Lists and SkipList

Alon Efrat
Computer Science Department
University of Arizona

A (singly connected) link list

- Set of cells in memory. Each cell contains a key, and a pointer to the next cell.
- A pointer is the address of the next cell in memory. (in java, it is the reference)
- There is a variable (head) storing the address of the first cell
- The last element points to NULL.
- We could think about the memory as a large array, so a possible interpretation might looks like the example below:

![Diagram of a linked list]

Memory Snapshot:

<table>
<thead>
<tr>
<th>Cell address</th>
<th>102</th>
<th>104</th>
<th>106</th>
<th>108</th>
<th>110</th>
<th>112</th>
<th>114</th>
<th>116</th>
<th>118</th>
</tr>
</thead>
<tbody>
<tr>
<td>Key</td>
<td>D</td>
<td>A</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>C</td>
</tr>
<tr>
<td>Next cell</td>
<td>0 null</td>
<td>110</td>
<td>118</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>104</td>
<td></td>
</tr>
</tbody>
</table>
A (singly connected) linked list

- Set of cells in memory. Each cell contains a key, and a pointer to the next cell.
- A pointer is the address of the next cell in memory. (in java, it is the reference)
- There is a variable (head) storing the address of the first cell
- The last element points to NULL.
- We could think about the memory as a large array, so a possible interpretation might look like the example below:

Memory Snapshot:

<table>
<thead>
<tr>
<th>Cell address</th>
<th>102</th>
<th>104</th>
<th>106</th>
<th>108</th>
<th>110</th>
<th>112</th>
<th>114</th>
<th>116</th>
<th>118</th>
</tr>
</thead>
<tbody>
<tr>
<td>Key</td>
<td>D</td>
<td>A</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>C</td>
</tr>
<tr>
<td>Next cell</td>
<td>0</td>
<td>null</td>
<td>110</td>
<td>118</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>104</td>
</tr>
</tbody>
</table>

- Constant time to move from a cell to the next cell
- No efficient way to move to the previous cell, or to find a key. Require linear scan.

A (doubly connected) link list

- Set of cells in memory. Each cell contains a key, and a pointer to the next cell and a pointer to the previous cell (prev)
- A pointer is the address of the next cell in memory. (in java, it is the reference)
- There is a variable (head) storing the address of the first cell
- The last element points to NULL.
- We could think about the memory as a large array, so a possible interpretation might look like the example below:

Memory Snapshot:

<table>
<thead>
<tr>
<th>Cell address</th>
<th>102</th>
<th>104</th>
<th>106</th>
<th>108</th>
<th>110</th>
<th>112</th>
<th>114</th>
<th>116</th>
<th>118</th>
</tr>
</thead>
<tbody>
<tr>
<td>Key</td>
<td>D</td>
<td>A</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>C</td>
</tr>
<tr>
<td>Next cell</td>
<td>0</td>
<td>null</td>
<td>110</td>
<td>118</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>104</td>
</tr>
<tr>
<td>Prev cell</td>
<td>118</td>
<td>0</td>
<td>null</td>
<td>106</td>
<td>110</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Constant time to move from a cell to the next cell or to the previous cell
- No efficient to find a key. Require linear scan.
Searching a key x in a sorted linked list

1. cell *p =head;
2. while (p→key < x) p=p→next;
3. return p; / /(which is either equal or larger than x)

Note:
- The $-\infty$ and ∞ elements are not “real” keys.
- They are in the list to prevent checking special cases
- Sometimes we prefer to return the element proceeding the one containing x. Then line 2 is replaced with
 while (p→next→key < x) p=p→next

inserting a key into a Sorted linked list

To insert 35 -
- p= find(35); // find the proceeding element – the next one is > 35
- CELL *$p1$ = (CELL *) malloc(sizeof(CELL));
- $p1$→key=35;
- $p1$→next = p→next;
- p→next = $p1$;
Deleting a key from a sorted list

- To delete 37 -
- \(p = \text{find}(37); \) // Again find proceeding element
- \(\text{CELL } *p1 = p \rightarrow \text{next}; \)
- \(p \rightarrow \text{next} = p1 \rightarrow \text{next} \)
- free(\(p1 \));

SKIP LIST - A data structure for maintaining keys in a sorted order

Rules:
- Consists of several levels.
- All keys appear in level 1
- Each level is a sorted list.
- If key \(x \) appears in level \(i \), then it also appears in all levels below level \(i \)
- First element in each level has key -\(\infty \).
- Last element has key +\(\infty \)
- First element in upper level is pointed to by variable \(\text{top} \).

