Everything you always wanted to know about Quick Sort,

What lessons could QuickSort teaches us about other algorithms

Alon Efrat
Based on slides curacy of
Piotr Indyk and Carola Wenk

Divide and conquer

Quicksort an n-element array:

1. **Divide:** Partition the array into two subarrays around a pivot x such that elements in lower subarray $\leq x$ are elements in upper subarray.

2. **Conquer:** Recursively sort the two subarrays.
 * **Combine:** Trivial.

Key: Linear-time partitioning subroutine.

QuickSort – example of the divide-and-conquer paradigm

- Sorts “in place” (no need for extra space). Like insertion sort, but not like merge sort.
- Very practical (with tuning).

Partitioning subroutine

$$\text{PARTITION}(A, p, q) \Rightarrow A[p . . q]$$

$$x \leftarrow A[p] \quad \text{pivot} = A[p]$$

$$i \leftarrow p$$

for $j \leftarrow p + 1$ to q

- j is hunting for small keys
 - do if $A[j] \leq x$ \quad \Rightarrow Should send $A[j]$ to the left.
 - then{
 $$i \leftarrow i + 1$$
 $$\Rightarrow \text{Now } A[i] > x$$
 exchange $A[i] \leftrightarrow A[j] \Rightarrow \text{Fix } A[i] > x$
 }

exchange $A[p] \leftrightarrow A[i]$
return i

Invariant:
Example of partitioning

Example of partitioning

Example of partitioning

Example of partitioning
Example of partitioning

Example of partitioning

Example of partitioning

Example of partitioning
Pseudocode for quicksort

QUICKSORT\((A, p, r)\)
\[
\text{if } p < r \text{// do something only if contains at least 2 keys} \\
\quad \text{then } q \leftarrow \text{PARTITION}(A, p, r) \text{// both perform partition, and} \\
\quad \quad \text{return index of pivot} \\
\quad \text{QUICKSORT}(A, p, q-1) \quad \text{//QS left part} \\
\quad \text{QUICKSORT}(A, q+1, r) \quad \text{//QS right part}
\]

Initial call: QUICKSORT\((A, 1, n)\)

Analysis of quicksort

- Assume all input elements are distinct.
- In practice, there are better partitioning algorithms for when duplicate input elements may exist.
- Let \(T(n) \) = worst-case running time on an array of \(n \) elements.

Worst-case of quicksort

- Input sorted or reverse sorted.
- Partition around min or max element.
- One side of partition always has no elements.

\[
T(n) = T(0) + T(n-1) + \Theta(n) \\
= \Theta(1) + T(n-1) + \Theta(n) \\
= T(n-1) + \Theta(n) \\
= \Theta(n^2) \quad \text{(arithmetic series)}
\]

Worst-case recursion tree

\[
T(n) = T(0) + T(n-1) + cn
\]
Worst-case recursion tree

\[T(n) = T(0) + T(n-1) + cn \]
Worst-case recursion tree

\[T(n) = T(0) + T(n-1) + cn \]

\[\Theta\left(\sum_{k=1}^{n} k\right) = \Theta(n^2) \]

Best-case and almost best-case analysis

If we are lucky, PARTITION splits the array evenly:

\[T(n) = 2T(n/2) + \Theta(n) \]
\[= \Theta(n \log n) \quad \text{(same as merge sort)} \]

What if the split is \(\frac{1}{10} : \frac{9}{10} \)?

That is, both sub-arrays contain at least 10% of the keys (possibly more)

\[T(n) = T\left(\frac{1}{10} n\right) + T\left(\frac{9}{10} n\right) + \Theta(n) \]

We call such a partition an almost-optimal partition.

What is the running time in this case?

Analysis of “almost-best” case

\[T(n) \]
Analysis of “almost-best” case

\[T\left(\frac{1}{10}n\right) \rightarrow cn \rightarrow T\left(\frac{9}{10}n\right) \]

Analysis of “almost-best” case

\[T\left(\frac{1}{100}n\right) \rightarrow \frac{1}{10}cn \rightarrow T\left(\frac{9}{100}n\right) \]

\[T\left(\frac{9}{100}n\right) \rightarrow \frac{9}{10}cn \rightarrow T\left(\frac{81}{100}n\right) \]

Analysis of “almost-best” case

\[\Theta(1) \rightarrow \frac{1}{100}cn \rightarrow \frac{9}{100}cn \rightarrow \frac{9}{100}cn \rightarrow \frac{81}{100}cn \rightarrow cn \rightarrow \Theta(1) \rightarrow O(n) \text{ leaves} \]

