Dynamic Programming

Some of the slides are courtesy of Charles Leiserson with small changes by Carola Wenk
Example: All-Pairs Shortest Paths
Floyd-Warshall alg
(Spring 2021)

▪ Given a graph $G(V,E)$ with weights (positive and negative) assign to each edge. Assume $V=\{v_1 \ldots v_n\}$.

▪ Compute a matrix D such that $D[i,j]$ contains the length of the shortest path $v_i \rightarrow v_j$

▪ Also compute a matrix $\Pi[1..n,1..n]$ such that $\Pi[i,j]$ is the vertex that precede v_j along the shortest path $v_i \rightarrow v_j$

▪ Warshall-Floyd Algorithm computes these tables in $O(n^3)$

▪ Can you think about alternative approaches when the weights of all edges is positive?

In the figure to the right, $k = \Pi[i,j]$. Compare to $\Pi[v_i]$ in Dijkstra or Bellman-Ford
We look at sequences of characters (strings)

e.g. \(x = "ABCA" \)

Def: A *subsequence* of \(x \) is a sequence obtained from \(x \) by possibly deleting some of its characters (but without changing their order)

Examples:
"ABC", "ACA", "AA", "ABCA"

Def A *prefix* of \(x \), denoted \(x[1..m] \), is the sequence of the first \(m \) characters of \(x \)

Examples:
\(x[1..4] = "ABCA" \) \(x[1..3] = "ABC" \) \(x[1..2] = "AB" \) \(x[1..1] = "A" \) \(x[1..0] = "" \)
Longest Common Subsequence (LCS)

- Given two sequences $x[1 \ldots m]$ and $y[1 \ldots n]$, find a longest subsequence common to them both.

x: A B C B D A B

y: B D C A B A

BCBA = LCS(x, y)

Different phrasing: Find a set of a maximum number of segments, such that
• Each segment connects a character of x to an identical character of y,
• Each character is used at most once
• Segments do not intersect.
Longest Common Subsequence (LCS)

- Given two sequences $x[1\ldots m]$ and $y[1\ldots n]$, find a longest subsequence common to them both.

 “a” not “the”

 x: A B C B D A B

 y: B D C A B A

 $BCBA = \text{LCS}(x, y)$

Different phrasing: Find a set of a maximum number of segments, such that

- Each segment connects a character of x to an identical character of y,
- Each character is used at most once
- Segments do not intersect.
Cs445 salute
Brute-force LCS algorithm

Checking every subsequence of x whether it is also a subsequence of y.
Brute-force LCS algorithm

Checking every subsequence of x whether it is also a subsequence of y.

Analysis

- Checking = $\Theta(m+n)$ time per subsequence.
- 2^m subsequences of x

Worst-case running time = $\Theta((m+n)2^m)$ = exponential time.
Towards a better algorithm

Simplification:

1. Look at the length of a longest-common subsequence.
2. Extend the algorithm to find the LCS itself.
Towards a better algorithm

Simplification:
1. Look at the length of a longest-common subsequence.
2. Extend the algorithm to find the LCS itself.

Notation: Denote the length of a sequence s by $|s|$.
Towards a better algorithm

Simplification:
1. Look at the length of a longest-common subsequence.
2. Extend the algorithm to find the LCS itself.

Notation: Denote the length of a sequence s by $|s|$.

Strategy: Consider prefixes of x and y.
• Define $c[i, j] = |\text{LCS}(x[1 \ldots i], y[1 \ldots j])|$.
• Then, $c[m, n] = |\text{LCS}(x, y)|$.
Recursive formulation

Observation:
It is impossible that
\[x[m] \] is matched to an element in \(y[1..n-1] \) and
simultaneously
\[y[n] \] is matched to an element in \(x[1..m-1] \)
(since it must create a pair of crossing segments).

Conclusion – either \(x[m] \) is matched to \(y[n] \), or one at least of them
is unmatched in \(OPT \).
\{OPT – the optimal solution\}
Recursive formula

Let's just consider the last character of x and of y

Proof.

```
x: 1 2 m

  1 2 = n

y: 1 2 m
```
Recursive formula

Let's just consider the last character of x and of y

Case (I): $x[m] = y[n]$. Claim: $c[m, n] = c[m-1, n-1] + 1$.

Proof.

We claim that there is a max matching that matches $x[m]$ to $y[n]$.

Indeed, if $x[m]$ is matched to $y[k]$ (for $k < m$) then $y[n]$ is unmatched (otherwise we have two crossing segments). Hence we can obtain another matching of the same cardinality by matching $x[m]$ to $y[n]$.

This implies that we can find an optimal matching of

$LCS(x[1..m-1] \text{ to } y[1..n-1])$, and add the segment $(x[m], y[n])$.

So $c[m, n] = c[m-1, n-1] + 1$
Recursive formulation-cont

Case (II): $x[m] \neq y[n]$

Claim: $c[m,n] = \max\{c[m,n-1], c[m-1,n]\}$

Recall - in $\text{LCS}(x[1 \ldots m], y[1 \ldots n])$ it cannot be that both $x[m]$ and $y[n]$ are both matched.

