Tries and suffix trees

Alon Efrat
Computer Science Department
University of Arizona

Trie: A data-structure for a set of words

All words over the alphabet \(\Sigma = \{a, b, \ldots, z\} \).
In the slides, the alphabet is only \(\{a, b, c, d\} \).
\(S \) – set of words = \{a, aba, a, aca, addd\}.
Need to support the operations
• insert(\(w \)) – add a new word \(w \) into \(S \).
• delete(\(w \)) – delete the word \(w \) from \(S \).
• find(\(w \)) is \(w \) in \(S \) ?

• Future operation:
 • Given text (many words) where is \(w \) in the text.

• The time for each operation should be \(O(k) \), where \(k \) is the number of letters in \(w \).

• Usually each word is associated with addition info – not discussed here.

Trie (Tree+Retrive) for \(S \)

• A tree where each node is a struct consist
 • Struct node {
 • char[4] *ar;
 • char flag; /* 1 if a word ends at this node. Otherwise 0 */
 }

Rule:
Each node corresponds to a word \(w \).
\(w \subseteq S \) iff flag=1

A trie - example

The dictionary contains \(S = \{a, b, dbb\} \)
Corr. To \(w = "d" \)
Corr. To \(w = "dbb" \)
The label of an edge is the label of the cell from which this edge exits
Corr. To \(w = "db" \) (not in \(S \), flag=0)
A quick reminder from Java/C

the when we write 'a', it means “the ascii value of ‘a’.

For example, 'A'=65, 'B'=66,.. 'Z'=90, 'a'=97 etc

This means ‘d’-'a'=d,

Finding if word \(w \) is in the tree

\(p = \text{root}; \ i = 0 \ // \text{remember - each string ends with } \backslash 0 \)

While(1){

 • If \(w[i] == \backslash 0 \) //we have scanned all letters of \(w \)
 then return the flag of \(p \); \textbf{else}
 • If \((p.a[w[i] - 'a']) == \text{NULL} \ //\text{the entry of } p \text{ correspond to } w[i] \text{ is NULL} \)
 return \textbf{false};
 • \(p = (p.a[w[i] - 'a']) \) //Set \(p \) to be the node pointed by this entry
 • \(i++; \)
}

Inserting a word \(w \)

• Try to perform find(\(w \)).
 • If runs into a NULL pointers, create new nodes along the path.
 • The flag fields of all new nodes is 0.
 • Set the flag of the last node to 1

Deleting a word \(w \)

• Find the node \(p \) corresponding to \(w \) (using ‘find’ operation).
• Set the flag field of \(p \) to 0.
• If \(p \) is dead (I.e. flag==0 and all pointers are NULL) then free(\(p \)), set \(p=\text{parent}(p) \) and repeat this check.
Heuristics for saving space

- The space required is $\Theta(|\Sigma| |S|)$.
- To save some space, if Σ is larger, there are a few heuristics we can use. Assume $\Sigma=\{a,b..z\}$.
- We use two types of nodes
 - Type "A", which is used when the number of children of a node is more than 3
 - Type "B" is used if there are 3 or less children:
 - The "letter" of the child is also stored:

Note – the letters are not stores explicitly

Another Heuristics – path compression

- Replace a long sequence of nodes, all having only one a single child, with a single node (of type “pointer to string”) that maintains
 - a point to the next node,
 - a point to the string.

Heuristics for space saving

- Type "B" is used if there are 3 or less children:
- The “letter” of the child is also stored:

The rule of the flag is the same as in type “A” nodes.
- We only store the 3 pointers, but we need to know to which letters they corresponds to.

Suffix tree.

- Assume B (for book) is a very long text.
- Want to preprocess B, so when a word w is given, we can quickly find if it is in B.
- We can find it in $O(|w|)$.
- Idea:
 - Consider B as a long string.
 - Create a trie T of all suffixes of B.
 - In addition to the flag (specifying if a word ends at node), we also stored the index in B where this word begins.
 - Example $B=“aabab”$
 - $S=\{“aabab”, “abab”, “bab”, “ab”, “b”\}$
Suffix tree.

Example $B=\text{"aabab"} \ S=\{\text{"aabab"}, \ "abab", \ "bab", \ "ab", \ "b"\}$

![Diagram of suffix tree]

To know where a word $w \in S$ appears in B, we store with the node of the starting_index of w in B. We store only the first appearance of the word in the text (shown in brown).

Size of suffix tree

Example $B=\text{"aabab"} \ S=\{\text{"aabab"}, \ "abab", \ "bab", \ "ab", \ "b"\}$

Assume $n=|B|$. Total length of all string $\Theta(n^2)$

Size of a node is $|\Sigma|$ So size of the tree is $\Theta(n^2 |\Sigma|)$.

Time to construct the tree $\Theta(n^2)$

We can save some space.

Suffix tries on a diet - cont

Def: a thread is a path from node u to node v in the trie, consisting of nodes of outdegree 1 (except maybe the last one) and flag=0.

