r Tries and suffixes trees

Alon Efrat
Computer Science Department
University of Arizona

* Trie: A data-structure for a set of words

All words over the alphabet >={a,b,..z}.

In the slides, the alphabet is only {a,b,c,d}.
S — set of words = {a,aba, a, aca, addd}.
Need to support the operations

. insert(w) — add a new word w into S.
. delete(w) — delete the word w from S.
. find(w)iswin S ?

*Future operation:
*Given text (many words) where is w in the text.

*The time for each operation should be O(k), where k is
the number of letters in w

*Usually each word is associated with addition info —
not discussed here.

* Trie (Tree+Retrive) for S

= Atree where each node is a struct consist
= Struct node {
- char[4] *ar;
- charflag ; /* 1if a word ends at this node. Otherwise 0 */

ar

a b c d flag

ar
Rule:

Each node corresponds to a word w.
= we S iff flag=1

* A trie - example

p->ar[b*-7a’] _
The label of an edge is the label of
@ . a b* ¢ d the cell from which this edge exits
0
a b
abcd ibcd Corresponding to wW="d"
a bcd
00 R i 0
b Corr. To w="db”
(notin S, flag=0)
The dictionary contains S={a,b,dbb} abcd
b
abcd

CEEL [corr. to w=“dbb”

* Finding if word w is in the tree

p=root; i =0 // remember - each string ends with \0’
While(1){
= Ifw[i] =="\0" //we have scanned all letters of w
« then return the flag of p ; else

- If (p Lafwli] =’ /]) == NULL //the entry of p correspond to w[i] is NULL
return false;
= p=(p.alwli] —'a’]) //Setp to be the node pointed by this entry
i++;

* Inserting a word w

= Try to perform find(w).
- If runs into a NULL pointers, create new nodes along the
path.
- The flag fields of all new nodes is 0.

= Set the flag of the last node to 1

iDeIeting a word w

- Find the node p corresponding to w (using " find’
operation).
- Set the flag field of p to 0.

- If pisdead (I.e.flag==0 and all pointers are NULL) then
free(p), set p=parent(p) and repeat this check.

iHeuristics for saving space

= The space required is O(|Z] |S]).
- To save some space, if X is larger, there are a few heuristics
we can use. Assume 2={a,b..z} .

» We use two types of nodes
- Type “A”, which is used when the number of children of a
node is more than 3

type 3 b z flag

P]] T

Note — the letters are not stores explicitally

* Heuristics for space saving

= Type “B” is used if there are 3 or less children:
= The “letter” of the child is also stored:

@ type letter pointer letter pointer letter pointer flag

nother Heuristics — path compression

Replace a long sequence of nodes, all

having only one a single child, with a abcd
single node (of type “pointer to string”) that becd
maintains

a point to the next node, abcd

+ a point to the string.

type abcd
eThe rule of the flag is the same as in type “A” nodes.
*\We only store the 3 pointers, but we need to know to which
letters they corresponds to.
9 10
Suffix tree. uffix tree.

= Assume B (for book) is a very long text.
- Want to preprocess B, so when a word w is given, we can

quickly find if it is in B. .
= We can find it in O(|w|). w B.

Idea:
- Consider B as a long string.
- Create a trie T of all suffixes of B.
- In addition to the flag (specifying if a word ends at node),
we also stored the index in B where this word begins.
- Example B="aabab”
S={“aabab’, “abab”, “bab”, “ab”, “b”}

11

Example B="aabab” S={“aabab”, “abab”, “bab”, “ab”, “b’}

a b cd

To know where a word

_ appear in B, we store with
each node the index of the
beginning of the suffix in B.
a b cd b cd
(we can store only the first
b d appearance of the word in
C

the text)
12

ﬁize of suffix tree

Example B="aabab” S={"aabab”, “abab”, “bab”, “ab”, b’}

Assume n=|B]|.

Total length of all string ©(n2)
Size of a node is |Z|

So size of the tree is ©(n2 |Z]).

Time to construct the tree ©(n2)

We can save some space.

Example B="aabab”
Sz{llaababl!’ l‘ababﬂ’ “babl!’ Hab”, llb!.’}

v

Zﬂ

uffix tries on a diet

Def: a thread is a path from node u to node v in the
trie, consisting of nodes of outdegree 7 (except
maybe the last one) and flag=0.

Obs: There is a contagious part of B, identical to the
string the shred represents. We call this part the
shred-string

We stores the book B itself as an array.