If $x[m]$ is unmatched in OPT then

$$\text{LCS}(x[1 \ldots m], y[1 \ldots n]) = \text{LCS}(x[1 \ldots m-1], y[1 \ldots n])$$

If $y[j]$ is unmatched in OPT then

$$\text{LCS}(x[1 \ldots m], y[1 \ldots n]) = \text{LCS}(x[1 \ldots m], y[1 \ldots n-1])$$

So $c[m,n] = \max\{c[m-1, n], c[m, n-1]\}$
For general i,j

Since we only care for OPT matching the prefixes, then

Claim: if $x[i] = y[j]$ then $c[i, j] = c[i-1, j-1] + 1$.
$c[i,j]$ For general i,j

Since we only care for OPT matching the prefixes, then

Claim: if $x[i] = y[j]$ then $c[i, j] = c[i-1, j-1] + 1$.

\[x: \quad \begin{array}{ccc|c|c|c} 1 & 2 & \cdots & i & \cdots & m \\ \hline 1 & 2 & \cdots & & \cdots & n \end{array} \quad y: \quad \begin{array}{ccc|c|c|c} 1 & 2 & \cdots & i & \cdots & m \\ \hline 1 & 2 & \cdots & & \cdots & n \end{array} \]
c[i,j] For general i,j

Since we only care for OPT matching the prefixes, then

Case (I): x[i] = y[j].

Claim: if x[i] = y[j] then c[i, j] = c[i-1, j-1] + 1.

We claim that there is a max matching that matches x[i] to y[j].

Indeed, if x[i] is matched to y[k] (for k<j) then y[j] is unmatched (otherwise we have two crossing segments). Hence we can obtain another matching of the same cardinality by match x[i] to y[j].

This implies that we can match x[1..i-1] to y[1..j-1], and add the match (x[i], y[j]). So c[i, j] = c[i-1, j-1] + 1.
Recursive formulation-cont

Case (II): if \(x[i] \neq y[j] \) then \(c[i, j] = \max\{c[i-1, j], c[i, j-1]\} \)

Recall - in \(\text{LCS}(x[1 \ldots i], y[1 \ldots j]) \) it cannot be that both \(x[i] \) and \(y[j] \) are both matched.

If \(x[i] \) is unmatched then
\[
\text{LCS}(x[1 \ldots i], y[1 \ldots j]) = \text{LCS}(x[1 \ldots i-1], y[1 \ldots j])
\]

If \(y[j] \) is unmatched then
\[
\text{LCS}(x[1 \ldots i], y[1 \ldots j]) = \text{LCS}(x[1 \ldots i], y[1 \ldots j-1])
\]

So \(c[i, j] = \max\{c[i-1, j], c[i, j-1]\} \)
Dynamic-programming hallmark
#1

Optimal substructure
An optimal solution to a problem (instance) contains optimal solutions to subproblems.
Dynamic-programming hallmark
#1

Optimal substructure
An optimal solution to a problem (instance) contains optimal solutions to subproblems.

If $z = \text{LCS}(x, y)$, then any prefix of z is an LCS of a prefix of x and a prefix of y.
Recursive algorithm for LCS

LCS(x, y, i, j)
if (i==0 or j=0) return 0
if x[i] = y[j]
 then return LCS(x, y, i–1, j–1) + 1
else return max{LCS(x, y, i–1, j), LCS(x, y, i, j–1)}

To call the function LCS(x, y, m,n)
Recursive algorithm for LCS

\[\text{LCS}(x, y, i, j) \]
\[\text{if (} i==0 \text{ or } j==0 \text{) return 0} \]
\[\text{if } x[i] = y[j] \]
\[\quad \text{then return } \text{LCS}(x, y, i-1, j-1) + 1 \]
\[\text{else return } \max\{\text{LCS}(x, y, i-1, j), \text{LCS}(x, y, i, j-1)\} \]

To call the function \(\text{LCS}(x, y, m,n) \)

Worst-case: \(x[i] \neq y[j] \), for all \(i,j \) in which case the algorithm evaluates two subproblems, each with only one parameter decremented.
Recursion tree

\(m = 3, n = 4: \)

\[
\begin{array}{c}
\text{3,4} \\
\text{2,4} \\
\text{1,4} \\
\text{1,3} \\
\text{2,2} \\
\end{array}
\begin{array}{c}
\text{3,3} \\
\text{2,3} \\
\text{1,3} \\
\text{2,2} \\
\end{array}
\begin{array}{c}
\text{3,2} \\
\text{2,3} \\
\text{1,3} \\
\text{2,2} \\
\end{array}
\]
Recursion tree

$m = 3, n = 4$:

\[\begin{align*}
3,4 \\
2,4 \\
1,4 \\
2,3 \\
1,3 \\
1,3 \\
2,2 \\
2,2 \\
3,3 \\
3,2 \\
3,2
\end{align*} \]

Height = $m + n$ ⇒ work potentially 2^{m+n} exponential.
Recursion tree

$m = 3, n = 4$:

Height $= m + n \Rightarrow$ work potentially 2^{m+n} exponential.
but we’re solving subproblems already solved!

same subproblem
Dynamic-programming hallmark #2

Overlapping subproblems

A recursive solution contains a “small” number of distinct subproblems repeated many times.
Dynamic-programming hallmark #2

Overlapping subproblems
A recursive solution contains a “small” number of distinct subproblems repeated many times.

