CS 445

Shortest Paths in Graphs
Bellman-Ford Algorithm

Slides courtesy of Erik Demaine and Carola Wenk

Paths in graphs

Consider a digraph G = (V, E) with edge-weight
function w : £ — R. The weight of path
pP=V =V, > is defined to be

Z w vz 1, Uz
Example:

2 =
0 G e 0 w(p) =2

Shortest paths

A shortest path from u to v is a path of
minimum weight from u to v. The shortest-
path weight from u to v is defined as

O(u, v) = min{w(p) : p is a path from u to v}.

Also called distance of u from v

(note — this has nothing to do with the
algorithm computing the distance)

Note: 6(u, v) = « if no path from u to v exists.

Optimal substructure

Theorem. A subpath of a shortest path is a
shortest path.

Proof. Cut and paste:

OnOa®n®s0n0

~
~ -
Nt —— -

Important: This simple principle will be useful for all
the Dynamic programming (and in particular, all
Shortest Paths) problems

Triangle inequality
Theorem. Forall u, v, x € I/, we have
Proof O(u, v) = 0(u, x) + 0(x, v).
o(u, v)

O(u, x)

Note: This does not imply that
w(u,v) = w(u,x)+w(x,v)

Negative-weight cycles

Recall: If a graph G = (V, E) contains a negative-weight cycle, then some shortest paths may
not exist.

Example:
<0

O—O—T—Q

Bellman-Ford algorithm: Finds all shortest-path lengths from a source s € V'to all v €
J/ or determines that a negative-weight cycle exists.

Bellman-Ford and Undirected
graphs

Bellman-Ford algorithm is designed for directed
graphs.

If G is undirected, replace every edge (u,v) with two directed edges (u,v) and
(v,u), both with weight w(u,v)

Bellman-Ford algorithm

d[s] <0 o
for cachvE JV — {S} } initialization
do d[v] <= «
fori< 1to|V| - 1do
for each edge (1, v) € E do
if d[v] > d[u] +w(u, v) then relaxation step
d[v] < dlu] + w(u, v)
n[v]<—u }
for each edge (v, v) E E
do if d[v] > d[u] + w(u, v)
then report that a negative-weight cycle exists

At the end, d[v] = d(s, v). Time = O(|V] |E|).

Example of Bellman-Ford

Order of edges: (B,E), (D,B), (B,D), (4,B), (4,C), (D,C), (B,C), (E,D)
* 4 B C D E

Example of Bellman-Ford

Order of edges: (B,E), (D,B), (B,D), (4,B), (4,C), (D,C), (B,C), (E,D)
-1 4 B C D E

Example of Bellman-Ford
Order of edges: (B,E), (D,B), (B,D), (4,B), (4,C), (D,C), (B,C), (E,D)

Example of Bellman-Ford

Order of edges: (B,E), (D,B), (B,D), (4,B), (4,C), (D,C), (B,C), (E,D)
-1 4 B C D E

Example of Bellman-Ford Example of Bellman-Ford
Order of edges: (B,E), (D,B), (B.D), (4,B), (4,C), (D,C), (B,C), (E,.D) Order of edges: (B,E), (D,B), (B.D), (4,B), (4,C), (D,C), (B,C), (E,D)
* 4 B C D E -1 4 B C D E
0 * «© *© *© 0 © * *® *
0 -1 © © *© 0 -1 * *° ®
o -1 4 © o -1 4 o
0 -1 2 *° o 0 -1 2 % *°
0 -1 2 *® 1
Example of Bellman-Ford Example of Bellman-Ford
Order of edges: (B,E), (D,B), (B.D), (4,B), (4.C), (D,C), (B,C), (E.D) Order of edges: (B,E), (D,B), (B.D), (4,B), (4,.C), (D,C), (B,C), (E.D)
-1 4 B C D E -1 4 B C D E
0 * *® *® *® 0 *® * *® *®
0 -1 *® *® *® 0 -1 * *® *®
0 4 e @ 0 14 »
0 -1 2 © *© 0 -1 2 *° ®
0 -1 2 *® 1 0 -1 2 *® 1
0 -1 2 1 1 0 -1 2 1 1
0 -1 2 -2 1

Example of Bellman-Ford Correctness

Order of edges: (B,E), (D,B), (B,D), (A,B), (A, C), (D, C), (B, C), (E,D) Recall 8(s, v) is the length of a shortest path from s to v.
-1 4 B C D E

Lemma If G = (V, E) contains no negative-weight cycles, then during BF-algorithm

0 * «© *© *© d[v] =0(s, v), for every vertex v, forall veE V.

0 —1 00 0 00 Proof Sketch: d[v] is either co, or is the length of some path s — v. 8(s, v) is the length
of the shortest such path.

o -1 4 =®

0 -1 2 *° %

0 -1 2 *© 1

Note: Values decrease monotonically. 0 -1 2 -2 1

Correctness (continued) Detection of negative-weight cycles

Corollary. Ifa value d[v] fails to converge after | /| — 1 passes, there exists a negative-
weight cycle in G reachable from s.

* Let p be the shortest path from s to a vertex v. Lets re-label the vertices along p so s = v,,. The next
vertex along this path will be labeled v,, the next is v, and so on. The new “name” of v is v, I:l

« Note that any portion of p is also the shortest path to each v,
« Initially, d[v;] = 0 = 6(s, v,), and d[s] is unchanged by subsequent relaxations (note that 6(s, s) =0

(why ?)).

« After 1 pass through £, we have d[v,[=0(s, v)) = w(s,v,) .
« After 2 passes through £, we have
dlv,] =d[v Jtw(v, v,)) =wls,v)tw(v, v,) = 8(s, v,).

« After k passes through £, we have d[v,] = (s, v)).

Since G contains no negative-weight cycles, p is simple. E’ngest
simple path has < | /| — 1 edges.

DAG shortest paths

If the graph is a directed acyclic graph (DAG), we first

topologically sort the vertices.

* Determine /: J — {1, 2, ...,
= f(u) <f().

* O(V + E) time using depth-first search.

7|} such that (i, v) € E

Walk through the vertices z € J/ in this order, relaxing

the edges in Adj[u], thereby obtaining the shortest paths
from s in a total of O(V + E) time.

