
CS 445

More LP and ILP. Applications to network flow,
graph problems and sensor placements

Alon Efrat

 Linear Programming (LP in dimension d with n constrains)
▪Linear programming problems are minimization problems where we need to calculate the

values of unknown . In addition

▪The cost function is a linear combination of these variables. We are given constant

and the goal is to minimize It is very easy to use dot product
notation - express is a vector (given to us). We need to minimize

, where is the vector of unknowns.

▪We are also given a set of n vectors , and constants . Each constrains

limits the possible locations of .

▪The constrains are

▪Geometrically, Fix some number i. The region of all the points in the d-dimensional
space, satisfies is a half-space in . The boundary of this region are all the
points for which .

▪The dimension d effects the running time much more than the number of contrails n

▪LP in high-dim is solved simplex algorithm (available in many libraries - CPLEX is

popular)

d (x1, x2, x3…xd)
c1…cd

min c1x1 + c2x2 + …cdxd .
⃗c = (c1, c2…cd)

⃗c ⋅ ⃗x = c1x1 + c2x2 + …cdxd ⃗x = (x1, x2…xd)
⃗a1, ⃗a2… ⃗an b1…bn

⃗x

⃗a1 ⋅ ⃗x ≤ b1

⃗a2 ⋅ ⃗x ≤ b2
⋮

⃗an ⋅ ⃗x ≤ bn x ∈ ℝd

⃗ai ⋅ ⃗x ≤ bi ℝd

x ∈ ℝd ⃗ai ⋅ ⃗x = bi

or, if you are familiar with
matrix notation, write it as

. A is a matrix
whose rows are
A ⋅ x ≤ b⃗

⃗a1… ⃗an

Integer Linear Programming (ILP in dimension d with n constrains)

▪ Linear programming problems are minimization problems where we need to calculate the values of unknown .
In addition

▪ The cost function is a linear combination of these variables. We are given constant and the goal is to minimize
 It is very easy to use dot product notation - express is a vector (given to us). We

need to minimize , where is the vector of unknowns.

▪ We are also given a set of n vectors , and constants . Each constrains limits the possible locations of .

▪ The constrains are

▪

▪We can add the constrains that the numbers must be integers. Then the problem

becomes an Integer Linear Programming (ILP) problems.

▪ which values of the computed variables must be integers are called Integer Linear

Programming (ILP) problems.

▪There is a huge number of problems that could be phrased as ILP.

	 (include many NP-hard problems, where no polynomial-time 	 algorithms

exist)

▪A few libraries could handle them, including CPLEX.

▪Running time could varies a lot, and could be extremely slow for some instances.

d (x1, x2, x3…xd)

c1…cd
min c1x1 + c2x2 + …cd xd . ⃗c = (c1, c2…cd)

⃗c ⋅ ⃗x = c1x1 + c2x2 + …cd xd ⃗x = (x1, x2…xd)
⃗a1, ⃗a2… ⃗an b1…bn ⃗x

⃗a1 ⋅ ⃗x ≤ b1

⃗a2 ⋅ ⃗x ≤ b2
⋮

⃗an ⋅ ⃗x ≤ bn

x1…xd

or, if you are familiar with
matrix notation, write it as

. A is a matrix
whose rows are
A ⋅ x ≤ b⃗

⃗a1… ⃗an

In the next slide, we are going to talk about
network flow problems. We will visit some
properties of max flow

We are not going to describe Ford-
Fulkeson algorithm.

The CLRS contains a chapter about
Network-Flow. We use only the definitions

Flow networks
Definition. A flow network is a directed graph G = (V, E) with two
distinguished vertices: a source s and a sink t. Each edge (u, v) ∈ E is given
with a nonnegative capacity c(u, v).

The values could specify the number of cars per minute on this road, or number
of Gbyte on this link

Example:

s t

3
2

3

3 2

2
3000

31

2

1

The 2 here mean “only two
gallons /minute on this pipe /
only 2 cars/second on this road.