The number of distinct LCS subproblems for two strings of lengths m and n is only mn.
Memoization algorithm

Memoization: After computing a solution to a subproblem, store it in a table. Subsequent calls check the table to avoid redoing work.
Memoization algorithm

Memoization: After computing a solution to a subproblem, store it in a table. Subsequent calls check the table to avoid redoing work.

\[
\text{LCS}(x, y)
\]

for \(i=0 \) to \(m \) \(\quad c[i, 0] = 0 \)
for \(j=0 \) to \(n \) \(\quad c[0, j] = 0 \)

for \(i=1 \) to \(m \)
for \(j=1 \) to \(n \)
if \((x[i] = y[j]) \)
then \(c[i, j] \leftarrow c[i-1, j-1] + 1 \)
else \(c[i, j] \leftarrow \max\{c[i-1, j], c[i, j-1]\} \)
Memoization algorithm

Memoization: After computing a solution to a subproblem, store it in a table. Subsequent calls check the table to avoid redoing work.

\[
\text{LCS}(x, y)
\]

\[
\text{for } i=0 \text{ to } m \quad c[i, 0] = 0
\]

\[
\text{for } j=0 \text{ to } n \quad c[0, j] = 0
\]

\[
\text{for } i=1 \text{ to } m
\]

\[
\text{for } j=1 \text{ to } n
\]

\[
\text{if } (x[i] = y[j]) \\
\quad \text{then } c[i, j] \leftarrow c[i-1, j-1] + 1
\]

\[
\text{else } c[i, j] \leftarrow \max\{ c[i-1, j], c[i, j-1] \}
\]

Time = \(\Theta(mn)\) = constant work per table entry.
Space = \(\Theta(mn)\).
LCS: Dynamic-programming algorithm

LCS(X,Y)="BCBA"

X=B D C A B A

Y=A B C B D A B

Y=
 1 2 3 4 5 6 7

A 0 0 0 0 0 0 0

B 0 0 1 1 1 1 1

C 0 0 1 1 1 2 2

D 0 0 1 2 2 2 2

E 0 1 1 2 2 2 3

F 0 1 2 2 3 3 3

G 0 1 2 2 3 3 4

H 0 1 2 2 3 3 4

LCS(X,Y)="BCBA"
Reconstruction $z=LCS(x,y)$

IDEA: Compute the table bottom-up. Fill z backward.

Observation: $c[i,j] \geq c[i-1,j]$ and $c[i,j] \geq c[i,j-1]$

Proof Sketch: We use a longer prefix, so there are more chars to be match.

LCS Reconstruction:
Set $i=m$; $j=n$; $k=c[i,j]$
While($k > 0$) {
 if ($c[i,j] > c[i-1,j]$ and $c[i,j] > c[i,j-1]$) {
 $z[k] = x[i]$;
 $i--; j--; k--;$
 } else // $c[i,j] = c[i-1,j]$ or $c[i,j] = c[i-1,j]$
 if ($c[i,j] == c[i,j-1]$) $j--$;
 else $i--$;
}
Reconstruction \(z=LCS(x,y) \)

IDEA: Compute the table bottom-up. Fill \(z \) backward.

Observation: \(c[i,j] \geq c[i-1,j] \) and \(c[i,j] \geq c[i,j-1] \)

Proof Sketch: We use a longer prefix, so there are more chars to be match.

LCS Reconstruction:*
Set \(i=m; j=n; k=c[i,j] \)
While \((k>0)\) {
 if \((c[i,j]>c[i-1,j] \text{ and } c[i,j]>c[i,j-1]) \) {
 \(z[k] = x[i] \);
 \(i--; j--; k--; \)
 } else // \(c[i,j]=c[i-1,j] \) or \(c[i,j]=c[i-1,j] \)
 if \((c[i,j]==c[i,j-1]) \) \(j--; \)
 else \(i--; \)
}

\[LCS(x,y)=“BCBA” \]

\(x=B\ D\ C\ A\ B\ A \)

\(y=A\ B\ C\ B\ D\ A\ B \)
Reconstruction $z=LCS(x,y)$

IDEA: Compute the table bottom-up. Fill z backward.

Observation: $c[i;j] \geq c[i-1;j]$ and $c[i;j] \geq c[i;j-1]$

Proof Sketch: We use a longer prefix, so there are more chars to be match.

