Integer Linear Programming (ILP)

- Linear programming problems at which values of the computed variables must be integers are called **Integer Linear Programming (ILP)** problems.
- If only some of the variables must be integers, we call them **Mixed Integer Linear Programming** problems.
- There is a huge number of problems that could be phrased as ILP. (include many NP-hard problems, where no polynomial-time algorithms exist)
- A few libraries could handle them, including CPLEX.
- Running time could vary a lot, and could be extremely slow for some instances.
- Yet extremely useful for instances when actual running time is acceptable.
- Also useful for comparing fast heuristic to global optimum.

Big difference between LP and ILP:
- If we could express a problem as an LP, practically we could consider it solved: LP is very fast in practice for any realistic input. Libraries are easy to use.
- If we could express a problem as an ILP, the libraries are still easy to use, but running time varies a lot. Not always we will live long enough to see the program terminates.

Application: Bipartite Matching.

- A graph $G(V, E)$ is called bipartite if V can be partitioned into two sets $V = A \cup B$, and each edge of E connects a vertex of A to a vertex of B. We sometimes denote these graphs by $G(A \cup B, E)$.
- Example: The set $A = \{a_1, a_2, a_3, a_4\}$ is a set of instructors, the set $B = \{b_1, b_2, b_3, b_4\}$ is the set of courses. There is an edge (a_i, b_j) in E iff instructor a_i could teach course b_j.
- A matching is a set of edges M of E, where each vertex of A is adjacent to at most one vertex of B, and vice versa.
- (in the example, each instructor will teach at most one course, and vice versa)

Maximum-cardinality matching: Find a matching with as many edges as possible.

- This problem could be solved with in $O(nm)$ time using Ford-Fulkerson algorithm. Faster algorithms exist as well. However, we will use it as an example to the ease of using ILP.

ILP for Max-Cardinality Bipartite Matching.

- For every edge $e_j \in E$ we define a **Boolean** variable x_j.
 - When specifying ILP, to specify that it is a boolean var, we write $0 \leq x_j \leq 1$ and x_j is an int.
 - $x_j = 1$ if e_j participates in the matching M.
 - Similarly $x_j = 0$ if e_j does not participate in the matching M.
- The goal is to maximize the number of edges in M, while keeping M a proper matching. So the ILP is:

 Cost function: maximize $\sum_{j=1}^{m} x_j$

Subject to:

1. $0 \leq x_j \leq 1$ \hspace{1em} for every x_i
2. x_i is an integer, \hspace{1em} for every x_i
3. for every $a \in A$ $\sum_{e_j \text{ starts at } a} x_j \leq 1$ \hspace{1em} //each instructor teaches at most one course
4. for every $b \in B$ $\sum_{e_j \text{ leads to } b} x_j \leq 1$ \hspace{1em} //each course will be taught by at most one instructor

In the example, at most one of the edges (a_2, b_1) and (a_3, b_1) will be in M, since $x_2 + x_3 \leq 1$.
Vertex Cover and ILP

- Given: A graph $G(V,E)$. A subset $C \subseteq V$ is a vertex cover if every edge $(u,v) \in E$ we have either $u \in C$ or $v \in C$ or both.
- Finding the min-cardinality Vertex Cover is NP-Hard
- ILP for this problem: We will use boolean variables x_1, \ldots, x_n (one per vertex).
- $v_i \in C$ if $x_i = 1$ (for $i = 1 \ldots n$)
- Formalizations of ILP:
- Variables: x_1, \ldots, x_n
 - Cost function: $\text{minimize } \sum_{i=1}^{n} x_i$
 - Subject to:
 1. $0 \leq x_i \leq 1$ for every x_i
 2. $x_i + x_j \geq 1 \ \forall (v_i, v_j) \in E$ // either v_i or v_j are in C
 3. Each x_i is an integer,
Flow in Networks

Definition. A *flow network* is a directed graph $G = (V, E)$ with two distinguished vertices: a *source* s and a *sink* t. Each edge $(u, v) \in E$ has a nonnegative *capacity* $c(u, v)$.

- The capacity limits the number of gallons/seconds (or MB/second, or vehicle/second) that the edge could tolerate.
- **Goal**— push as much flow as possible, from s to t.

Example:

![Flow Network Diagram](image)

The maximum-flow problem

Maximum-flow problem: Given a flow network G, find a flow of maximum value on G.

In the example, the value of the flow equals $1 + 2 = 3$.

Goal: Assign a flow to every edge, (legally), so the value of the flow is maximize.
Lemma:

The value of the flow equals to the sum of flows entering t.

\[
\sum_{(w, v) \in E} f(w, v) = \sum_{(s, w) \in E} f(s, w)
\]

Lemma: The value of the flow equals to the sum of flows entering t

LP could solve flow problems (but values might be non-integers)

Given: The graph, special vertices $s, t \in E$, and the capacities $c(u, v)$ for every edge $(u, v) \in E$.

Define a linear programming problem (LP) that will find the maximum (legit) flow:

- **Unknown variables**: $f(u, v)$ for every edge $(u, v) \in E$.
 - If you find the usage of the parenthesis confusing, we could just name the vertices $V = \{v_1, \ldots, v_n\}$ and the variables are $f_{u,v}$ for every edge $(v_i, v_j) \in E$.

