2 to n do {  

2.1.For j=0 to i-1 
2.2.  

2.2.1.     
2.2.2.  //The rightmost point in the previous cluster.  

3. Return c[0]=n   

Idea:  must belong to a cluster. We pay R for this cluster. The inner loop finds 
what is the best point    to be the leftmost point of this cluster.    
  

j < i ℓj,i
{pj, pj+1, pj+2…pi} e[ j, i] = Err(ℓji , {pj, pj+1…pi})

{p1…pi}

c[0], c[1], c[2], …c[i − 1]
Π[1..n] Π[v]

c[i] = ∞ and Π[i] = NULL,  for every i > 1 Π[i] = NULL

 If c[i] > c[ j] + R + e[ j + 1,i]  then 
c[i] = c[ j] + R + e[ j + 1,i]
Π[i] = j

pi
pj+1

Algorithm



Summarizing

• The algorithm takes O(n3) and O(n2) space  
• (for preprocessing d[j,i] ) 
• Note – we did not discuss how to reconstruct 

the solution itself. We only calculated its 
cost