LCS Reconstruction:
Set $i=m; j=n; k=c[i;j]$
While($k>0$) {
 if ($c[i;j]>c[i-1;j]$ and $c[i;j]>c[i;j-1]$) {
 $z[k]=x[i]$;
 $i--; j--; k--;$
 } else if ($c[i;j]=c[i-1;j]$ or $c[i;j]=c[i-1;j]$) {
 if ($c[i;j]==c[i;j-1]$) $j--$;
 else $i--$;
 }
}
Reconstruction $z=LCS(x,y)$

IDEA: Compute the table bottom-up. Fill z backward.

Observation: $c[i;j] \geq c[i-1;j]$ and $c[i;j] \geq c[i;j-1]$

Proof Sketch: We use a longer prefix, so there are more chars to be match.

LCS Reconstruction:
Set $i=m$; $j=n$; $k=c[i;j]$

While($k>0$){
 if ($c[i;j]>c[i-1;j]$ and $c[i;j]>c[i;j-1]$) {
 $z[k] = x[i]$;
 $i--; j--; k--;$
 } else // $c[i;j]=c[i-1;j]$ or $c[i;j]=c[i-1;j]$
 if ($c[i;j]==c[i;j-1]$) $j--;$
 else $i--;$
}

$LCS(x,y) = \text{“BCBA”}$

$x=B \ D \ C \ A \ B \ A$

$y=A \ B \ C \ B \ D \ A \ B$
Reconstruction \(z=LCS(x,y) \)

IDEA: Compute the table bottom-up. Fill \(z \) backward.

Observation: \(c[i,j]\geq c[i-1,j] \) and \(c[i,j]\geq c[i,j-1] \)

Proof Sketch: We use a longer prefix, so there are more chars to be match.

LCS Reconstruction:
Set \(i=m; j=n; k=c[i,j] \)
While \((k>0) \) {
 if \((c[i,j]>c[i-1,j] \) and \(c[i,j]>c[i,j-1]) \) {
 \(z[k] = x[i] \);
 \(i--; j--; k--; \)
 } else // \(c[i,j]=c[i-1,j] \) or \(c[i,j]=c[i-1,j] \)
 if \((c[i,j]==c[i,j-1]) \) \(j--; \)
 else \(i--; \)
}
Reconstruction \(z=LCS(x,y) \)

IDEA: Compute the table bottom-up. Fill \(z \) backward.

Observation: \(c[i;j] \geq c[i-1;j] \) and \(c[i;j] \geq c[i;j-1] \)

Proof Sketch: We use a longer prefix, so there are more chars to be match.

LCS Reconstruction:
Set \(i=m; j=n; k=c[i;j] \)
While \((k>0) \) {
 if \((c[i;j] > c[i-1;j] \) and \(c[i;j] > c[i;j-1] \)) {
 \(z[k] = x[i] \);
 \(i--; j--; k--; \)
 } else // \(c[i;j] = c[i-1;j] \) or \(c[i;j] = c[i-1;j] \)
 if \((c[i;j] == c[i;j-1]) \) \(j--; \)
 else \(i--; \)
}
Reconstruction $z=LCS(x,y)$

IDEA: Compute the table bottom-up. Fill z backward.

Observation: $c[i;j] \geq c[i-1;j]$ and $c[i;j] \geq c[i;j-1]$

Proof Sketch: We use a longer prefix, so there are more chars to be match.

LCS Reconstruction:
Set $i=m$; $j=n$; $k=c[i;j]$

While($k>0$) {
 if ($c[i;j]>c[i-1;j]$ and $c[i;j]>c[i;j-1]$) {
 $z[k]=x[i]$;
 $i--; j--; k--$;
 } else // $c[i;j]=c[i-1;j]$ or $c[i;j]=c[i-1;j]$
 if ($c[i;j]==c[i;j-1]$) $j--$;
 else $i--$;
}
Reconstruction \(z = \text{LCS}(x, y) \)

IDEA: Compute the table bottom-up. Fill \(z \) backward.

Observation: \(c[i; j] \geq c[i-1; j] \) and \(c[i; j] \geq c[i; j-1] \)

Proof Sketch: We use a longer prefix, so there are more chars to be match.

LCS Reconstruction:

Set \(i = m; \ j = n; \ k = c[i; j] \)

While(\(k > 0 \)) {
 if ((\(c[i; j] > c[i-1; j] \) and \(c[i; j] > c[i; j-1] \))) {
 \(z[k] = x[i] \);
 \(i--; \ j--; \ k--; \)
 } else if (\(c[i; j] = c[i-1; j] \) or \(c[i; j] = c[i-1; j] \)) {
 \(j--; \)
 } else {
 \(i--; \)
 }
}

\[\text{LCS}(x, y) = \text{“BCBA”} \]

\[x = \text{B D C A B A} \]

\[y = \text{A B C B D A B} \]
Reconstruction $z = \text{LCS}(x, y)$

IDEA: Compute the table bottom-up. Fill z backward.

