More LP and ILP
Alon Efrat
Integer Linear Programming (ILP)

- Linear programming problems at which values of the computed variables must be integers are called Integer Linear Programming (ILP) problems.
- If only some of the variables must be integers, we call them Mixed Integer Linear Programming problems.
- There is a huge number of problems that could be phrased as ILP. (include many NP-hard problems, where no polynomial-time algorithms exist)
- A few libraries could handle them, including CPLEX.
- Running time could varies a lot, and could be extremely slow for some instances.
- Yet extremely useful for instances when actual running time is acceptable.
- Also useful for comparing fast heuristic to global optimum.

- Big difference between LP and ILP:
 - If we could express a problem as an LP, practically we could consider it solved: LP is very fast in practice for any realistic input. Libraries are easy to use.
 - If we could express a problem as an ILP, the libraries are still easy to use, but running time varies a lot. Not always we will live long enough to see the program terminates.
Application: Bipartite Matching.

- A graph $G(V,E)$ is called bipartite if V can be partitioned into two sets $V=A\cup B$, and each edge of E connects a vertex of A to a vertex of B. We sometimes denote these graphs by $G(A\cup B,E)$.

- Example: The set $A = \{a_1\ldots a_n\}$ is a set of instructors, the set $B = \{b_1\ldots b_n\}$ is the set of courses. There is an edge $(a_i, b_j) \in E$ iff instructor a_i could teach course b_j.

- A matching is a set of edges M of E, where each vertex of A is adjacent to at most one vertex of B, and vice versa.

- (in the example, each instructor will teach at most one course, and vice versa)

- Maximum-cardinality matching: Find a matching with as many edges as possible.

- This problem could be solved with in $O(nm)$ time using Ford-Fulkerson algorithm. Faster algorithms exist as well. However, we will use it as an example to the ease of using ILP.
ILP for Max-Cardinality Bipartite Matching.

- For every edge e, define a **Boolean** variable x_e.
- $x_e = 1$ if e participates in the matching M, and $x_e = 0$ otherwise.
- The goal is to maximize the number of edges in M, while keeping M a proper matching.

Cost function: maximize $\sum_{i=1}^{m} x_i$

Subject to

1. $0 \leq x_i \leq 1$ for every x_i

2. for every $a \in A$ $\sum_{(a,b_j) \in E} x_{a,b} \leq 1$ (an instructor will teach at most one course)

3. for every $b \in B$ $\sum_{(a_i,b) \in E} x_{a_i,b} \leq 1$ (an course will taught by at most one instructor)

4. x_i is an integer, for every x_i
Vertex Cover and ILP

- Given: A graph G(V,E). A subset C ⊆ V is a vertex cover if every edge (u, v) ∈ E we have either u ∈ C or v ∈ C or both.
- Finding the min-cardinality Vertex Cover is NP-Hard
- ILP for this problem: We will use boolean variables x₁…xₙ (one per vertex).
- \(v_i \in C \) iff \(x_i = 1 \) (for \(i = 1…n \))
- Formalizations of ILP:
- Variables: \(x_1…x_n \)

 Cost function: minimize \(\sum_{i=1}^{n} x_i \)

Subject to:
1. \(0 \leq x_i \leq 1 \) for every \(x_i \)
2. \(x_i + x_j \geq 1 \quad \forall (v_i, v_j) \in E \)
 // either \(v_i \) or \(v_j \) are in \(C \)
3. Each \(x_i \) is an integer,
Vertex Cover and ILP

- Given: A graph $G(V,E)$. A subset $C \subseteq V$ is a vertex cover if every edge $(u,v) \in E$ we have either $u \in C$ or $v \in C$ or both.
- Finding the **min-cardinality** Vertex Cover is NP-Hard
- ILP for this problem: We will use boolean variables $x_1 \ldots x_n$ (one per vertex).
- $v_i \in C \iff x_i = 1$ (for $i = 1 \ldots n$)
- Formalizations of ILP:
- Variables: $x_1 \ldots x_n$
 - Cost function: minimize $\sum_{i=1}^{n} x_i$
 - **Subject to:**
 1. $0 \leq x_i \leq 1$ for every x_i
 2. $x_i + x_j \geq 1 \ \forall (v_i, v_j) \in E$
 // either v_i or v_j are in C
 3. Each x_i is an integer,
Vertex Cover and ILP

- Given: A graph G(V, E). A subset C ⊆ V is a vertex cover if every edge (u, v) ∈ E we have either u ∈ C or v ∈ C or both.
- Finding the min-cardinality Vertex Cover is NP-Hard
- ILP for this problem: We will use boolean variables x₁…xₙ (one per vertex).