- **Cost Function**: Maximizes the flow from s.
 \[
 \max \sum_{(u, v) \in E} f(u, v)
 \]

- **Capacity constraint**: $0 \leq f(u, v) + f(v, t) \leq c(u, v)$ for every edge $(u, v) \in E$.

- **Flow conservation**: For every vertex $u \in V$, which is not the source nor the sink, the flow arriving into u must be equal to the total flow that leaves u. Formally:
 \[
 \sum_{(w, v) \in E} f(w, v) - \sum_{(v, w) \in E} f(v, w) = 0
 \]

A 2-Approximation for Vertex Cover (Bar-Yehuda Algorithm)

The unweighted case

Algorithm VertexCoverApprox(G)

Input graph G

Output a vertex cover C for G

$C_{app} \leftarrow \text{empty set}$

$H \leftarrow E$

/* H – what is left to be covered */

while H has edges (not empty)

$(u, v) \leftarrow \text{An edge of } H$

Add both u and v to C_{app}

for each edge f of H incident to u or v

Remove f from H

/* No need to cover f again */

Comment: The approximation algorithm for vertex cover in an unweighted graph (all edges have the same weight). This version is much easier, and does not require linear programming.

- Obviously C_{app} that the algorithm produces is a cover. So $C_{app} \leq C_{opt}$.
- Let C_{opt} be an optimal vertex cover.
- Every edge (u,v) chosen by the algorithm has both u and v in C_{app}.
- But (u,v) must be covered by at least one vertex of C_{app}, so C_{app} contains either u or v or both.
- That is, for every single vertex in C_{app} there are at most two vertices in C_{app}.
- We proves that $C_{app} \leq 2 \cdot C_{opt}$.
- That is, C_{app} is a 2-approximation of C_{opt}.
- Running time: $O(|E|)$ if the graph is stored as an adjacency list.
Min-Weight Vertex Cover: Exact and Approximated solutions:

- Sometimes the LP (instead of the ILP) could help us finding good approximations.
- Given a graph \(G(V,E) \), a subset \(U \subseteq V \) is a vertex cover if every edge \((v, w) \in E\). at least one of its endpoints is in \(U \).
- Each vertex \(v \in V \) is given with a cost (or weight) \(w(v) > 0 \). (in contrast, in the unweighted case, we could assume that the cost is the same for all vertices).
- We also define the cost of \(C \), is defined as the sum of costs of vertices in \(C \).

Finding the min-cardinality or min-weight Vertex Cover is NP-hard:

- We phrase the problem as an ILP. However, if running time is too large, we will compromise on LP plus some other manipulations.

Let's start with ILP for this problem:

- The variables are \(x_i = \{0, 1\} \) is the number of variables.
- All the variables are integers and between 0 and 1.
- The vertex \(v_i \) is in the cover \(C \) if \(x_i = 1 \) for \(i = 1 \ldots n \).
- \(x_i \) set to \(0 \) if \(i \notin C \).
- Set \(\bar{x} = \{x_1, \ldots, x_n\} \).

Example:

\[C^{opt} \in \{v_1, v_4\}, \quad \text{and } \bar{x}(C^{opt}) = 4 + 8 = $12 \]

ILP: Cost function:

-\[\text{minimize } \bar{x} \cdot \bar{t} = \sum_{i=1}^{n} x_i t_i \]

-\[x_i + \bar{t}_i \geq 1 \quad \forall (v_i, v_j) \in E. \]

-\[0 \leq x_i \leq 1 \quad \forall i \in V. \]

Example:

\[\bar{x}(C^{opt}) = \{v_1, v_4\}, \quad \text{and } \bar{x}(C^{opt}) = 4 + 8 = $12 \]

Claim:

1. \(C^{opt} \) is a vertex cover. To prove this fact, think about an edge \((v_i, v_j) \in E \). It cannot be that both \(x_i < 0.5 \) and \(x_j < 0.5 \), otherwise, they are not solution to the LP.
2. \(\bar{x} \cdot \bar{t} \leq \bar{x} \cdot \bar{t}^{opt} \). To see this fact, remember that to obtained \(\bar{x} \cdot \bar{t}^{opt} \) we required the same constraint as in the LP, but add more requirement (integrity), so the cost we pay could only increase.
3. \(\bar{x} \cdot \bar{t} \geq \bar{x} \cdot \bar{t}^{opt} \) for every \(t_i \). Proof: There are two cases, if \(x_i \neq 0 \) then the claim is trivially correct. If \(x_i = 0 \) then \(x_i \leq 0.5 \), happened because \(x_i \geq 0.5 \). QED.
4. Putting it together: \(\bar{x} \cdot \bar{t} \leq \bar{x} \cdot \bar{t}^{opt} \leq \bar{x} \cdot \bar{t}^{opt} \).

In words:

The approximation costs: \(\leq 2 \cdot opt \),

We say that \(C^{opt} \) is a 2-approximation of the weighted vertex cover.