We use a new type of nodes, called thread-nodes,
maintain the first (id7) and last (id2) indexes of
the shred-string in B.

i

type 4pcd id1 id2 flag

1 7 10
B=“cadbdaadbd14

uffix tries on a diet - cont /

Algorithm for constructing a “thin” trie:

Given B — create an empty trie T, and insert all n
suffixes of B into T --- generating a trie of size
o(n2).

Traverse the tries, and each time that a shred is
seen, replace all nodes of the shred with a
single shred-node.

i

15

ﬁufﬁx tries on a diet - cont

e Clearly the use of thread-nodes saves some-but can we prove something ?

o : Every leaf of T must be the end of some prefix of B. So the
number of number of leaves of Tis < n.

* n=|B|

« To bound the size of T, we will need to bound the number of internal
nodes.
L]

©T might contain special nodes whose flag=1 (a suffix terminates at
these nodes).
©The number of special nodes is < n (since this is the number of
suffixes).
* What about other internal nodes of T ?

16

uffix tries on a diet - cont

Lemma: Let T' be a rooted tree with m leaves, where each internal node has > 2 children.
Then T’ has < m internal nodes. (proof - easy induction. Homework)

Back to thin suffix tries T:
* Thas < n special nodes (with flag=1) and
e Thas < nleaves.

« Every other nodes has > 2 children. (with flag=1). Applying the Lemma in this case,
implies that the total number of internal nodes < 2n.

+ Conclusion: The number of nodes in Tis < 3n (much better than the uncompressed version
that could have ©(1%) nodes.

+ So the size of the trie is only a constant more than the size of the book.

17

Quadtrees

A simple data structure for geometric objects (e.g. points, houses, an
image, 3D scene)

Support efficiently a very wide variety of queries.

Shares similarities with tries, hence taught together.

QuadTrees

Assume we are given a red/green
picture defined a 2h x 2h grid. E.g. pixels.
Each pixel is either green or red.

. (more general and interesting examples
—500n)

Need to represent the shape “compactly”

19

QuadTrees

Assume we are given a red/green
picture defined a 2h x2h grid. E.g. pixels.
Each pixel is either green or red.

. (more general and interesting examples
—s00n)

Need to represent the shape “compactly”

Need a data structure that could answers multiple types of
queries. For example:

19

QuadTrees

Assume we are given a red/green
picture defined a 2hx 2h grid. E.g. pixels.
Each pixel is either green or red.

. (more general and interesting examples
—soon)

Need to represent the shape “compactly”

Need a data structure that could answers multiple types of
queries. For example:
1.For a given point q, is q red or green ?

19

QuadTrees

Assume we are given a red/green
picture defined a 2h x2h grid. E.g. pixels.
Each pixel is either green or red.

. (more general and interesting examples
— soon)

Need to represent the shape “compactly”

Need a data structure that could answers multiple types of
queries. For example:
1.For a given point q, is q red or green ?

2.For a given query disk D, are there any green points inD ?

19

QuadTrees

Assume we are given a red/green
picture defined a 2h x2h grid. E.g. pixels.
Each pixel is either green or red.

. (more general and interesting examples
—500n)

Need to represent the shape “compactly”

Need a data structure that could answers multiple types of
queries. For example:
1.For a given point q, is q red or green ?

2.For a given query disk D, are there any green points in D ?

19

QuadTrees

Assume we are given a red/green
picture defined a 2h x2h grid. E.g. pixels.
Each pixel is either green or red.

. (more general and interesting examples
—s00n)

Need to represent the shape “compactly”

Need a data structure that could answers multiple types of
queries. For example:
1.For a given point q, is q red or green ?

2.For a given query disk D, are there any green points inD ?

3.How many green points are there in D ?
4.Etc etc 19

QuadTrees

Assume we are given a red/green
picture defined a 2hx 2h grid. E.g. pixels.
Each pixel is either green or red.

. (more general and interesting examples
—soon)

Need to represent the shape “compactly”

Need a data structure that could answers multiple types of
queries. For example:
1.For a given point q, is q red or green ?

2.For a given query disk D, are there any green points in D ?

3.How many green points are there in D ?
4.Etc etc v

QuadTrees

Assume we are given a red/green
picture defined a 2h x2h grid. E.g. pixels.
Each pixel is either green or red.

