CS 445

Shortest Paths in Graphs Bellman-Ford Algorithm

Slides courtesy of Erik Demaine and Carola Wenk

Paths in graphs

Consider a digraph G = (V, E) with edge-weight function $w : E \to \mathbb{R}$. The **weight** of path $p = v_1 \to v_2 \to \dots \to v_k$ is defined to be

$$w(P) = \sum_{i=2}^{k} w(v_{i-1}, v_i)$$

Example:

Shortest paths

A *shortest path* from u to v is a path of minimum weight from u to v. The *shortest-path weight* from u to v is defined as

 $\delta(u, v) = \min\{w(p) : p \text{ is a path from } u \text{ to } v\}.$

Also called *distance* of *u* from *v*

(note – this has nothing to do with the algorithm computing the distance)

Note: $\delta(u, v) = \infty$ if no path from u to v exists.

Optimal substructure

Theorem. A subpath of a shortest path is a shortest path.

Proof. Cut and paste:

Important: This simple principle will be useful for all the Dynamic programming (and in particular, all Shortest Paths) problems

Triangle inequality

Theorem. For all $u, v, x \in V$, we have $\delta(u, v) \le \delta(u, x) + \delta(x, v)$.

Proof.

Note: This does not imply that

Negative-weight cycles

Recall: If a graph G = (V, E) contains a negative-weight cycle, then some shortest paths may

Example:

Bellman-Ford algorithm: Finds all shortest-path lengths from a **source** $s \in V$ to all $v \in V$ V or determines that a negative-weight cycle exists.

Bellman-Ford and Undirected graphs

Bellman-Ford algorithm is designed for **directed** graphs.

If G is undirected, replace every edge (u,v) with two directed edges (u,v) and (v,u), both with weight w(u,v)

Bellman-Ford algorithm

$$d[s] \leftarrow 0$$
for each $v \in V - \{s\}$

$$do d[v] \leftarrow \infty$$
initialization

for
$$i \leftarrow 1$$
 to $|V| - 1$ do
for each edge $(u, v) \in E$ do
if $d[v] > d[u] + w(u, v)$ then
 $d[v] \leftarrow d[u] + w(u, v)$
 $\pi[v] \leftarrow u$

for each edge
$$(u, v) \in E$$

do if $d[v] > d[u] + w(u, v)$

then report that a negative-weight cycle exists

At the end, $d[v] = \delta(s, v)$. Time = O(|V||E|).

Example of Bellman-Ford

Order of edges: (B,E), (D,B), (B,D), (A,B), (A,C), (D,C), (B,C), (E,D)

A	В	C	D	E
0	∞	∞	∞	∞

Example of Bellman-Ford

Order of edges: (B,E), (D,B), (B,D), (A,B), (A,C), (D,C), (B,C), (E,D)

A	В	C	D	E	
0	∞	∞	∞	∞	_
0	-1	∞	∞	∞	

Example of Bellman-Ford

Order of edges: (B,E), (D,B), (B,D), (A,B), (A,C), (D,C), (B,C), (E,D)

Example of Bellman-Ford

Order of edges: (B,E), (D,B), (B,D), (A,B), (A,C), (D,C), (B,C), (E,D)

Example of Bellman-Ford

Order of edges: (B,E), (D,B), (B,D), (A,B), (A,C), (D,C), (B,C), (E,D)

A	В	C	D	E
0	∞	∞	∞	∞
0	-1	∞	∞	∞
0	-1	4	∞	∞
0	-1	2	∞	∞

Example of Bellman-Ford

Order of edges: (B,E), (D,B), (B,D), (A,B), (A,C), (D,C), (B,C), (E,D)

A	В	C	D	E
0	∞	∞	∞	∞
0	-1	∞	∞	∞
0	-1	4	∞	∞
0	-1	2	∞	∞
0	-1	2	∞	1

Example of Bellman-Ford

Order of edges: (B,E), (D,B), (B,D), (A,B), (A,C), (D,C), (B,C), (E,D)

A	В	C	D	E
0	∞	∞	∞	∞
0	-1	∞	∞	∞
0	-1	4	∞	∞
0	-1	2	∞	∞
0	-1	2	∞	1
0	-1	2	1	1

Example of Bellman-Ford

Order of edges: (B,E), (D,B), (B,D), (A,B), (A,C), (D,C), (B,C), (E,D)

A	В	C	D	E
0	∞	∞	∞	∞
0	-1	∞	∞	∞
0	-1	4	∞	∞
0	-1	2	∞	∞
0	-1	2	∞	1
0	-1	2	1	1
0	-1	2	-2	1

Example of Bellman-Ford

Note: Values decrease monotonically.

A	В	C	D	E
0	∞	∞	∞	∞
0	-1	∞	∞	∞
0	-1	4	∞	∞
0	-1	2	∞	∞
0	-1	2	∞	1
0	-1	2	1	1
0	-1	2	-2	1

Order of edges: (B,E), (D,B), (B,D), (A,B), (A,C), (D,C), (B,C), (E,D)

-1	A	B	C	D	E
B 2	0	∞	∞	∞	∞
	0	-1	∞	∞	∞
$\int \left(5 \right)^2$	0	-1	4	∞	∞
-3	0	-1	2	∞	∞
5 D	0	-1	2	∞	1
-2	0	-1	2	1	1

Correctness

Recall $\delta(s, v)$ is the length of a shortest path from s to v.

Lemma If G = (V, E) contains no negative-weight cycles, then during BF-algorithm $d[v] \ge \delta(s, v)$, for every vertex v, for all $v \in V$.

Proof Sketch: d[v] is either ∞ , or is the length of some path $s \to v$. $\delta(s, v)$ is the length of the shortest such path.

Correctness (continued)

- Let p be the shortest path from s to a vertex v. Lets re-label the vertices along p so $s = v_0$. The next vertex along this path will be labeled v_1 , the next is v_2 and so on. The new "name" of v is v_k
- Note that any portion of p is also the shortest path to each v_i
- Initially, $d[v_0] = 0 = \delta(s, v_0)$, and d[s] is unchanged by subsequent relaxations (note that $\delta(s, s) \ge 0$ (why?)).
- After 1 pass through E, we have $d[v_1] = \delta(s, v_1) = w(s, v_1)$.
- After 2 passes through E, we have $d[v_2] = d[v_1] + w(v_1, v_2) = w(s, v_1) + w(v_1, v_2) = \delta(s, v_2).$
- After k passes through E, we have $d[v_k] = \delta(s, v_k)$.

Since G contains no negative-weight cycles, p is simple. Longest simple path has $\leq |V| - 1$ edges.

Detection of negative-weight cycles

Corollary. If a value d[v] fails to converge after |V|-1 passes, there exists a negativeweight cycle in G reachable from s.

DAG shortest paths

If the graph is a *directed acyclic graph* (*DAG*), we first *topologically sort* the vertices.

- Determine $f: V \to \{1, 2, ..., |V|\}$ such that $(u, v) \in E$ $\Rightarrow f(u) < f(v)$.
- O(V + E) time using depth-first search.

Walk through the vertices $u \in V$ in this order, relaxing the edges in Adj[u], thereby obtaining the shortest paths from s in a total of O(V + E) time.