Observation: $c[i, j] \geq c[i-1, j]$ and $c[i, j] \geq c[i, j-1]$

Proof Sketch: We use a longer prefix, so there are more chars to be match.

LCS Reconstruction:
Set $i=m$; $j=n$; $k=c[i, j]$
While($k > 0$) {
 if ($c[i, j] > c[i-1, j]$ and $c[i, j] > c[i, j-1]$) {
 $z[k] = x[i]$;
 i--; j--; k--;
 } else if ($c[i, j] = c[i-1, j]$ or $c[i, j] = c[i-1, j]$)
 if ($c[i, j] == c[i, j-1]$) j--;
 else i--;
}
Reconstructing $z = \text{LCS}(X,Y)$

Another idea – While filling $c[]$, add arrows to each cell $c[i,j]$ specifying which neighboring cell $c[i,j]$ it got its value.

- $c[i,j].\text{flag} = "\ \"$ if $c[i,,j]=c[i-1;j-1]+1$
- $c[i,j].\text{flag} = "↑"$ if $c[i,,j]=c[i-1;j]$
- $c[i,j].\text{flag} = "←"$ if $c[i,,j]=c[i-1;j]$
- $c[i,j].\text{flag} = "←"$ if $c[i,,j]=c[i-1;j]$
Example 2: Edit distance

Given strings \(X, Y \), the edit distance \(\text{ed}(X, Y) \) between \(X \) and \(Y \) is defined as the minimum number of operations that we need to perform on \(X \), in order to obtain \(Y \).

Definition: An Operations (in this context) Insertion/Deletion/Replacement of a single character.

Examples:

\[
\begin{align*}
\text{ed}(\text{“aaba”}, \text{“aaba”}) & = 0 \\
\text{ed}(\text{“aaa”}, \text{“aaba”}) & = 1 \\
\text{ed}(\text{“aaaa”, “abaa”}) & = 1 \\
\text{ed}(\text{“baaa”, “”}) & = 4 \\
\text{ed}(\text{“baaa”, “aaab”}) & = 2
\end{align*}
\]

Note that the term “distance” is a bit misleading: We need both the value (how many operations) as well as knowing which operations.
Example 3’:
``Priced” Edit distance $ed(X,Y)$

Assume also given

- $InsCost$, - the cost of a single **insertion** into x.
- $DelCost$ - the cost of a single **deletion** from x, and
- $RepCost$ - the cost of **replacing** one character of x by a different character.

Definition: Given strings X,Y, the **edit distance** $ed(X,Y)$ between X and Y is the cheapest sequence of operations, starting on X and ending at Y.

Problem: Compute $ed(X,Y)$, (both the value and the optimal sequence of operations.)

Definition: $c[i,j] = \text{Cost}(\, ed(\, X[1..i], \, Y[1..j] \,) \,)$.

Will first compute $\text{Cost}(\, c[m,n] \,)$. Then will recover the sequence.
Thm:

Let \(c[i,j] = \text{ed}(x[1..i], y[1..j]) \).
Assume \(c[i-1,j-1], c[i-1,j-1], c[i-1,j] \) are already computed.

If \(X[i] = Y[j] \) then \(c[i,j] = c[i-1,j-1] \)
Else

\[
\begin{align*}
 c[i,j] &= \min \{ \\
 & c[i-1,j-1] + \text{RepCost}, \quad \text{//convert } X[1..i-1] \Rightarrow Y[1..j-1], \text{ and replace } y[j] \\
 & c[i-1,j] + \text{DelCost}, \quad \text{//delete } X[i] \text{ and convert } X[1..i-1] \Rightarrow Y[1..j] \\
 & c[i,j-1] + \text{InsCost} \quad \text{//convert } X[1..i] \Rightarrow Y[1..j-1], \text{ and insert } Y[i] \\
 \}
\end{align*}
\]
Algorithm

Memoization: After computing a solution to a subproblem, store it in a table. Subsequent calls check the table to avoid redoing work.
Algorithm

Memoization: After computing a solution to a subproblem, store it in a table. Subsequent calls check the table to avoid redoing work.

\[
\text{ed}(X, Y) \\
\text{for } i=0 \text{ to } m \quad c[i, 0] = i \text{ DelCost} \\
\text{for } j=0 \text{ to } n \quad c[0, j] = j \text{ InsCost} \\
\text{for } i=1 \text{ to } m \\
\quad \text{for } j=1 \text{ to } n \\
\quad \quad \text{if } (X[i] == Y[j]) \\
\quad \quad \quad \text{then } c[i, j] \leftarrow c[i-1, j-1] \\
\quad \quad \text{else } c[i, j] \leftarrow \min \{ c[i-1, j] + \text{DelCost}, \\
\quad \quad \quad \quad c[i-1, j-1] + \text{RepCost}, \\
\quad \quad \quad \quad c[i, j-1] + \text{InsCost} \} \\
\]
Algorithm

