
Alon Efrat 
Computer Science Department 

University of Arizona

Tries and suffixes trees

2

Trie: A data-structure for a set of words

All words over the alphabet Σ={a,b,..z}.

In the slides, the alphabet is only {a,b,c,d}.  
S – set of words = {a,aba, a, aca, addd}.

Need to support the operations

•	 insert(w) – add a new word w into S.

•	 delete(w) – delete the word w from S.

•	 find(w) is w in S ?

•Future operation:

•Given text (many words) where is w in the text.

•The time for each operation should be O(k), where k is
the number of letters in w

•Usually each word is associated with addition info –
not discussed here.

3

Trie (Tree+Retrive) for S
■ A tree where each node is a struct consist

■ Struct node {

■ char[4] *ar;

■ char flag ; /* 1 if a word ends at this node. Otherwise 0 */

b c da

ar

flag

1

b c da
ar

flag
1

Rule:

 Each node corresponds to a word w.

 w∈ S iff flag=1 4

A trie - example

b c da

b c da b c da
b c da

b c da

b c da

a b d

b

b

1 1 0

0

0

1

The dictionary contains S={a,b,dbb}

Corr. To w=“db”

(not in S, flag=0)

The label of an edge is the label of

the cell from which this edge exits

p->ar[‘b’-’a’]
p

Corr. to w=“dbb”

Corresponding to w=“d”

5

Finding if word w is in the tree

p=root; i =0 // remember - each string ends with `\0’

While(1){

■ If w[i] == ‘\0’ 	 //we have scanned all letters of w

■ then return the flag of p ; else

■ If //the entry of p correspond to w[i] is NULL

	 	 return false;

■ //Set p to be the node pointed by this entry

■ i++;

}

(p . a[w[i] −′￼a′￼]) = = NULL

p = (p . a[w[i] −′￼a′￼])

6

Inserting a word w

■ Try to perform find(w).

■ If runs into a NULL pointers, create new nodes along the

path.

■ The flag fields of all new nodes is 0.

■ Set the flag of the last node to 1

7

Deleting a word w

■ Find the node p corresponding to w (using `find’
operation).

■ Set the flag field of p to 0.

■ If p is dead (I.e. flag==0 and all pointers are NULL) then 	

free(p), set p=parent(p) and repeat this check.

8

Heuristics for saving space

■ The space required is Θ(|Σ| |S|).

■ To save some space, if Σ is larger, there are a few heuristics

we can use. Assume Σ={a,b..z} .

■ We use two types of nodes

■ Type “A”, which is used when the number of children of a
node is more than 3

p
type a flagb z

Note – the letters are not stores explicitally

9

Heuristics for space saving

■ Type “B” is used if there are 3 or less children:

■ The “letter” of the child is also stored:

p
type letter pointer letter pointer letter pointer flag

B F R

•The rule of the flag is the same as in type “A” nodes.

•We only store the 3 pointers, but we need to know to which
letters they corresponds to.

10

Another Heuristics – path compression
■ Replace a long sequence of nodes, all

having only one a single child, with a
single node (of type “pointer to string”) that
maintains

■ a point to the next node,

■ a point to the string.

b c da

b c da

b c da

b c da

“bbbb\0”
b c datype

11

Suffix tree.

■ Assume B (for book) is a very long text.

■ Want to preprocess B, so when a word w is given, we can

quickly find if it is in B.

■ We can find it in O(|w|).

■ Idea:

■ Consider B as a long string.

■ Create a trie T of all suffixes of B.

■ In addition to the flag (specifying if a word ends at node),

we also stored the index in B where this word begins.

■ Example B=“aabab”

	 S={“aabab”, “abab”, “bab”, “ab”, “b”}

Observation: w appears in B

w is the prefix of a suffix of B.

Example: B=“helloniceworld”, w=“nice”.

⇔

12

Suffix tree.
Example B=“aabab” S={“aabab”, “abab”, “bab”, “ab”, “b”}

b c da

b c da

b c da

b c da

b c da

b c da

b c da

b c da

b c da

b c da

b c da

b c da

1

1

1

1

1

To know where a word
appear in B, we store with
each node the index of the
beginning of the suffix in B.

(we can store only the first
appearance of the word in
the text)

13

Size of suffix tree
Example B=“aabab” S={“aabab”, “abab”, “bab”, “ab”, “b”}

b c da

b c da

b c da

b c da

b c da

b c da

b c da

b c da

b c da

b c da

b c da

b c da

1

1

1

1

1

Assume n=|B|.

Total length of all string Θ(n2)

Size of a node is |Σ|

So size of the tree is Θ(n2 |Σ|).