Analysis of “almost-best” case

\[\Theta(1) \rightarrow \frac{1}{10}cn \rightarrow \frac{9}{10}cn \rightarrow \frac{9}{10}cn \rightarrow \frac{81}{100}cn \rightarrow cn \rightarrow \Theta(1) \rightarrow O(n) \text{ leaves} \]

\[cn \log_{10.9} n \leq T(n) \leq cn \log_{10.9} n + O(n) \leq 8 n \log_2 n \]
Randomized quicksort

How can find a pivot that guarantees partitions with good ratios for \(A[1..n]\)?

We say that \(q\) is a good pivot if
• at least 10% of the elements of \(A[1..n]\) are smaller than \(q\), and
• at least 10% of the elements of \(A[1..n]\) are larger than \(q\).

Best pivot: Pick the median of \(A[1..n]\) as pivot.

Finding a good pivot for \(A[1..n]\)

5-random-elements method. : Pick 5 elements at random from \(A[1..n]\), set \(q\) to be their median.

What it is the probability that \(q\) is not a good pivot?
• Let \(S\) be the elements of \(A[1..n]\) which are the 10% smallest.
• The probability that an elements picked at random is in \(S\) is 0.1.
• \(q\) is in \(S\) only if at least 3 of the 5 elements that we pick are in \(S\).
• The probability that this happens is

 \[
 0.1^5 + 5 \cdot 0.1^4 \cdot 0.9 + 10 \cdot 0.1^3 \cdot 0.9^2 = \frac{0.00001}{0.00045} + 0.00810 = 0.00856
 \]
• This is also the probability that \(q\) is in the 10% largest elements.
• In other words: with probability \(\geq 98\%\), \(q\) is a good pivot.

Finding a good pivot for \(A[1..n]\)

5-random-elements method. : Pick 5 elements at random from \(A[1..n]\), and set \(q\) to be their median.

What it is the probability that \(q\) is not a good pivot?
• Let \(S\) be the elements of \(A[1..n]\) which are the 10% smallest.
• The probability that an elements picked at random is in \(S\) is 0.1.
• \(q\) is in \(S\) only if at least 3 of the 5 elements that we pick are in \(S\).
• The probability that this happens is

 \[
 0.1^5 + 5 \cdot 0.1^4 \cdot 0.9 + 10 \cdot 0.1^3 \cdot 0.9^2 = \frac{0.00001}{0.00045} + 0.00810 = 0.00856
 \]
• This is also the probability that \(q\) is in the 10% largest elements.
• In other words: with probability \(\geq 98\%\), \(q\) is a good pivot.

Finding a good pivot for \(A[1..n]\)

5-random-elements method. : Pick 5 elements at random from \(A[1..n]\), and set \(q\) to be their median.

What it is the probability that \(q\) is not a good pivot?
• Let \(S\) be the elements of \(A[1..n]\) which are the 10% smallest.
• The probability that an elements picked at random is in \(S\) is 0.1.
• \(q\) is in \(S\) only if at least 3 of the 5 elements that we pick are in \(S\).
• The probability that this happens is

 \[
 0.1^5 + 5 \cdot 0.1^4 \cdot 0.9 + 10 \cdot 0.1^3 \cdot 0.9^2 = \frac{0.00001}{0.00045} + 0.00810 = 0.00856
 \]
• This is also the probability that \(q\) is in the 10% largest elements.
• In other words: with probability \(\geq 98\%\), \(q\) is a good pivot.

Finding a good pivot for \(A[1..n]\)

5-random-elements method. : Pick 5 elements at random from \(A[1..n]\), set \(q\) to be their median.

What it is the probability that \(q\) is not a good pivot?
• Let \(S\) be the elements of \(A[1..n]\) which are the 10% smallest.
• The probability that an elements picked at random is in \(S\) is 0.1.
• \(q\) is in \(S\) only if at least 3 of the 5 elements that we pick are in \(S\).
• The probability that this happens is

 \[
 0.1^5 + 5 \cdot 0.1^4 \cdot 0.9 + 10 \cdot 0.1^3 \cdot 0.9^2 = \frac{0.00001}{0.00045} + 0.00810 = 0.00856
 \]
• This is also the probability that \(q\) is in the 10% largest elements.
• In other words: with probability \(\geq 98\%\), \(q\) is a good pivot.