Level 3
- \(-\infty \rightarrow 37 \rightarrow 71 \rightarrow 85 \rightarrow 117 \rightarrow \infty \)

Level 2
- \(-\infty \rightarrow 7 \rightarrow 21 \rightarrow 37 \rightarrow 71 \rightarrow \infty \)

Level 1
- \(-\infty \rightarrow 7 \rightarrow 14 \rightarrow 21 \rightarrow 32 \rightarrow 37 \rightarrow 71 \rightarrow 85 \rightarrow 117 \rightarrow \infty \)

next-pointer

down-pointer
More rules

- An element in level $i > 1$ points (via down pointer) to the element with the same key in the level below.
- Elements in the lowest level have $\text{down-pointer} = \text{NULL}$
- Also maintain a counter specifying the number of levels.

An empty SkipList
Finding an element with key x

- $p=top$;
- while(1) {
 - while ($p\rightarrow next\rightarrow key \leq x$) $p=p\rightarrow next$;
 - if ($p\rightarrow down == NULL$) return p
 - $p=p\rightarrow down$;
- }

If the key x is in SL, we return a pointer to the lowest element contain x. If x is not in SL, return pointer to lowest predecessor.

A “perfect” SkipList

A SL is Perfect if between every two consecutive keys of level i there is exactly one key of level $i-1$.

Scheme for creation a well-performing SL

- Start from Level 1 (lowest level)
- For $i=2,3...$
 - Generation of Level i: }
 - we scan the keys in level $i-1$.
 - Each second key is “promoted” to participate in level i as well.
 - }

Most SL as re not perfect. Hard to maintain
Search in a “perfect” SkipList

Another example

\[p = \text{top} ; \]
while(1){
 while ((p\(\rightarrow\)next\(\rightarrow\)key \leq x) \[p=p\(\rightarrow\)next; \]
 if (p\(\rightarrow\)down == NULL) \text{return} p \]
 p=p\(\rightarrow\)down ; \}

Inserting new element \(x \)
\((\text{the resulting SL will not be perfect}) \)

- Determine \(k \geq 1 \) defined as the number of levels in which \(x \) participates (explained later how)
- Perform \(\text{find}(x) \), but once the search path is in one of the lowest \(k \) levels:
 - \(x \) is inserted after the elements at which the search path branches down or terminates.
 - The next-pointer behave like a “standard” linked list.
 - The down pointer(s) point between themselves.

Example - inserting 119. \(k=2 \)
Inserting an element - cont.

- If k is larger than the current number of levels, add new levels (and update top, and num_of_levels counter)
- Example - insert(119) when $k=4$
- Heuristic: Add at most one new level (not needed for the analysis)

Determining k

- k - the number of levels at which an element x participate.
- Use a random function $OurRnd()$ --- returns 1 or 0 (True/False) with equal probability.
 - $k=1$;
 - $While (OurRnd()==1) k++ ;$
Deleteing a key \(x \)

- Find \(x \) in all the levels it participates, using `find(x)`.
- During the “find”, delete \(x \) from each level it participates using the standard “delete from a linked list” method.
- If one or more of the upper levels become empty, remove them (and update `top` and `num_of_levels`)

```
Level 1: -∞, 7, 14, 21, 32, 37, 71, ∞
Level 2: -∞, 7, 21, 37, 71, ∞
Level 3: -∞, 21, 37, 71, ∞
```

```
Top -∞ -∞ -∞
```

```
delete(71)
```

```
next-pointer
```

```
down-pointer
```

“expected” space requirement

- **Claim**: The expected number of elements is \(O(n) \).

- The term “expected” here refers to the experiments we do while tossing the coin (or calling `OurRnd()`). No assumption about input distribution.

- So imagine a given set, given set of operations insert/del/find, but we repeat many time the experiments of constructing the SL, and count the #elements.
Facts about SL

- **Def:** The *height* of the SL is the number of levels
- **Claim:** The expected number of levels is $O(\log n)$
 - (here n is the number of keys)
- "*Proof*" (*A rigorous proof coming later*)
 - The number of elements participate in the lowest level is n.
 - Since the probability of an element to participates in level 2 is $\frac{1}{2}$, the expected number of elements in level 2 is $n/2$.
 - Since the probability of an element to participates in level 3 is $1/4$, the expected number of elements in level 3 is $n/4$.
 - ...
 - The probability of an element to participate in level j is $(1/2)^{j-1}$
 - so number of elements in this level is $n/2^{j-1}$
 - So after $\log(n)$ levels, no element is left.

Facts about SL

- **Claim:** The expected number of elements is $O(n)$.
 - (here n is the number of keys)
- "*Proof*" (Real proof – later)
 - The total number of elements is $n + n/2 + n/4 + n/8 ... \leq n(1 + 1/2 + 1/4 + 1/8 ...) = 2n$. *QED*

And a real proof. Let $x_{i,j}$ denote a random variable which is 1 if key k_i participates in level l, and $x_{i,j} = 0$ if this key does not participate in this level.

