
CS 445

Union/Find

Aka: Disjoint-set forest

Alon Efrat

Problem definition
Given: A set of atoms S={1,2…n}

	 E.g. each represents a commercial name of a drugs.

	 This set consists of different disjoint subsets.

	

	

Problem: suggest a data structures that efficiently supports two operations

•Find(i,j) – reports if the atom i and atom j belong to the same set.

•Union(i,j) – unify (merged) all elements of the set containing atom i with the set
containing j.

•Example – on the board.

Naïve attempts
Idea: Each element “knows” to which set it belongs

	 (recall – each element belongs to exactly one set)

Bad idea: once two sets are merged, we need to scan all elements of one set and
“tell” them that they belong to a different – lots of work if the set is large.

A Promising attempts
Idea: Store each set as a tree. Every node points to the parent

	 (different than standard trees)

Only the root “knows” the name of the set.

2

3

4

8

7

5 6

9

1

11

12
So the name of the set of {2,3,4,1} is
2.

The name of the set of {5,6,7,8} is 8.

The name of the set of {9} is 9.

The name of the set of {11,12} is 12.

1

A Promising attempts
Idea: Store each set as a tree. Every node points to the parent

	 (different than standard trees)

Only the root “knows” the name of the set.

2

3

4

8

7

5 6

9

1

11

12
So the name of the set of {2,3,4,1} is
2.

The name of the set of {5,6,7,8} is 8.

The name of the set of {9} is 9.

The name of the set of {11,12} is 12.

1

To find if two atoms belong to the same set, just check if they belong to same tree: Follow the
parent pointers from each of them up all the way to the root. Check if this is the same root.

Disjoint sets forests - cont

2

3

4

8

7

5 6

9

1

11

12

1

Find_root(j){

 If (p[j] ≠j) return Find_root(p[j]);

 /* p[j] - points to the parent */

 Else return j ; }

Find(i,j){

 just check if Find_root(i) == Find_root(j)

}

Union(i,j){

	 Let r = Find_root(j)

	 p[r]=i

}

Disjoint sets forests - cont

2

3

4

8

7

5 6

9

1

11

12

1

Find_root(j){

 If (p[j] ≠j) return Find_root(p[j]);

 /* p[j] - points to the parent */

 Else return j ; }

Find(i,j){

 just check if Find_root(i) == Find_root(j)

}

Union(i,j){

	 Let r = Find_root(j)

	 p[r]=i

}

Example – Union(5,11)

Disjoint sets forests - cont

2

3

4

8

7

5 6

9

1

11

12

1

Find_root(j){

 If (p[j] ≠j) return Find_root(p[j]);

 /* p[j] - points to the parent */

 Else return j ; }

Find(i,j){

 just check if Find_root(i) == Find_root(j)

}

Union(i,j){

	 Let r = Find_root(j)

	 p[r]=i

}

Example – Union(5,11)

It this efficient?
2

3

4

8

7

5 6

9

1

11

12

1

Time per operation depends on the height
of the tree. Can be linear in the worst case.

We want short trees.

Improved union operation – version 1

Union(i,j){

	 Let r = Find_root(j)

	 p[r]=Find_root(i)

 /* rather than p[r]= i ; */

}

It this efficient?
2

3

4

8

7

5 6

9

1

11

12

1

Time per operation depends on the height
of the tree. Can be linear in the worst case.

We want short trees.

Improved union operation – version 1

Union(i,j){

	 Let r = Find_root(j)

	 p[r]=Find_root(i)

 /* rather than p[r]= i ; */

}

Note that we can also do

It this efficient?
2

3

4

8

7

5 6

9

1

11

12

1

Time per operation depends on the height
of the tree. Can be linear in the worst case.

We want short trees.

Improved union operation – version 1

Union(i,j){

	 Let r = Find_root(j)

	 p[r]=Find_root(i)

 /* rather than p[r]= i ; */

}

Note that we can also do

Union(i,j){

	 Let r = Find_root(i)

	 p[r]=Find_root(j)

}

Keeping tracks of # nodes
2

3

4

8

7

5 6

9

1

11

12

1

Every root (only roots) stores the number
of nodes in its tree

Let r.n denote this field in the root r.

Union(i,j){

 Let r1 = Find_root(i); Let r2 = Find_root(j);

 /* connect the root of the small tree as a child of the root of 	 the larger tree */

 if (r1.n< r2.n) { p[r1]=r2 ; r2.n += r1.n ; }

 else { p[r2]=r1 ; r1.n += r2.n }

}

4 4
1 2

Keeping tracks of # nodes
2

3

4

8

7

5 6

9

1

11

12

1

Every root (only roots) stores the number
of nodes in its tree

Let r.n denote this field in the root r.