R I (more general and interesting examples
— soon)

Need to represent the shape “compactly”

Need a data structure that could answers multiple types of
queries. For example:
1.For a given point q, is q red or green ?

2.For a given query disk D, are there any green points in D ?

3.How many green points are there in D ?
4.Etc etc v

‘ Regions of nodes

A tree where each internal node
has 4 children.

R(NW(root)) | ™ 1

120 | 121

In general, every node v is
associated with a region of the
123 plane. Lets denote this region by

R(V).
|

R(root)) The smallest possible area of R(v)
is a single pixel.

10 11 13

R(root) is the whole region of
20 121 122 123 nterest (e.g. input image or USA)

For every non-root node v, we
R(v) = is the union of have R(v) C R(parent(v))
R(NW(v)), R(NE(V)) R(SW(Vv)), R(SE(v
(NW(VD), RINE(V)) RGW(V)), RESE(V)) Let NW(v) denote the North West
child of v.

(similarly NE, SW, SE) 20

| QuadTrees
B

* Assume we are given a red/
green picture defined on a
2hx 2h grid of pixels.

» Each pixel has as a unique
color (Green or Red)

* EverynodeveE T is
associated with a
geometric region R(v)

Alg constructQT for a shape S.

sinput —anode vE 7, and a shape S.
+Output — a Quadtree 7, representing the shape of S within R(v)).

o If Sis fully green in R(v), or S is fully red in R(v) — then

. v is a leaf, labeled Green or Red. Return ;

*Otherwise, divide R(v) into 4 equal-sized quadrants, corresponding to nodes
v.NW, v.NE, v.SW, v.SE.

’ 21
« Call constructQT recursively for each quadrant.

& QuadTrees

Consider a picture
stored on an 2hx2h
grid. Each pixel is

either red or green.

We can represent the
shape “compactly”
using a QT.

Height — at most h.

Point location operation — given a point q, is it black or white
— takes time O(h)
- could it be much smaller ?

Many other operations are very simple to implement. »

& QuadTree for a set of points

Now consider a set of

given: a set of points S = {a. b, c.d. ¢}, each with its (x,y) coordinates

points (red) but on a
2hx2h grid. @

€ R
Splitting policy: Split

A R until each quadrant
contains <1 point.

R %

Build a similar QT, but we stop splitting a quadrant when it contain <1 point (or
some other small constant)
Point location operation — given a point q, is it black or white

— takes time O(h) (in practice, usually much less)

Many other splitting polices are very simple to implement.
(eg. A leaf could contain contains <17 points) 23

ﬂ QuadTrees for a set of points

Report(Q,v)
// Q — a query disk

/* report all the points in stored at the
subtree rooted at v, which are contained

4.If v is a leaf — check each point in R(v)

if inside Q

5.Else //R(v) Partially overlaps Q
Report(Q, NW(v)) and

. 0 disjoint from R(v); 0[\RO) =@
Report(Q, NE(v)) and
Report(Q, SW(v)) and

@ Q Contains R(v);
Report(Q, SE(v))
(\ L) R(v) Partially overlaps Q
~ ! 24

do 2 d inside Q. */
0 Cit b 1.If v is NULL — return.
2.If R(v) is disjoint from Q —return NULL.
3.If R(v) is fully contained in Q — report
120 121 136 123 R)
all points in the subtree rooted at v.

‘ QuadTrees for shape

Input: Set S of triangles

S={tl...tn }
Note — a triangle might be stored in multiple leaves.
Some leaves might store no triangles.

Splitting policy: Split
quadrant if it intersects
more than 1 triangle of S.

a120a|21 126 123

Finding all triangles inside a query region Q —
essentially same Report Report(Q,v) as before

25

(minor modifications)

‘ QuadTrees for shape

Input: Set S of triangles

S={t, t,}
ao 2 3d
Splitting policy: Split
B NG quadrant if it intersects
e more than 1 triangle of S.

120 121 1% 123

Note — a triangle might be stored in multiple leaves.
Some leaves might store no triangles.

Finding all triangles inside a query region Q —
essentially same Report Report(Q,v) as before

(minor modifications) 25

‘ Level Of Details

= Idea — the same object is stored several times, but with a
different level of details
= Coarser representations for distant objects
= Decision which level to use is accepted "on the fly’
(eg in graphics applications, if we are far away from a
terrain, we could tolerate usually large error)

76 polys

69,451 polys 2,502 polys 251 polys