Memoization: After computing a solution to a subproblem, store it in a table. Subsequent calls check the table to avoid redoing work.

\[
ed(X, Y)\
\begin{align*}
\text{for } i &= 0 \text{ to } m & c[i, 0] &= i \text{ DelCost} \\
\text{for } j &= 0 \text{ to } n & c[0, j] &= j \text{ InsCost} \\
\text{for } i &= 1 \text{ to } m \\
\text{for } j &= 1 \text{ to } n \\
\text{if } (X[i] == Y[j]) \\
\text{then } c[i, j] &= c[i-1, j-1] \\
\text{else } c[i, j] &= \min\{ c[i-1, j] + \text{DelCost}, \\
&\quad c[i-1, j-1] + \text{RepCost}, \\
&\quad c[i, j-1] + \text{InsCost}\}
\end{align*}
\]

Time = \(\Theta(m \ n)\) = constant work per table entry. Space = \(\Theta(m \ n)\).

Homework: Compute the sequence of operations. Compute which characters in \(x\) matches which chars in \(y\).
We define a polygonal path $P=\{p_1 \ldots p_n\}$ where

- Each vertex p_i is a point in the plane,
- Vertex p_1 is the first vertex, p_n is the last,
- Vertex p_i is connected to the next vertex p_{i+1} by a straight segment.
Good ways to measure distance between curves

- Should not be affected by how curves are sampled
- Should reflect the “order” of the points along the curves.

$P[1..i]$ is the polygonal line with the first i vertices of P

$Q[1..j]$ is the polygonal line with the first j vertices of P
Problem: Computing the Frechet Distance between polylines

\[\text{Frechet}(P, Q, r) \]

Definition of \(\text{Frechet}(P, Q, r) \)

Assume a person walks on \(P = \{p_1 \ldots p_n\} \) while a dog walks on \(Q = \{q_1 \ldots q_n\} \).

\(r \) is the leash length (part of input).

The person starts at \(p_1 \) and ends at \(p_n \)

The dog starts at \(q_1 \) and ends at \(q_n \)

At each time stamp,
- either the person jumps to the next vertex
- Or the dog jumps to the next vertex
- Or both jumps to the next vertex

At every instance they stop, we measure whether the distance between person ↔ dog (the length of the leash) \(\leq r \).

- \(\text{Frechet}(P, Q, r) = \text{YES} \) if the answer is positive for all time stamps.
- (if not, a longer leash is need. If yes, maybe a shorter one is sufficient.
- So we could use binary search.
Problem: Computing the Frechet Distance between polylines

\[\text{Frechet}(P, Q, r) \]

Definition of \(\text{Frechet}(P, Q, r) \)

Assume a person walks on \(P = \{p_1 \ldots p_n\} \) while a dog walks on \(Q = \{q_1 \ldots q_n\} \). \(r \) is the leash length (part of input).

The person starts at \(p_1 \) and ends at \(p_n \).

The dog starts at \(q_1 \) and ends at \(q_n \).

At each time stamp,
- either the person jumps to the next vertex
- or the dog jumps to the next vertex
- or both jumps to the next vertex

Every instance they stop, we measure whether the distance between person ↔ dog (the length of the leash) \(\leq r \).

\(\text{Frechet}(P, Q, r) = \text{YES} \) if the answer is positive for all time stamps.

(if not, a longer leash is needed. If yes, maybe a shorter one is sufficient.

So we could use binary search.
Problem: Computing the Frechet Distance between polylines

\[\text{Frechet}(P, Q, r) \]

Definition of \(\text{Frechet}(P, Q, r) \)

Assume a person walks on \(P = \{p_1 \ldots p_n\} \) while a dog walks on \(Q = \{q_1 \ldots q_n\} \).

\(r \) is the leash length (part of input).

The **person** starts at \(p_1 \) and ends at \(p_n \).

The **dog** starts at \(q_1 \) and ends at \(q_n \).

At each time stamp,

- either the **person** jumps to the next vertex
- Or the **dog** jumps to the next vertex
- Or both jumps to the next vertex

Every instance they stop, we measure whether the distance between person\(\leftrightarrow \)dog (the length of the **leash**) \(\leq r \).

\(\text{Frechet}(P, Q, r) = \text{YES} \) if the answer is positive for all time stamps.

- (if not, a longer leash is needed.
 If yes, maybe a shorter one is sufficient.
 - So we could use binary search.
Computing Frechet(P,Q,r)

Frechet(P,Q,r)
// c[1..n, 1..n] – boolean array
// c[i,j] = Frechet(P[1..i],Q[1..j], r)

Init:
\[
c[1,1] = (|| p_1 - q_1 || \leq r) \text{ (YES/NO)}
\]

For \(i = 2 \) to \(n \)
\[
c[i,1] = (|| p_i - q_1 || \leq r) \text{ AND } c[i-1,1] \text{ (YES/NO)}
\]

For \(j = 2 \) to \(n \)
\[
c[1,j] = (|| p_1 - q_j || \leq r) \text{ AND } c[1,j-1]
\]
Computing Frechet (P,Q,r) (cont.)