Union(i,j){

 Let r1 = Find_root(i); Let r2 = Find_root(j);

 /* connect the root of the small tree as a child of the root of 	 the larger tree */

 if (r1.n< r2.n) { p[r1]=r2 ; r2.n += r1.n ; }

 else { p[r2]=r1 ; r1.n += r2.n }

}

4 4
1 2

Example: Union(9,3)

Proving bounds on the height
Assume we start from a forest where each node is a singleton

(a set of one element), and we perform a sequence of union operations.

Lemma: The height of every tree is ≤ log2 n. (n – number of atoms)

Proof: Show by induction that every tree of height h has ≥ 2h nodes.

Assume true for every tree of height h’<h, and assume that after merging trees T1, T2, we
obtained a tree of height exactly h.

T1

T2

T2 has height exactly h-1, so it has ≥ 2h-1 nodes.

T1 must have more nodes (why ?) so it also has ≥ 2h-1 nodes

Together they have 2h-1 +2h-1 = 2h nodes.

h

Further improvement: path compression
So far we know that every tree has height O(log n), so this bounds the time for each operation.

Path compression: during either union or find operation, we scan a sequence of nodes on our
way from a node j to the root.

Idea: set the parent pointer of all these node to points to the root.

Find_root(j){

 If p[j] ≠ j then p[j]=Find_root(p[j]);

 return p[j]

}

Make sense – but how fast is it ?
Thm: Any sequence of m U/F operations takes on a set of n atoms takes O(m α(n)).

Here α(n) is the inverse function of Ackerman function, and is approaching infinity as n
approaching infinity.

However, it does it very slowly.

 α(n) <4 when n< 1080.

Minimum Spanning Tree

• Problem: given a connected, undirected, weighted graph . Each edge is assigned a positive
cost (weight):

• We say that a set spans the graph if between every two vertices there is a path (at least
one) consists of edges of F.

• The goal is to find such a subset that minimizes the sum of costs of its edges. Obviously, it is a tree (if
there is a cycle in F, then there is an edge that we can delete.

G(V, E)

F ⊆ E s, t ∈ V

14
10

3

6 4
5

2

9

15

8

Credit: David Luebke

Minimum Spanning Tree

• Each edge is a possible road or a link that we need to buy. Want to buy enough edges to
keep the network connected, but pay as little as possible.

• The resulting set of edges is called a Minimum Spanning Tree (MST).

• For simplicity of the analysis, lets assume that the MST is unique. Other we need to talk

(though the algorithm does not care if there is another spanning tree with the same cost)

14
10

3

6 4
5

2

9

15

8

Minimum Spanning Tree

• Which edges form the minimum spanning tree
(MST) of the below graph?

H B C

G E D

F

A

14
10

3

6 4
5

2

9

15

8

Minimum Spanning Tree

• Solution (heavy blue edges)

• Now, if we think about a river separating the city, and edges as potential bridges

crossing it, then the cheapest bridge will be used.

• (if we don’t use the cheapest bridge we either have now way to cross the city, we

we need to use a more expensive bridge)

H B C

G E D

F

A

14
10

3

6 4
5

2

9

15

8

San Fransisco Bay

A Theorem about the structures of MST.

Which edge is it safe to add?

• Let T denote the MST(G).

• In a typical step of the algorithm, there are some edges of T that we committed to so far. The form a forest of subtrees.

• Assume that are disjoint subtrees, and they are all included in T.

• Consider the set F all edges of E that connect two different subtrees. (in the figure, these are the red edges)

• Let be the cheapest edge in F.

Claim: is also in T

Proof: Assume that . Since MST(G) is connected, there is a path from in T . This path contain at least
one edge of F (since u and v are in different subtrees). Lets call this edge . If we add to we obtain a cycle C. (in
the example, this is the green cycle)

• Since is the cheapest edge in F, it follows that .

• Lets generate a new tree T’ from T, by adding to T, and then remove .

• It is easy to see that the cost of T’ is cheaper than the cost of T.

• It is a bit harder to see that T’ is still connected. Prove this claim (homework). Lets prove it for the vertices of .

• Assume is a pair of vertices of . We can still use them in T’, by using instead of (a,b).

• So T' still spans G (covers all vertices and connected), and is cheaper than T. QED

T1, T2 and T3

(u, v) ∈ F

(u, v)
(u, v) ∉ T π u ⇝ v

(a, b) (u, v) π

(u, v) cost((u, v)) < cost((a, b))
(u, v) (a, b)

π
x, y ∈ π x, y ∈ π (u, v)

T1

T2
T3u v

a b

3$

9$

5$

100$

101$
v

u

a b

Cx
y

3$

5$

A Theorem about the structures of MST.