Goal: Send as many cars/bytes/
gallons from s to t, without
violating the edges capacities,
and without violating the flow
conservation (coming next)

The total value of a flow
is the sum of the flow
flows out of the source:

In the example, the value
of the flow equals 1+2=3

Flow in Networks
Def: A solution to the flow network flow problem (or in short, the flow) is on G is a set of values (numbers) specific for every
edge . So for the example below, we need to specify the numbers

 These are the unknown that we need to compute.

 p(u,v) is the flow on the edge (u,v).If then p(u,v) is defined by is 0.

 To be a legal flow, these values must satisfy two sets of conditions:

• Capacity constraint: For all u, v ∈ V,

 0 ≤ p(u, v) ≤ c(u, v).

• Flow conservation: For all u ∈ V, which is not the source nor the sink //What comes in must go out.

•That is, every node is a memory-less router. It receives flow, and steer it to destinations.

p(u , v)
(u , v) ∈ E {p(s, d), p(s, b), p(d , c), p(g, b) . . . }

(u , v) ∉ E

0 ≤ p(u , v) ≤ c(u , v)

∑
vi∈V

p(vi, u) = ∑
vi∈V

p(u , vi)

.

s t

1:3
2:2

2:3

1:1 2:3 1:2

1:2
2:3000

1:3

2:2

 flow capacity

b

d c

g

∑
vi∈V

p(s, vi)

total flow into c

2+2. Total flow out: 1+1+2

Lemma

s t

1:3
2:2

2:3

1:1 2:3 1:2

1:2
2:3

1:3

2:2

positive flow capacity

∑
v∈V

p(s, v) = ∑
u∈V

p(v, t)

Lemma: The value of the flow equals to the sum of flows entering t

The maximum-flow problem

s t

2:3
2:2

2:3

1:1 2:3 1:2

2:2
3:3

0:3

2:2

The value of the maximum flow is 4.

Maximum-flow problem: Given a flow network G, find a flow of maximum value on G.

Maximize the value of
the (the net flow out of
the source)

LP could solve flow problems  
(but values might be non-integers)

Unknown variables: p(u, v), for all u, v ∈ V

Constrains:

• Capacity constraint: For all u, v ∈ V,

 0 ≤ p(u, v) ≤ c(u, v).

• Flow conservation: For all u ∈ V – {s, t}, p(u,v)
v∈V
∑ = p(v,u)

v∈V
∑

max p(s,v)
v∈V
∑ .

s t

1:3
2:2

2:3

1:1 2:3 1:2

1:2
2:3

1:3

2:2

 flow capacity

b

d d

g

Application: Bipartite Matching.

B

A graph G(V,E) is called bipartite if V can be partitioned into two
sets V=A∪B, and each edge of E connects a vertex of A to a vertex
of B. We sometimes denote these graphs by G(A∪B,E)

	 (we assume that the partition of V to A and B is given)

A matching is a set of edges M of E, where each vertex of A is
adjacent to at most one vertex of B, and vice versa.

A BA

Application: Max-Cardinality Bipartite Matching.

• Max-Cardinality matching Given A bipartite graph
G(A∪B ,E), find the largest subset M which is a
matching.

• A matching is a set of edges M of E, where each
vertex of A is adjacent to at most one vertex of B,
and vice versa.

• This problem could be solved with in O(nm) time
using Ford-Fulkerson algorithm. Faster algorithms
exist as well. However, we will use it as an
example to the ease of using ILP.

• This method fits well other variants of matching
problems

A B

ILP for Max-Cardinality Bipartite Matching.

• For every edge e, define a Boolean variable xe.

• xe =1 if e participates in M, and xe=0 otherwise.

• The goal is to maximize the number of edges in M,

while keeping M a proper matching.

A B

a1

e2

b2

b3

b4

In the example only one of the edges (a1, b1), (a1, b3) will be in M,
since x2+x3≤1

e3

e3 b1

Vertex Cover and ILP

• Given: A graph G(V,E). A subset is a vertex
cover if every edge we have either

• Finding the min-cardinality Vertex Cover is NP-Hard

• ILP for this problem: the variables are . All are

integers and between 0 and 1.