// c[1..n, 1..n] – boolean array

Init- previous slide

For $i=2$ to n
 For $j=2$ to n
 $c[i,j] = (||p_i - q_j|| \leq r) \text{ AND}$
 \{
 $c[i-1,j-1]$, \textit{both jumps}
 OR $c[i-1, j]$, \textit{person jumped from } p_{i-1} \textit{to } p_i, \textit{dog stays at } q_j
 OR $c[i,j-1]$, \textit{person stayed at } p_i, \textit{dog jumped from } q_{j-1} \textit{to } q_j
 \}

Return $c[n,n]$

Note – this is only the cost (that is the distance itself. We still need to find what is the series of steps that yield this cost
Comments

• This is actually the **Discrete** Frechet Distance (only distances between vertices counts). We do not discuss the **continuous** version.
• This is only the Decision problem – we actually want the shortest leash. We could use a binary search to approximate it. Exact algorithm outside the scope of this course.
• If person/dog could move backward, the problem is called the **weak** Frechet.

Maurice René Fréchet
Problem: Computing Dynamic Time Warping $dtw(P,Q)$ between polylines

Given 2 polygonal curves $P=\{p_1\ldots p_n\}$ and $Q=\{q_1\ldots q_m\}$,

The input is the locations of their vertices (e.g. GIS coordinates)

How similar are P to Q?

Need to come up with a number $dtw(P,Q)$?

So if $dtw(P,Q)<dtw(P,Q')$, then P is more similar to Q
Problem: Computing Dynamic Time Warping \(dtw(P,Q) \) between polylines

Given 2 polygonal curves

\[P = \{p_1, \ldots, p_n\} \quad \text{and} \quad Q = \{q_1, \ldots, q_m\}, \]

The input is the locations of their vertices (e.g. GIS coordinates)

How similar are \(P \) to \(Q \)?

Need to come up with a number \(dtw(P,Q) \)?

So if \(dtw(P,Q) < dtw(P,Q') \), then \(P \) is more similar to \(Q \)
Dynamic Time Warping \(dtw(P,Q) \)

Definition of \(dtw(P,Q) \)
Assume a person walks on \(P = \{p_1 \ldots p_n\} \) while a dog walks on \(Q = \{q_1 \ldots q_m\} \).

They **person** starts at \(p_1 \) and ends at \(p_n \)
They **dog** starts at \(q_1 \) and ends at \(q_n \)

At each time stamp,
- either the **person** jumps to the next vertex
- or the **dog** jumps to the next vertex
- or both jumps to the next vertex

- Every instance they stop, we measure the distance (the length of the **leash**) person\(\leftrightarrow\)dog.
- We sum the lengths of all leashes.
- \(dtw(P,Q) \) is the smallest sum (over all possible sequences)
Dynamic Time Warping \(dtw(P,Q) \)

Definition of \(dtw(P,Q) \)
Assume a person walks on \(P=\{p_1 \ldots p_n\} \) while a dog walks on \(Q=\{q_1 \ldots q_m\} \).

They \textbf{person} starts at \(p_1 \) and ends at \(p_n \)
They \textbf{dog} starts at \(q_1 \) and ends at \(q_n \)

At each time stamp,
- either the \textbf{person} jumps to the next vertex
- Or the \textbf{dog} jumps to the next vertex
- Or \textbf{both} jumps to the next vertex

\begin{itemize}
 \item Every instance they stop, we measure the distance (the length of the \textbf{leash}) person\(\leftrightarrow\)dog.
 \item We sum the lengths of all leashes.
 \item \(dtw(P,Q) \) is the smallest sum (over all possible sequences)
\end{itemize}
Motivation:

Definition of $dtw(P,Q)$
Assume a person walks on $P=\{p_1 \ldots p_n\}$ while a dog walks on $Q=\{q_1 \ldots q_m\}$.

Distance between trajectories enables finding nearest neighbor, and clustering

But two very similar trajectories might have vertices in very different places

DTW is used in
- Signal processing (speech reco)
- Signature verification
- Analysis of vehicles trajectories for roads networks
- Improving locations-based services
- Animals migrations patterns
- Stocks analysis
Thm 1:
Let \(c[i,j] = \text{dtw}(P[1..i], Q[1..j]) \).

Let \(\| p_i - q_j \| \) be the between the points \(p_i \) and \(q_j \).

That is, the length of the leash.

For every \(i > 1 \), \(j > 1 \)
\[
c[1,1] = \| p_1 - q_1 \|
\]
\[
c[1,j] = c[1,j-1] + \| p_1 - q_j \|
\]
\[
c[i,1] = c[i-1,1] + \| p_i - q_1 \|
\]
Thm 2:
Assume at some time, the person is at p_i while dog at q_j.
Assume $i>1$ and $j>1$.

What (might have) happened one step ago?