Which edge is it safe to add?

• Let T denote the MST(G).

• In a typical step of the algorithm, there are some edges of T that we committed to so far. The form a forest of subtrees.

• Assume that are disjoint subtrees, and they are all included in T.

• Consider the set F all edges of E that connect two different subtrees. (in the figure, these are the red edges)

• Let be the cheapest edge in F.

Claim: is also in T

Proof: Assume that . Since MST(G) is connected, there is a path from in T . This path contain at least
one edge of F (since u and v are in different subtrees). Lets call this edge . If we add to we obtain a cycle C. (in
the example, this is the green cycle)

• Since is the cheapest edge in F, it follows that .

• Lets generate a new tree T’ from T, by adding to T, and then remove .

• It is easy to see that the cost of T’ is cheaper than the cost of T.

• It is a bit harder to see that T’ is still connected. Prove this claim (homework). Lets prove it for the vertices of .

• Assume is a pair of vertices of . We can still use them in T’, by using instead of (a,b).

• So T' still spans G (covers all vertices and connected), and is cheaper than T. QED

T1, T2 and T3

(u, v) ∈ F

(u, v)
(u, v) ∉ T π u ⇝ v

(a, b) (u, v) π

(u, v) cost((u, v)) < cost((a, b))
(u, v) (a, b)

π
x, y ∈ π x, y ∈ π (u, v)

T1

T2
T3u v

a b

3$

9$

5$

100$

101$
v

u

a b

Cx
y

3$

5$

A Theorem about the structures of MST.

Which edge is it safe to add?

• Let T denote the MST(G).

• In a typical step of the algorithm, there are some edges of T that we committed to so far. The form a forest of subtrees.

• Assume that are disjoint subtrees, and they are all included in T.

• Consider the set F all edges of E that connect two different subtrees. (in the figure, these are the red edges)

• Let be the cheapest edge in F.

Claim: is also in T

Proof: Assume that . Since MST(G) is connected, there is a path from in T . This path contain at least
one edge of F (since u and v are in different subtrees). Lets call this edge . If we add to we obtain a cycle C. (in
the example, this is the green cycle)

• Since is the cheapest edge in F, it follows that .

• Lets generate a new tree T’ from T, by adding to T, and then remove .

• It is easy to see that the cost of T’ is cheaper than the cost of T.

• It is a bit harder to see that T’ is still connected. Prove this claim (homework). Lets prove it for the vertices of .

• Assume is a pair of vertices of . We can still use them in T’, by using instead of (a,b).

• So T' still spans G (covers all vertices and connected), and is cheaper than T. QED

T1, T2 and T3

(u, v) ∈ F

(u, v)
(u, v) ∉ T π u ⇝ v

(a, b) (u, v) π

(u, v) cost((u, v)) < cost((a, b))
(u, v) (a, b)

π
x, y ∈ π x, y ∈ π (u, v)

T1

T2
T3u v

a b

3$

9$

5$

100$

101$
v

u

a b

Cx
y

3$

5$

A Theorem about the structures of MST.

Which edge is it safe to add?

• Let T denote the MST(G).

• In a typical step of the algorithm, there are some edges of T that we committed to so far. The form a forest of subtrees.

• Assume that are disjoint subtrees, and they are all included in T.

• Consider the set F all edges of E that connect two different subtrees. (in the figure, these are the red edges)

• Let be the cheapest edge in F.

Claim: is also in T

Proof: Assume that . Since MST(G) is connected, there is a path from in T . This path contain at least
one edge of F (since u and v are in different subtrees). Lets call this edge . If we add to we obtain a cycle C. (in
the example, this is the green cycle)

• Since is the cheapest edge in F, it follows that .

• Lets generate a new tree T’ from T, by adding to T, and then remove .

• It is easy to see that the cost of T’ is cheaper than the cost of T.

• It is a bit harder to see that T’ is still connected. Prove this claim (homework). Lets prove it for the vertices of .

• Assume is a pair of vertices of . We can still use them in T’, by using instead of (a,b).

• So T' still spans G (covers all vertices and connected), and is cheaper than T. QED

T1, T2 and T3

(u, v) ∈ F

(u, v)
(u, v) ∉ T π u ⇝ v

(a, b) (u, v) π

(u, v) cost((u, v)) < cost((a, b))
(u, v) (a, b)

π
x, y ∈ π x, y ∈ π (u, v)

T1

T2
T3u v

a b

3$

9$

5$

100$

101$
v

u

a b

Cx
y

3$

5$

Application of the theorem. Kruskal Algorithm

• Kruskal Algorithm builds greedily the set F of the edge of MST(G).