Obs: There is a contagious part of B, identical to the string the shred represents. We call this part the shred-string.

We stores the book B itself as an array.

We use a new type of nodes, called thread-nodes, maintain the first $(id1)$ and last $(id2)$ indexes of the shred-string in B.

<table>
<thead>
<tr>
<th>type</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>id1</th>
<th>id2</th>
<th>flag</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>B=\text{"cadbdaadbd"}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Algorithm for constructing a “thin” trie:

Given B – create an empty trie T, and insert all n suffixes of B into T --- generating a trie of size $\Theta(n^2)$.

Traverse the tries, and each time that a shred is seen, replace all nodes of the shred with a single shred-node.
Suffix tries on a diet - cont

• Clearly the use of thread-nodes saves some—but can we prove something?

Observations: Every leaf of T must be the end of some prefix of B. So the number of number of leaves of T is $\leq n$. (n denotes the book size)

• To bound the size of T, we will need to bound the number of internal nodes.

Observations:

○ T might contain special nodes whose $\text{flag}=1$ (a suffix terminates at these nodes).

○ The number of special nodes is also $\leq n$ (since this is the number of suffixes).

• What about other internal nodes of T?

Back to compressed suffix trees

Back to thin suffix tries T created for a book B with n letters.

- T has $\leq n$ special nodes (with $\text{flag}=1$) and
- T has $\leq n$ leaves (every leaf is the end of a suffix of B)
- Every other nodes has ≥ 2 children. (with $\text{flag}=1$). Applying the children-blessed Lemma in this case, implies that the total number of internal nodes $\leq 2n$.

• Conclusion: The number of nodes in T is $\leq 3n$ (much better than the uncompressed version that could have $\Theta(n^2)$ nodes.

• So the size of the trie is only a constant more than the size of the book.

The “children-blessed Lemma”

We say that a tree T is children-blessed if every node is either a leaf or has ≥ 2 children.

Let T be a tree with m leaves. We use the following notation:

- $\text{leaves}(T)$ denote the number of leaves in T.
- $\text{nodes}(T)$ denote the # of nodes in T.
- $\text{internal}(T)$ denote the # of internal in T.

Children-blessed Lemma: If T is a children-blessed tree, then $\text{internal}(T) \leq \text{leaves}(T)$. That is, T has more leaves than internal nodes.

Proof by induction on m (the number of leaves in T)

Base case: $m=1$. A children-blessed tree T that has only one leaf u must have zero internal nodes. If u has a parent, then this parent is internal but u is the only child. So the base case is proven the induction base case.

Induction step. Pick some integer $m \geq 2$. Assume that we have proven the lemma for every c.b. tree that has $\leq m$ leaves. and let T be a children-blessed tree that has $m+1$ leaves. Need to show $\text{internal}(T) \leq m+1$. Pick an arbitrary leaf u of T, and let $v = \text{parent}(u)$. Now we have two cases, depending on the number of siblings of u:

1. Case 1: u has at least 2 siblings. Create a tree T' by deleting u from T.

- T' is still children-blessed.
- $\text{internal}(T') = \text{internal}(T)$ but $\text{leaves}(T') = \text{leaves}(T) + 1$.

Since $m = \text{nodes}(T') - 1$ and our assumption is that the lemma has been proven for all trees with $\leq m$ leaves, we know that $\text{internal}(T') \leq \text{leaves}(T')$, implying that $\text{internal}(T) \leq \text{leaves}(T)$.

2. Case 2: u has only one sibling v. Let $p = \text{parent}(u)$. Create a tree T' by deleting both u, and v from T.

- In T', stopped being an internal node, and is now a leaf. T' is still children-blessed.
- $\text{internal}(T') = \text{internal}(T) - 1$
- $\text{leaves}(T') = \text{leaves}(T)$, so we could use the induction hypothesis that $\text{internal}(T') \leq \text{leaves}(T')$, therefore $\text{internal}(T) \leq \text{leaves}(T)$. This ends the proof.

Summary, and potential points of confusions

1. A trie stores a set of strings $(x_1, x_2, ..., x_n)$. The memory need is approximately $|x_1| + |x_2| + |x_3| + ... + |x_n|$ in the worst case. Here $|x_i|$ is the number of character in x_i.

2. An uncompressed suffix tree is a trie, but the input dictionary consists of all suffixes of a book B, and each node also stores where the corresponding suffix appears in B. The memory needed for an uncompressed suffix tree is $\Theta(n^2)$. (so as bad as n^2)

3. Path compression identifies in the trie long threads of nodes, each point to the next, and each has only one child. Such a thread, containing say k nodes, could be replaced by a single “fancy” node. However, 3.1. In a regular trie, this node must still store k character, so its size could be very large

3.2. In a suffix tree, this node only need to stores a pointer to the book, and the length of this thread. So only $O(1)$ memory

4. Path compression shrinks the size of the uncompressed suffix tree from $\Theta(n^2)$ to $\Theta(n)$. This is easily the difference between being practical to useless. We used the children-blessed lemma to show the size of the compressed suffix tree.