Three possibilities

Both person and the dog jumped (from p_{i-1} and from q_j) OR
Person jumped from p_{i-1} to p_i, dog stays at q_j OR
Person stayed at p_i, dog jumped from q_{j-1} to q_j.
Thm 2 cont:

Let $c[i,j] = dtw(P[1..i], Q[1..j])$.

If $i > 1$ and $j > 1$ then

$$c[i,j] = \|p_i - q_j\| + \min\{c[i-1,j-1], // both jumps\ c[i-1,j] , // person jumped from p_{i-1} to p_i, dog stays at q_j\ c[i,j-1] . // person stayed at p_i, dog jumped from q_{j-1} to q_j.\}$$

Since we are not sure that when the person is at p_i the dog is at q_j we will compute all such pairs i,j – one of them must happened
Algorithm for computing $\text{dtw}(P,Q)$

Init according to Thm 1.

For $i=2$ to n
 For $j=2$ to n
 \[c[i,j] = \| p_i - q_j \| + \min\{ \]
 \[c[i-1,j-1], \text{ // both jumps} \]
 \[c[i-1,j], \text{ // person jumped from } p_{i-1} \text{ to } p_i , \text{ dog stays at } q_j \]
 \[c[i,j-1] \text{ // person stayed at } p_i , \text{ dog jumped from } q_{j-1} \text{ to } q_j \]
 \}

Return $c[n,n]$

Note – this is only the cost (that is the distance itself. We still need to find what is the series of steps that yield this cost.
Dynamic-programming hallmark #1

(we saw this slide already)

Optimal substructure
An optimal solution to a problem (instance) contains optimal solutions to subproblems.
Dynamic-programming hallmark #1

(we saw this slide already)

Optimal substructure
An optimal solution to a problem (instance) contains optimal solutions to subproblems.

If $z = \text{LCS}(x, y)$, then any prefix of z is an LCS of a prefix of x and a prefix of y.
Dynamic-programming hallmark #2

Overlapping subproblems
A recursive solution contains a “small” number of distinct subproblems repeated many times.
Dynamic-programming hallmark #2

Overlapping subproblems

A recursive solution contains a “small” number of distinct subproblems repeated many times.

The number of distinct LCS subproblems for two strings of lengths m and n is only mn.
Another application of DP: Clustering
(source: Kleinberg & Tardos)

Given points $P = \{(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)\}$ find a line minimizing $Err(\ell, P)$

$Err(\ell, P) = \sum_{i=1}^{n} (y_i - ax_i - b)^2$

that is, the sum of squares of vertical distances from each (x_i, y_i) to ℓ.

Solution

$$a = \frac{n \sum x_i y_i - (\sum x_i)(\sum y_i)}{n \sum x_i^2 - (\sum x_i)^2}$$

$$b = \frac{\sum y_i - a \sum x_i}{n}.$$
Clustering Problem

- Given points \(P = (p_1, p_2, \ldots, p_n) \) sorted from left to right, and a penalty \(R \), find optimal \(k \), and partition of \(P \) into \(k \) runs

 \[(p_1, p_2 \ldots p_{i_1})(p_{i_1+1}, p_{i_1+2} \ldots p_{i_2}), (p_{i_2+1}, \ldots p_{i_3}) \ldots (p_{i_{k-1}+1} \ldots p_n)\]

 and lines \(\ell_1 \ldots \ell_k \) (one per each run) So that the sum

 \[R + \text{Err}(\ell_1, \{p_1, p_2 \ldots p_{i_1}\}) + \]

 \[R + \text{Err}(\ell_2, \{p_{i_1+2} \ldots p_{i_2}\}) + \]

 \[\vdots \]

 \[R + \text{Err}(\ell_k, \{p_{i_{k-1}+1} \ldots p_n\})\]

 is as small as possible

Note that if \(R=0 \), we will probably use \(n/2 \) runs \((p_1, p_2), (p_3, p_4), \ldots (p_{n-1}, p_n)\).

If \(R \) is huge, we can afford only one penalty, so only one run \((p_1, \ldots p_n)\).

In the example, \(k=3, \ i_1=5, \ i_2=8 \)
• Algorithm:
• Preprocessing: $\forall j < i$: compute the line ℓ minimizing the error for the set $\{p_j, p_{j+1} \ldots p_i\}$.

 Let $e[j, i] = \text{Err}(\ell, \{p_j, p_{j+1} \ldots p_i\})$

• Idea: Let $c[i] =$ cost of the opt clustering problem for the set $\{p_1 \ldots p_i\}$.

• Init: $c[0] = 0$.

• for $i = 2$ to n do {

 $c[i] = \min\{R + c[j] + e[j+1, i] \mid 0 \leq j < i\}$

 }

• return $c[n]$
Summarizing

- The algorithm takes $O(n^3)$ and $O(n^2)$ space
- (for preprocessing $d[j,i]$)
- Note – we did not discuss how to reconstruct the solution itself. We only calculated its cost