• We start when F is empty. At each step, we add an edge to F.

• When we start, F is empty. Each vertex is a tiny subset.

• The Theorem implies that the first edge that we add to F is the cheapest edge of the graph

14
10

3

6 4
5

2

9

15

8

Credit: David Luebke

Kruskal Algorithm - cont

• In a general step of the algorithm, the edges of F form several subtrees . We need to add the cheapest edge, as
long as it connects two different subtrees of F.

• Note that once is added to F, the two subtrees are merged into one subtree.

• Considering a the cheapest edge not used so far.

• We wonder if it should be added to F. If it connects two different subtrees - yes. If it connects two vertices of the same subtree -

pass.

• Note that once is added to F, the two subtrees are merged into one subtree.

• To answer this question, we will use the U/F data structure. The subsets are the vertices in each subtree.

• We will initialized it so each set contains a single vertex. (no edges in F yet)

• As the algorithm progress, each time that we add an edge , we perform Union of the vertices of the subtree and the

vertices of . This is easily done by the command Union(u,v).

• To check if belongs to the same subtree or different subtrees, perform Find(u,v)

• To find the next cheapest edge, just sort them from cheapest to most expensive

T1, T2, T3

(u, v)
(u, v)

(u, v)

F = ∅
(u, v) T1

T2

(u, v)

T1

T2
T3u v

a b

3$

9$

5$

101$

x

y
2$

Kruskal Algorithm - cont

• In a general step of the algorithm, the edges of F form several subtrees . We need to add the cheapest edge, as
long as it connects two different subtrees of F.

• Note that once is added to F, the two subtrees are merged into one subtree.

• Considering a the cheapest edge not used so far.

• We wonder if it should be added to F. If it connects two different subtrees - yes. If it connects two vertices of the same subtree -

pass.

• Note that once is added to F, the two subtrees are merged into one subtree.

• To answer this question, we will use the U/F data structure. The subsets are the vertices in each subtree.

• We will initialized it so each set contains a single vertex. (no edges in F yet)

• As the algorithm progress, each time that we add an edge , we perform Union of the vertices of the subtree and the

vertices of . This is easily done by the command Union(u,v).

• To check if belongs to the same subtree or different subtrees, perform Find(u,v)

• To find the next cheapest edge, just sort them from cheapest to most expensive

T1, T2, T3

(u, v)
(u, v)

(u, v)

F = ∅
(u, v) T1

T2

(u, v)

T1

T2
T3u v

a b

3$

9$

5$

101$

x

y
2$

Kruskal Algorithm - cont

• In a general step of the algorithm, the edges of F form several subtrees . We need to add the cheapest edge, as
long as it connects two different subtrees of F.

• Note that once is added to F, the two subtrees are merged into one subtree.

• Considering a the cheapest edge not used so far.

• We wonder if it should be added to F. If it connects two different subtrees - yes. If it connects two vertices of the same subtree -

pass.

• Note that once is added to F, the two subtrees are merged into one subtree.

• To answer this question, we will use the U/F data structure. The subsets are the vertices in each subtree.

• We will initialized it so each set contains a single vertex. (no edges in F yet)

• As the algorithm progress, each time that we add an edge , we perform Union of the vertices of the subtree and the

vertices of . This is easily done by the command Union(u,v).

• To check if belongs to the same subtree or different subtrees, perform Find(u,v)

• To find the next cheapest edge, just sort them from cheapest to most expensive

T1, T2, T3

(u, v)
(u, v)

(u, v)

F = ∅
(u, v) T1

T2

(u, v)

T1

T2
T3u v

a b

3$

9$

5$

101$

x

y
2$

The union of the

vertices of T1⋃T2

Application: Kruskal algorithm

Input: Graph G(V,E). Output: The set F of edges of the Minimal Spanning Tree for G.

Init: Set F=EmptySet. Init the U/F data structure where each vertex is its own set.
Loop: For each edge (u,v) (sorted from cheapest to most expensive) {

 Perform Find(u,v).

• If the answer is YES, then (u,v) connects vertices of the same

subtree. Ignore it and continue

• If the answer is NO, then {

A. Add (u,v) to F // it is an edge of MST(G).

B. Perform Union(u,v) // merge the vertices of the two subtrees

}

}

If E is sorted, then the time is O(|E| α(|E|))

If we need to sort E, then naively it is O(|E| log |E|)