- vᵢ ∈ C iff xᵢ = 1 (for i = 1…n)
- Formalizations of ILP:
- Variables: x₁…xₙ

 Cost function: minimize \[\sum_{i=1}^{n} x_i \]

Subject to:
1. \[0 \leq x_i \leq 1 \] for every xᵢ
2. \[x_i + x_j \geq 1 \] \(\forall (v_i, v_j) \in E \) // either vᵢ or vⱼ are in C
3. Each xᵢ is an integer,
Vertex Cover and ILP

- Given: A graph $G(V,E)$. A subset $C \subseteq V$ is a vertex cover if every edge $(u, v) \in E$ we have either $u \in C$ or $v \in C$ or both.
- Finding the min-cardinality Vertex Cover is NP-Hard
- ILP for this problem: We will use boolean variables $x_1\ldots x_n$ (one per vertex).
- $v_i \in C \iff x_i = 1$ (for $i = 1\ldots n$)
- Formalizations of ILP:

Variables: $x_1\ldots x_n$

Cost function: $\text{minimize } \sum_{i=1}^{n} x_i$

Subject to:

1. $0 \leq x_i \leq 1$ for every x_i
2. $x_i + x_j \geq 1$ $\forall (v_i, v_j) \in E$
 // either v_i or v_j are in C
3. Each x_i is an integer,

Toward efficient approximation, lets define

- $\vec{x}^f = (x_1^f \ldots x_n^f)$ be the solution to the LP. (drop the requirement to integer solution.
- $\vec{x}^{opt} = (x_1^{opt} \ldots x_n^{opt})$ be the solution to the ILP.
- $\vec{x}^{app} = (x_1^{app} \ldots x_n^{app})$ be an approximated integer solution, obtained as followed:

 if $x_i^f < 0.5$ then $x_i^{app} = 0$
 if $x_i^f \geq 0.5$ then $x_i^{app} = 1$
Vertex Cover and ILP

- Given: A graph $G(V,E)$. A subset $C \subseteq V$ is a vertex cover if every edge $(u,v) \in E$ we have either $u \in C$ or $v \in C$ or both.
- Finding the min-cardinality Vertex Cover is NP-Hard
- ILP for this problem: We will use boolean variables $x_1\ldots x_n$ (one per vertex).
- $v_i \in C$ iff $x_i = 1$ (for $i = 1\ldots n$)
- Formalizations of ILP:
 - Variables: $x_1\ldots x_n$
 - Cost function: minimize $\sum_{i=1}^{n} x_i$
 - Subject to:
 1. $0 \leq x_i \leq 1$ for every x_i
 2. $x_i + x_j \geq 1$ $\forall (v_i,v_j) \in E$ // either v_i or v_j are in C
 3. Each x_i is an integer,

Towards efficient approximation, let's define
- $\vec{x}^f = (x_1^f \ldots x_n^f)$ be the solution to the LP. (drop the requirement to integer solution.
- $\vec{x}^{opt} = (x_1^{opt} \ldots x_n^{opt})$ be the solution to the ILP.
- $\vec{x}^{app} = (x_1^{app} \ldots x_n^{app})$ be an approximated integer solution, obtained as followed:
 - if $x_i^f < 0.5$ then $x_i^{app} = 0$
 - if $x_i^f \geq 0.5$ then $x_i^{app} = 1$

Claims
1. \vec{x}^{app} is a vertex cover
2. $\text{cost}(\vec{x}^f) \leq \text{cost}(\vec{x}^{opt})$
3. $\text{cost}(\vec{x}^{app}) \leq 2\text{cost}(\vec{x}^f) \leq 2\text{cost}(x^{opt})$
Flow networks

Definition. A flow network is a directed graph $G = (V, E)$ with two distinguished vertices: a source s and a sink t. Each edge $(u, v) \in E$ has a nonnegative capacity $c(u, v)$.

The capacity limits the number of gallons/seconds (or MB/second, or vehicle/second) that the edge could tolerate.

Goal- push as much flow as possible, from s to t.