Time to construct the tree Θ(n2)

We can save some space.
Example B=“aabab”

S={“aabab”, “abab”, “bab”, “ab”, “b”}

14

Suffix tries on a diet
Def: a thread is a path from node u to node v in the

trie, consisting of nodes of outdegree 1 (except
maybe the last one) and flag=0.

Obs: There is a contagious part of B, identical to the
string the shred represents. We call this part the
shred-string

We stores the book B itself as an array.

We use a new type of nodes, called thread-nodes,

maintain the first (id1) and last (id2) indexes of
the shred-string in B.

b c da

b c da

b c da

b c da

b c da

B=“cadbdaadbd

b c datype flagid1 id2
107 7 101

15

Suffix tries on a diet - cont
Algorithm for constructing a “thin” trie:

Given B – create an empty trie T, and insert all n

suffixes of B into T --- generating a trie of size
Θ(n2).

Traverse the tries, and each time that a shred is
seen, replace all nodes of the shred with a
single shred-node.

b c da

b c da

b c da

b c da

b c da

16

Suffix tries on a diet - cont

• Clearly the use of thread-nodes saves some-but can we prove something ?

• Observations: Every leaf of T must be the end of some prefix of B. So the
number of number of leaves of T is .

• n=|B|

• To bound the size of T, we will need to bound the number of internal
nodes.

• Observations:

T might contain special nodes whose flag=1 (a suffix terminates at

these nodes).

The number of special nodes is (since this is the number of

suffixes).

• What about other internal nodes of T ?

≤ n

≤ n

b c da

b c da

b c da

b c da

b c da

17

Suffix tries on a diet - cont
Lemma: Let T’ be a rooted tree with m leaves, where each internal node has children.

Then T’ has internal nodes. (proof - easy induction. Homework)

Back to thin suffix tries T:

• T has special nodes (with flag=1) and

• T has leaves.

• Every other nodes has children. (with flag=1). Applying the Lemma in this case,

implies that the total number of internal nodes .

• Conclusion: The number of nodes in T is (much better than the uncompressed version
that could have nodes.

• So the size of the trie is only a constant more than the size of the book.

	 	 	 	

≥ 2
≤ m

≤ n
≤ n

≥ 2
≤ 2n

≤ 3n
Θ(n2)

: 
 
A simple data structure for geometric objects (e.g. points, houses, an
image, 3D scene)  
 
Support efficiently a very wide variety of queries.

Shares similarities with tries, hence taught together.

Quadtrees

19

QuadTrees
Assume we are given a red/green
picture defined a 2h × 2h grid. E.g. pixels.

Each pixel is either green or red.

(more general and interesting examples
– soon)

Need to represent the shape “compactly”

19

QuadTrees
Assume we are given a red/green
picture defined a 2h × 2h grid. E.g. pixels.

Each pixel is either green or red.

(more general and interesting examples
– soon)

Need to represent the shape “compactly”

Need a data structure that could answers multiple types of
queries. For example:

19

QuadTrees
Assume we are given a red/green
picture defined a 2h × 2h grid. E.g. pixels.

Each pixel is either green or red.

(more general and interesting examples
– soon)

Need to represent the shape “compactly”

Need a data structure that could answers multiple types of
queries. For example:
1.For a given point q, is q red or green ?

19

QuadTrees
Assume we are given a red/green
picture defined a 2h × 2h grid. E.g. pixels.

Each pixel is either green or red.

(more general and interesting examples
– soon)

Need to represent the shape “compactly”

Need a data structure that could answers multiple types of
queries. For example:
1.For a given point q, is q red or green ?

2.For a given query disk D, are there any green points in D ?

19

QuadTrees
Assume we are given a red/green
picture defined a 2h × 2h grid. E.g. pixels.

Each pixel is either green or red.

(more general and interesting examples
– soon)

Need to represent the shape “compactly”

Need a data structure that could answers multiple types of
queries. For example:
1.For a given point q, is q red or green ?

2.For a given query disk D, are there any green points in D ?

D1

19

QuadTrees
Assume we are given a red/green
picture defined a 2h × 2h grid. E.g. pixels.

Each pixel is either green or red.

(more general and interesting examples
– soon)

Need to represent the shape “compactly”

Need a data structure that could answers multiple types of
queries. For example:
1.For a given point q, is q red or green ?

2.For a given query disk D, are there any green points in D ?

3.How many green points are there in D ?
4.Etc etc

D1

19

QuadTrees
Assume we are given a red/green
picture defined a 2h × 2h grid. E.g. pixels.

Each pixel is either green or red.

(more general and interesting examples
– soon)

Need to represent the shape “compactly”

Need a data structure that could answers multiple types of
queries. For example:
1.For a given point q, is q red or green ?

2.For a given query disk D, are there any green points in D ?

