Shortest Paths in Graphs

Bellman-Ford Algorithm

Slides courtesy of Erik Demaine and Carola Wenk

Negative-weight cycles

Recall: If a graph \(G = (V, E) \) contains a negative-weight cycle, then some shortest paths may not exist.

Example:

\[
\begin{array}{c}
\text{u} \\
\text{< 0} \\
\text{v}
\end{array}
\]

Bellman-Ford algorithm: Finds all shortest-path lengths from a source \(s \in V \) to all \(v \in V \) or determines that a negative-weight cycle exists.

Bellman-Ford and Undirected Graphs

Bellman-Ford algorithm is designed for directed graphs.

If \(G \) is undirected, replace every edge \((u, v)\) with two directed edges \((u, v)\) and \((v, u)\), both with weight \(w(u, v) \)

Bellman-Ford algorithm

\[
\begin{align*}
d[s] &\leftarrow 0 \\
\text{for each } v \in V - \{s\} &\text{ do } d[v] \leftarrow \infty
\end{align*}
\]

initialization

\[
\begin{align*}
\text{for } i &\leftarrow 1 \text{ to } |V| - 1 \text{ do} \\
\text{for each edge } (u, v) &\in E \text{ do} \\
\text{if } d[v] > d[u] + w(u, v) &\text{ then } \\
\quad d[v] &\leftarrow d[u] + w(u, v) \\
\quad \pi[v] &\leftarrow u
\end{align*}
\]

relaxation step

for each edge \((u, v)\) \(\in E\)

\[
\text{if } d[v] > d[u] + w(u, v) \quad \text{then } \text{report that a negative-weight cycle exists}
\]

At the end, \(d[v] = \delta(s, v) \). Time = \(O(|V| |E|) \).

Example of Bellman-Ford

Order of edges: \((B, E), (D, B), (B, D), (A, B), (A, C), (D, C), (B, C), (E, D)\)

Example of Bellman-Ford

Order of edges: \((B, E), (D, B), (B, D), (A, B), (A, C), (D, C), (B, C), (E, D)\)
Example of Bellman-Ford

Order of edges: (B,E), (D,B), (B,D), (A,B), (A,C), (D,C), (B,C), (E,D)

\[
\begin{array}{cccccc}
& A & B & C & D & E \\
0 & 0 & \infty & \infty & \infty & \infty \\
0 & -1 & \infty & \infty & \infty & \infty \\
0 & -1 & 4 & \infty & \infty & \infty \\
0 & -1 & 2 & \infty & 1 & 1 \\
\end{array}
\]
Correctness

Theorem. If \(G = (V, E) \) contains no negative-weight cycles, then after the Bellman-Ford algorithm executes, \(d[v] = \delta(s, v) \) for all \(v \in V \).

Proof. Let \(v \in V \) be any vertex, and consider a shortest path \(p \) from \(s \) to \(v \) with the minimum number of edges.

\[
p: s \rightarrow v_1 \rightarrow \cdots \rightarrow v_k \rightarrow v
\]

Since \(p \) is a shortest path, we have
\[
\delta(s, v) = \delta(s, v_{i-1}) + w(v_{i-1}, v) \quad \text{for every } i.
\]

Correctness (continued)

Let \(p \) be the shortest path from \(s \) to a vertex \(v \). Let's re-label the vertices along \(p \) so \(s=v_0, v_1, \ldots, v_k=v \).

Note that (a portion of) \(p \) is also the shortest path to each \(v_i \) since \(G \) contains no negative-weight cycles, \(p \) is simple. The shortest simple path has \(|V| - 1\) edges.

Detection of negative-weight cycles

Corollary. If a value \(d[v] \) fails to converge after \(|V| - 1 \) passes, there exists a negative-weight cycle in \(G \) reachable from \(s \).

DAG shortest paths

If the graph is a directed acyclic graph (DAG), we first topologically sort the vertices, (give \(l(v) \) to each vertex \(v \) such that \((u, v) \) vertex such that \(l(u) < l(v) \) for every edge \((u, v) \). (e.g. use Kuhn Algorithm).

To find shortest path from \(s \) to \(v \):
- Init as Bellman-Ford.
- Walk through the vertices in topological order. For every vertex \(v \) relaxing the edges in \(Adj[v] \)

\[
d[v] = \min(d[w] + \text{weight}(v, w))
\]

Thereby obtaining the shortest paths from \(s \) in a total of \(O(V + E) \) time. Homework: Prove correctness.

Homework:
- Thereby obtaining the shortest paths from \(s \) in a total of \(O(V + E) \) time. (prove correctness.)
Topological sorting of a graph.

- Given a DAG $G(V,E)$
- Output: A topological order. It should label each vertex v in V with a unique number $\text{lbl}[v]$ such that
- If (u,v) is in E then $\text{lbl}[u] < \text{lbl}[v]$.

InDegree – definition:

- For every vertex v, we store $\text{InDegree}(v, E)$, a number specifying how many edges "enter" v.

Kahn algorithm for finding a topological order in a DAG:

1. L ← Empty list that will contain the sorted elements
2. S ← Set of all nodes currently with no incoming edge in E.
3. $\text{cnt} = 0$; $\text{lbl}(v) =$ NULL for every vertex v
4. While S is non-empty
 a. remove a node u from S
 b. add u to tail of L
 c. $\text{lbl}(u) =$ cnt; $\text{cnt}++$
 d. for each node v with an edge (u,v) in E (each nbr of u)
 i. remove (u,v) from E
 ii. $\text{InDegree}(v) = \text{InDegree}(v) - 1$
 e. if v has no other incoming edges then insert v into S
5. If E is not empty, there are cycles.