The number of elements in the SL is clearly $\sum_{i=1}^{n} \sum_{l=1}^{\text{MaxLevel}} x_{i,l}$

Remember that the probability of a key to make it to level l' is $\frac{1}{2^{l'-1}}$.

The expected number of elements is

$$E\left(\sum_{i=1}^{n} \sum_{l=1}^{\text{MaxLevel}} x_{i,l}\right) = \sum_{i=1}^{n} \sum_{l=1}^{\text{MaxLevel}} E(x_{i,l}) = \sum_{i=1}^{n} \sum_{l=1}^{\text{MaxLevel}} Pr(x_{i,l} = 1) = \sum_{i=1}^{n} \sum_{l=1}^{\text{MaxLevel}} \frac{1}{2^{l'-1}} \leq \sum_{i=1}^{n} 2 = 2n$$

To reduce the worst case scenario, we verify during insertion that k (the number of levels that an element participates) in is $\log n$

"Conclusion": The expected storage is $O(n)$
Thm: The expected time for find/insert/delete is $O(\log n)$

Proof For all Insert and Delete, the time is \leq the expected number of elements scanned during find(x) operation.

Will show: Need to scan expected $O(\log n)$ elements.

Thm: Expected time for `find` operation is $O(\log n)$

Proof – we know that there are $O(\log n)$ levels. Will show that we spend $O(1)$ time in each level.

- Assume during find(x), we scanned t elements, (for $t > 8$) in level r. Assume first that r is not the upper level.
 - (the search visited b, branched down to b_1 and then visited $b_2...b_8$
 (not sure what happened before or after)

Level $r+1$: $b \xrightarrow{} c > x$
Level r: $b_1 \xrightarrow{} b_2 \xrightarrow{} b_3 \xrightarrow{} b_4 \xrightarrow{} b_5 \xrightarrow{} b_6 \xrightarrow{} b_7 \xrightarrow{} b_8 \leq x$

All smaller than x
None of these 7 elements reached level $r+1$ (why?)

The probability that none of these 7 elements reached level $r+1$ is $1/2^7$. For larger value of 7 – very slim.
Bounding time for insert/delete/find

- Putting it together: The expected number of elements scanned in each level is $O(1)$
- There are $O(\log n)$ levels
- Total time is $O(\log n)$
- As stated, getting bounds for time for insert/delete are similar

How likely is it to see a ``too-tall” SL?

- We will prove a bound on the height. Similar bounds could be proven for similar properties.
- The question what is ``too-tall” is up to the user.
- Of course, the larger n is, the more level we expect to see. So lets ask the user to pick a value Z.
- We will compute the how likely is it that the the number of levels is at least $Z \log_2 n$, where $Z=1,2,3...$

That is, we estimate the probability that the height of the SL is

- $\log_2 n$
- $2 \log_2 n$
- $3 \log_2 n$
- $4 \log_2 n$
- ...
Reminder from probability

- Assume that \(A, B \) are two events. Let
 - \(\Pr(A) \) be the probability that \(A \) happens,
 - \(\Pr(B) \) be the probability that \(B \) happens,
 - \(\Pr(A \cup B) \) is the probability that either event \(A \) happens or event \(B \) happens (or both).

- So probably that at least one of them happened is
 \[
 \Pr(A) + \Pr(B) - \Pr(A \cap B) \leq \Pr(A) + \Pr(B)
 \]

Similarly, for 3 Events \(A_1, A_2, A_3 \). The probability that at least one of them happens

\[
\Pr(A_1 \cup A_2 \cup A_3) \leq \Pr(A_1) + \Pr(A_2) + \Pr(A_3)
\]

Example: In a roulette, the result is a number \(k \) between 1..38

- Event \(A \): \(k \) is even. \(\Pr(A) = \Pr(\text{is even}) = 19/38 = 0.5 \)
- Event \(B \): \(k \) is divided by 3. \(\Pr(B) = 12/38 = 0.315 \)
- \(\Pr(A \text{ or } B) = \Pr(A \cup B) = \Pr(\text{k is divided by 2) or (k is divided by 3}) \leq 0.5 + 0.315 = 0.815 \)

Pick your favorite number \(k \).