Example:
Flow in Networks

Def: A *flow* on G is an assignment of a value $f(u,v)$, for every edge $(u, v) \in E$. These values must satisfy several constraints:

- **Capacity constraint:** $0 \leq f(u, v) \leq c(u, v)$, for every $(u, v) \in E$
- **Flow conservation:** For every vertex $u \in V$, which is not the source nor the sink, the flow arriving into u must be equal to the total flow that leaves u. Formally

\[
\sum_{(v,u) \in E} f(v,u) = \sum_{(u,w) \in E} f(u,w)
\]

The *value* of a flow is the sum of the flows out of the source:

\[
\sum_{(s,a) \in E} f(s,a)
\]

In the example, the value of the flow equals $1+2=3$

Goal: Assign a flow to every edge, (legally), so the value of the flow is **maximize**.

Example: Flow into b is $2 + 1 = 3$. Flow out of b is $1 + 2 = 3$.

![Diagram of network with flow values and flow direction](image)
The maximum-flow problem

Maximum-flow problem: Given a flow network G, find a flow of maximum value on G.

The value of the maximum flow is 4.
Lemma: The value of the flow equals to the sum of flows entering t

\[\sum_{(s,v) \in E} f(s, v) = \sum_{(w,t) \in E} f(w, t) \]

- $\sum_{(s,v) \in E} f(s, v)$: total flow from s
- $\sum_{(w,t) \in E} f(w, t)$: total flow into t
LP could solve flow problems (but values might be non-integers)

Given: The graph, special vertices $s, t \in E$, and the capacities $c(u, v)$ for every edge $(u, v) \in E$

Define a linear programming problem (LP) that will find the maximum (legit) flow:

• **Unknown variables**: $f(u, v)$ for every edge $(u, v) \in E$.

 • If you find the usage of the parenthesis confusing, we could just name the vertices $V = \{v_1 \ldots v_n\}$ and the variables are $f_{i,j}$ for every edge $(v_i, v_j) \in E$

• **Cost Function**: Maximizes the flow from s.

 \[
 \max \sum_{(s,u) \in E} f(s, u)
 \]

• **Capacity constraint**: $0 \leq f(u, v)$ and $f(u, v) \leq c(c, u)$ for every edge $(u, v) \in E$

• **Flow conservation**: For every vertex $u \in V$, which is not the source nor the sink, the flow arriving into u must be equal to the total flow that leaves u. Formally

\[
\sum_{(v,u) \in E} f(v, u) - \sum_{(u,w) \in E} f(u, w) = 0
\]

\[
\text{total flow into } u \quad \text{total flow from } u
\]
(cs445 only:) Min-Weight Vertex Cover: Exact and Approximated solutions:

- Sometimes the LP (instead of the ILP) could help us finding good approximations.
- Given: A graph $G(V,E)$. A subset $C \subseteq V$ is a vertex cover if for every edge $(u,v) \in E$, at least one of its endpoints is in C.
- Each vertex v_i is given with a cost (or weight) $w_i > 0$.
- $w(C)$, the cost of C, is defined as the sum of costs of vertices in C.
- Finding the **min-cardinality or min-weight** Vertex Cover is NP-Hard.
- ILP for this problem: The variables are $\vec{x} = (x_1 \ldots x_n)$. All are integers and between 0 and 1.
- $v_i \in C$ iff $x_i = 1$ (for $i = 1 \ldots n$)
- Let $\vec{w} = (w_1 \ldots w_n)$

$C^{opt} = \{v_4, v_6\}$. and $w(C^{opt}) = 4 + 8 = 12$
Min-Weight Vertex Cover: Exact and Approximated solutions:

- Sometimes the LP (instead of the ILP) could help us finding good approximations.
- Given: A graph $G(V,E)$. A subset $C \subseteq V$ is a vertex cover if for every edge $(u,v) \in E$, at least one of its endpoints is in C.
- Each vertex v_i is given with a cost (or weight) $w_i > 0$.
- $w(C)$, the cost of C, is defined as the sum of costs of vertices in C.
- Finding the min-cardinality or min-weight Vertex Cover is NP-Hard.
- ILP for this problem: The variables are $\overrightarrow{x} = (x_1 \ldots x_n)$. All are integers and between 0 and 1.
- $v_i \in C$ iff $x_i = 1$ (for $i = 1 \ldots n$)
- Let $\overrightarrow{w} = (w_1 \ldots w_n)$

ILP: Cost function: $\text{minimize } \overrightarrow{w} \cdot \overrightarrow{x} = \sum_{i=1}^{n} w_i x_i$

s.t. $x_i + x_j \geq 1 \quad \forall (v_i, v_j) \in E$
$0 \leq x_i \leq 1$ for every x_i.