3.How many green points are there in D ?
4.Etc etc

D2

D1

19

QuadTrees
Assume we are given a red/green
picture defined a 2h × 2h grid. E.g. pixels.

Each pixel is either green or red.

(more general and interesting examples
– soon)

Need to represent the shape “compactly”

Need a data structure that could answers multiple types of
queries. For example:
1.For a given point q, is q red or green ?

2.For a given query disk D, are there any green points in D ?

3.How many green points are there in D ?
4.Etc etc

D2

D1 D3

20

Regions of nodes
A tree where each internal node
has 4 children.

In general, every node v is
associated with a region of the
plane. Lets denote this region by
R(v).

R(root) is the whole region of
interest (e.g. input image or USA)

The smallest possible area of R(v)
is a single pixel.

For every non-root node v, we
have

Let NW(v) denote the North West
child of v.

(similarly NE, SW, SE)

R(v) ⊂ R(parent(v))R(v) = is the union of

 R(NW(v)), R(NE(v)) R(SW(v)), R(SE(v))

3

0

11R(NW(root))

R(root))

21

QuadTrees

• Assume we are given a red/
green picture defined on a
2h × 2h grid of pixels.

• Each pixel has as a unique
color (Green or Red)

• Every node v ∈ T is
associated with a
geometric region R(v)

Alg constructQT for a shape S.

•input – a node v ∈ T, and a shape S.

•Output – a Quadtree Tv representing the shape of S within R(v)).

• If S is fully green in R(v), or S is fully red in R(v) – then

• 	 v is a leaf, labeled Green or Red. Return ;

•Otherwise, divide R(v) into 4 equal-sized quadrants, corresponding to nodes 	
	 v.NW, v.NE, v.SW, v.SE.

• Call constructQT recursively for each quadrant.

3

0
11

2

10

13
120 121

123122

NW

SW SE

NW SE

22

QuadTrees

Consider a picture
stored on an 2h × 2h
grid. Each pixel is
either red or green.

We can represent the
shape “compactly”
using a QT.

Height – at most h.

Point location operation – given a point q, is it black or white

	 – takes time O(h)

	 - could it be much smaller ?

Many other operations are very simple to implement.

3

0
11

2

10

13
120 121

123122

NW SE

23

QuadTree for a set of points
Now consider a set of
points (red) but on a
2h × 2h grid.

Splitting policy: Split
until each quadrant
contains ≤1 point.

Build a similar QT, but we stop splitting a quadrant when it contain ≤1 point (or
some other small constant)

Point location operation – given a point q, is it black or white

	 – takes time O(h) (in practice, usually much less)

Many other splitting polices are very simple to implement.

	 (eg. A leaf could contain contains ≤17 points)

3

0
11

a b

c

d

da

b

c

 e

e

given: a set of points S = {a , b, c, d , e}, each with its (x,y) coordinates

24

QuadTrees for a set of points
Report(Q,v)

// Q – a query disk

/* report all the points in stored at the
subtree rooted at v, which are contained
inside Q. */

1.If v is NULL – return.

2.If R(v) is disjoint from Q –return NULL.

3.If R(v) is fully contained in Q – report
all points in the subtree rooted at v.

4.If v is a leaf – check each point in R(v)
if inside Q

5.Else //

Report(Q, NW(v)) and

Report(Q, NE(v)) and

Report(Q, SW(v)) and

Report(Q, SE(v))

R(v) Partially overlaps Q

3

0

11

a

c

da

b

c

Q

b

Q Q disjoint from R(v); Q⋂R(v) = ∅

QR(v) Q Contains R(v);

Q R(v) Partially overlaps Q

25

QuadTrees for shape

Input: Set S of triangles

S={t1…tn }

Splitting policy: Split
quadrant if it intersects
more than 1 triangle of S.
3

0

11
c

d

da

b

c

a

a a

b

Note – a triangle might be stored in multiple leaves.

Some leaves might store no triangles.

Finding all triangles inside a query region Q –

essentially same Report Report(Q,v) as before

	 (minor modifications)

25

QuadTrees for shape

Input: Set S of triangles

S={t1…tn }

Splitting policy: Split
quadrant if it intersects
more than 1 triangle of S.
3

0

11
c

d

da

b

c
Q

a

a a

b

Note – a triangle might be stored in multiple leaves.

Some leaves might store no triangles.

Finding all triangles inside a query region Q –

essentially same Report Report(Q,v) as before

	 (minor modifications)

Level Of Details

▪ Idea – the same object is stored several times, but with a
different level of details

▪ Coarser representations for distant objects

▪ Decision which level to use is accepted `on the fly’

(eg in graphics applications, if we are far away from a
terrain, we could tolerate usually large error)