•

C ⊆ V
(u, v) ∈ E

u ∈ C or v ∈ C or both

x1…xn

vi ∈ C iff xi = 1 (for i = 1…n)
B

b4

b3

b5

e3

b1 b2 b3

b6

minimize
n

∑
i=1

xis.t.

xi + xj ≥ 1 ∀(vi, vj) ∈ E

Art Gallery - on the board

minimize
n

∑
i=1

xi

s.t.

 ∑

k∈Vis(i)

xk ≥ 1 ∀1 ≤ i ≤ n

• Given a polygon, find a subset of the vertices that sees every other vertex

• Let Vis(i) be the set of vertices that vertex i sees.

• For a vertex vi we set xi=1 if we place a guard at vi.

• As usual , xi are integers between 0 to 1.

Visibility in a polygon. The art Gallery Problem

 • Given - a polygon domain D, and a set
 of potential guards.

• Each potential guard sees some region
 of the polygon, but could not see

through walls.

• Formally, sees every point for which

the segment is fully in D.

• Art Gallery Problem - find the smallest

set of guards (all from P) that together
see the whole D.

• NP-hard (and extremely practical)

• the area (in

meters^2) that it sees.

• Budget Art-Gallery Problem: Given a

number (`budget’), find a set G of
guards from P, that sees together the
maximum area.

P = {p1…pn}
pi

Vis(pi)

pi q
pi q

μi = Area(Vis(pi))

k ≤ k

D

q

p1

p2

“Standard” Art Gallery:

Find the smallest set

s.t

Budget Art Galley:

Given k, find

Maximize

{g1, g2…gr} ⊆ P

D = Vis(g1) ∪ Vis(gi) ∪ . . Vis(gr)

{g1, g2…gk} ⊆ P

Area(Vis(g1) ∪ Vis(g2) ∪ . . Vis(gk))

Vis(p1)
pi , q

This is a set cover problem

Vis(p1)

p1

• Given - a polygon domain D, and a set of potential guards.

• Every potential guard defines a set. This set is . A set cover problem is to
find a collection of sets that together covers the whole domain.

• Greedy Approach. The first guard is the point that sees maximum area

• The second guard sees the maximum area that does not see

• sees the max area not seen by neither nor , etc…

P = {p1…pn}

pi Vis(pi)

g1 = arg max
p∈P

μ(p)

g2 g1

g3 g1 g2

D

Set Cover Problems - terminology

General problem: Given a universe , each is an atoms.

Also given a range space (also called set system). It is a collection of subsets
of X. a collection of subsets of X. ()

X = {x1…xm} xi

R = {S1, S2…} Si ⊆ X

Examples:

1. In a polygon , the atoms are all points of D. Each possible guard
defines .

2. Given a graph , we could treat V as the universe. Each edge
is a set of two atoms. (edge-cover)

3. In a graph , the atoms are the edges. Each vertex
defines the set of all the edges that is adjacent to. (vertex cover)

D pi
Vis(pi) R = {Vis(pi) | pi ∈ P}

G(V, E)

G(V, E) vi ∈ V
Si vi

Vis(p1)
p1

Min-Weight Vertex Cover and ILP

• Sometimes the LP (instead of the ILP) could help us finding good approximations

• Given: A graph G(V,E). Each vertex is given with a weight Think about it as the

cost of this vertex.

• A subset is a vertex cover if every edge we have either

• The cost of C is the sum of weights of vertices in C.

• Finding the min-cardinality Vertex Cover is NP-Hard

• ILP for this problem: the variables are . All are integers and between 0 and 1.

•

vi wi > 0.

C ⊆ V (u, v) ∈ E
u ∈ C or v ∈ C or both

x1…xn

vi ∈ C iff xi = 1 (for i = 1…n)

b4

b3

b5, 9$

e3

b1 b2 b3

b6 , 4$

minimize
n

∑
i=1

wixi

s.t.

xi + xj ≥ 1 ∀(vi, vj) ∈ E