In ILP, we will also required that each x_i is an integer. In LP, this is not required.

- $\overrightarrow{x}^f = (x_1^f \ldots x_n^f)$ be the solution to the LP.
- $\overrightarrow{x}^{opt} = (x_1^{opt} \ldots x_n^{opt})$ - the solution to ILP. Let C^{opt} be the corresponding cover.
- $\overrightarrow{x}^{app} = (x_1^{app} \ldots x_n^{app})$ be an approximate solution integer solution, obtained as followed:

 - if $x_i^f < 0.5$ then $x_i^{app} = 0$ and $v_i \not\in C^{app}$
 - if $x_i^f \geq 0.5$ then $x_i^{app} = 1$ and $v_i \in C^{app}$

$C^{opt} = \{v_4, v_6\}$. and $w(C^{opt}) = 4 + 8 = 12$.
Min-Weight Vertex Cover: Exact and Approximated solutions:

- Sometimes the LP (instead of the ILP) could help us finding good approximations
- Given: A graph G(V,E). A subset \(C \subseteq V \) is a vertex cover if for every edge \((u, v) \in E\), at least one of its endpoints is in C.
- Each vertex \(v_i \) is given with a cost (or weight) \(w_i > 0 \).
- \(w(C) \), the cost of C, is defined as the sum of costs of vertices in C.
- Finding the min-cardinality or min-weight Vertex Cover is NP-Hard.
- ILP for this problem: The variables are \(\vec{x} = (x_1, ..., x_n) \). All are integers and between 0 and 1.
- \(v_i \in C \) iff \(x_i = 1 \) (for \(i = 1, ..., n \))
- Let \(\vec{w} = (w_1, ..., w_n) \)

ILP: Cost function: \(\text{minimize } \vec{w} \cdot \vec{x} = \sum_{i=1}^{n} w_i x_i \)

s.t.
\[x_i + x_j \geq 1 \quad \forall (v_i, v_j) \in E \]
\[0 \leq x_i \leq 1 \quad \text{for every } x_i. \]

In ILP, we will also required that each \(x_i \) is an integer. In LP, this is not required.

- \(\vec{x}^f = (x_1^f, ..., x_n^f) \) be the solution to the LP.
- \(\vec{x}^{opt} = (x_1^{opt}, x_2^{opt}, ..., x_n^{opt}) \) -the solution to ILP. Let \(C^{opt} \) be the corresponding cover.
- \(\vec{x}^{app} = (x_1^{app}, x_2^{app}, ..., x_n^{app}) \) be an approximate solution integer solution, obtained as followed:
 - if \(x_i^f < 0.5 \) then \(x_i^{app} = 0 \) and \(v_i \not\in C^{app} \)
 - if \(x_i^f \geq 0.5 \) then \(x_i^{app} = 1 \) and \(v_i \in C^{app} \)

Claim 1. \(\vec{x}^{app} \) is a vertex cover

Claim 2. \(\vec{w} \cdot \vec{x}^f \leq \vec{w} \cdot \vec{x}^{opt} \)

Claim 3. \(\vec{w} \cdot \vec{x}^{app} \leq 2 \vec{w} \cdot \vec{x}^f \leq 2 \vec{w} \cdot \vec{x}^{opt} \)

In words:

The approximation costs \(\leq 2 \cdot \text{opt} \),

We say that \(C^{opt} \) is a 2-approximation of the weighted vertex cover.
Let OPT be the opt solution.
- Every chosen edge e has both ends in C.
- But e must be covered by at least one vertex of OPT. So, one end of e must be in OPT.
- $|C| \leq 2 \cdot |\text{OPT}|$.
- (there are ≤ 2 vertices of C for each vertex of OPT.)
- That is, C is a 2-approximation of OPT.
- Running time: $O(|E|)$

Algorithm \textit{VertexCoverApprox}(G)

Input graph G

Output a vertex cover C for G

$C \leftarrow \text{empty set} ; \ H \leftarrow E$

\text{/* H -- what is left to be covered */}
while H has edges (not empty)\
 $(u,v) \leftarrow \text{An edge of } H.$
 Add both u and v to C
 for each edge f of H incident to v or w
 Remove f from H

return C