Finding a good pivot for \(A[1..n]\)

5-random-elements method. : Pick 5 elements at random from \(A[1..n]\), set \(q\) to be their median.

What it is the probability that \(q\) is not a good pivot?
• Let \(S\) be the elements of \(A[1..n]\) which are the 10% smallest.
• The probability that an elements picked at random is in \(S\) is 0.1.
• \(q\) is in \(S\) only if at least 3 of the 5 elements that we pick are in \(S\).
• The probability that this happens is

 \[
 0.1^5 + 5 \cdot 0.1^4 \cdot 0.9 + 10 \cdot 0.1^3 \cdot 0.9^2 = \frac{0.00001}{0.00045} + 0.00810 = 0.00856
 \]
• This is also the probability that \(q\) is in the 10% largest elements.
• In other words: with probability \(\geq 98\%\), \(q\) is a good pivot.

Finding a good pivot for \(A[1..n]\)

5-random-elements method. : Pick 5 elements at random from \(A[1..n]\), set \(q\) to be their median.

What it is the probability that \(q\) is not a good pivot?
• Let \(S\) be the elements of \(A[1..n]\) which are the 10% smallest.
• The probability that an elements picked at random is in \(S\) is 0.1.
• \(q\) is in \(S\) only if at least 3 of the 5 elements that we pick are in \(S\).
• The probability that this happens is

 \[
 0.1^5 + 5 \cdot 0.1^4 \cdot 0.9 + 10 \cdot 0.1^3 \cdot 0.9^2 = \frac{0.00001}{0.00045} + 0.00810 = 0.00856
 \]
• This is also the probability that \(q\) is in the 10% largest elements.
• In other words: with probability \(\geq 98\%\), \(q\) is a good pivot.
Putting it together

• If we performed a partition which is not almost optimal, nothing dramatically bad happens, we just wasted some time. Each such partition takes linear time, but has no effect.

• However, each partition is, with probability \(\geq 98\% \) is good, and we obtain an almost-optimal pivot.

• Hence the expected time of QuickSort (if the 5 random keys methods is used) is

\[
O(n \log n) + 0.02 \cdot O(n \log n) = O(n \log n)
\]

Randomized quicksort – cont

Finding good pivots

Putting it together, during QS, each time that we need to find a pivot, we use the “5 random elements” method.

With probability 98%, we find a good pivot.

The overall time that we spend on good partitions is much smaller than the time we spent on bad partitions.

(note – bad partitions are not harmful – they are just not helpful)

So the recursions formula \(T(n) = cn + T(n/10) + T(n \cdot 9/10) \) still apply, leading to running time \(O(n \log n) \).

This is expected running time – there is a chance that the actual running time is \(\Theta(n^2) \), but the probability that it happens is very slim.

Quicksort in practice

• Quick sort is a great general-purpose sorting algorithm.
• Quick sort is typically over twice as fast as merge sort.
• Quick sort behaves well even with caching and virtual memory.

Median Selection

• (CLRS Section 9.2, page 185).
• For \(A[1..n] \) (all different elements) we say that the rank of \(x \) is \(i \) if exactly \(i-1 \) elements in \(A \) are smaller than \(x \).
• In particular, the median is the \(\lceil n/2 \rceil \)-smallest.
• To find the median, we could sort and pick \(A[\lceil n/2 \rceil] \) (taken \(O(n \log n) \)).
• We can do better.
Median Selection-cont

```c
RS(A, p, r, i){
    // Randomize Selection: Returns i’st smallest element in A[p..r].
    // Assumption: Input is valid and elements are different.
    if (p==r) return A[p];
    q=PARTITION(A,p,r);
    // Partition using the 5-random element method
    k=q-p;
    if (i==k+1) return A[q];
    if (i<k) return RS(A, p, q-1, i); // Note the difference from QS
    else return RS(A, q+1, r, i-k-1);
}
```

Time analysis

- Recall: With high probability, we pick a good pivot:
 - Not in the 10% smallest or largest:
 - Hence, we get rid of at least 10% of the elements of A
- So, $T(n) = cn + T(0.9n)$.
 - $T(n) = c(n + 0.9n + 0.9^2n + 0.9^3n + ...)$ =
 - $cn(1 + 0.9 + 0.9^2 + 0.9^3 + ...)$ =
 - $cn(1/(1-0.9)) = O(n)$.
- So the expected time is linear. (yuppie)

As in the case of QS, partitions which are not good are not harmful, just not helpful.