What is the probability that the SL has >\(k \) levels ? \(\text{Answer: } \leq n/2^k \)

\[
\Pr(\text{height of the SkipList } \geq k) = \Pr\{ (x_1 \text{ participates in more than } k \text{ levels }) \text{ OR } (x_2 \text{ participates in more than } k \text{ levels }) \text{ OR } (x_3 \text{ participates in more than } k \text{ levels }) \text{ OR } \ldots \text{ OR } (x_i \text{ participates in more than } k \text{ levels }) \}
\]

\[
\leq \Pr(\text{x_1 participates in more than } k \text{ levels }) + 1/2^k + \Pr(\text{x_2 participates in more than } k \text{ levels }) + 1/2^k + \Pr(\text{x_3 participates in more than } k \text{ levels }) + 1/2^k + \ldots + \Pr(x_n \text{ participates in more than } k \text{ levels }) = n/2^k
\]
But how likely is that the SL is too tall?

- Assume the keys in the SL are \(\{x_1, x_2, ..., x_n\} \).
- The probability that \(x_1 \) participates in \(\geq k+1 \) levels is \(2^{-k} \).
- (same probability for all \(x_i \)).
- Define: \(A_1 \) is the event that \(x_1 \) participates in \(\geq k+1 \) levels.
- \(\Pr(A_1) = 2^{-k} \).
- Define: \(A_j \) is the event that \(x_j \) participates in \(\geq k+1 \) levels.
- \(\Pr(A_j) = 2^{-k} \) (for every \(j \)).
- If the height of SL \(\geq k+1 \) then at least one of the \(x_j \) participates in \(\geq k+1 \) levels.
- The probability that any \(x_i \) (one or more) participates in \(\geq k+1 \) levels is \(\leq \Pr(A_1) + \Pr(A_2) + ... + \Pr(A_n) = n \times 2^{-k} \).
- This is the probability that the height of the SL is \(\geq k+1 \).

But how likely is that the SL is tall?

- The probability that any \(x_i \) participates in at least \(k \) levels is \(\leq n \times 2^{-k} \). Then the height of the SL \(\geq k+1 \).
- Ignore the `+1`
- If none of the \(x_i \)'s is at level \(\geq k \) then the height is \(\leq k \).
- Recall \(y^{(ab)} = (y^a)^b = (y^b)^a \).
- \(2^{\log_2 n} = n \) and \(2^{5 \times \log_2 n} = (n)^5 \).
- Write \(k = Z \log_2 n \), and \(2^{5 \times \log_2 n} = (n)^5 \).
- Want to find: The probability that the height is \(Z \) times \(\log_2 n \).
- That is, Twice \(\log_2 n \), 3 times \(\log_2 n \), 4 times \(\log_2 n \)...
So how likely is it that the height of SL is $> \log n$?

- The probability that any x_i participates in $> k$ levels is $\leq \frac{n}{2^k}$.
- If none of the x_i's is at level $\geq k$ then the height is $\leq k$.
- Recall $2^{(ab)} = (2^a)^b = (2^b)^a$.
- Write $k = (\log n)Z$.
- Therefore $2^k = 2^{(\log_2 n)Z} = (2^{\log_2 n})^Z = n^Z$.
- So the probability of seeing a SkipList with more than $Z \log n$ levels is $\leq \frac{n}{2^k} = \frac{n}{n^Z} = \frac{1}{n^{Z-1}}$.
- Let's play with some examples, to see if this is good news or bad news.
- Let's pick $n=1000$.
 - The probability that the height $> 7 \log_2 n$ is $\leq 1/1000^6 = 1/10^{18}$.
 - So the probability that the height $\leq 7 \log_2 n$ is $\geq 1 - 1/10^{18}$.
 - The probability that the height $< 10 \log_2 n$ is $\geq 1 - 1/10^{27}$.
- Conclusion: In this case (and in many other randomized algorithms) the probability of success is so high, that practically we can ignore it (higher chance of a lighting strike).

But how likely is that the SL is tall?

- The probability that any x_i participates in at least k levels is $\leq n2^{-k}$. Then the height of the SL $\geq k+1$.
- Want to find: The probability that the height is Z times $\log_2 n$.
 - Twice $\log_2 n$, 3 time $\log_2 n$, 4 times $\log_2 n$...
 - Then $2^k = 2^{(Z \log n)} = (2^{\log n})^Z = n^Z = 1/n^Z$.
 - So $n2^{-k} \leq n / n^Z = 1/n^{Z-1}$.
 - This is the probability that the height of SL $\geq Z \log_2 n$.
- Example: $n=1000$.
 - The probability that the height $\geq 7 \log_2 n$ is $\leq 1/1000^6 = 1/10^{18}$.
 - The probability that the height $< 7 \log_2 n$ is $\geq 1 - 1/10^{18}$.
 - The probability that the height $< 10 \log_2 n$ is $\geq 1 - 1/10^{27}$.