
CSc 451, Spring 2003 Graphics, Slide 1
W. H. Mitchell

Icon Graphics—Introduction

Facilities for graphical programming in Icon evolved in the
period 1990-1994.

A philosophy of Icon is to insulate the programmer from details
and place the burden on the language implementation. The
graphics facilities were designed with same philosophy.

Icon's graphical facilities are built on the X Window System on
UNIX machines. On Microsoft Windows platforms the
facilities on built on the Windows API.

CSc 451, Spring 2003 Graphics, Slide 2
W. H. Mitchell

Window basics

Before any graphical operations can be done, a window must be
opened.

Here is a complete program that opens a window with a specific
width, height, and label:

link graphics
procedure main() # win1
 WOpen("height=100","width=300",

 "label=A Window")
 WDone()
end

As a rule, graphics programs should link graphics.

On UNIX the program can be compiled with icont, as usual.
Use wicont on Windows.

On a Windows platform, here's the result:

WOpen() accepts zero or more window attributes as
arguments. Attributes may be specified in any order.

WDone() waits until a q or Q is typed in the window.

CSc 451, Spring 2003 Graphics, Slide 3
W. H. Mitchell

Window basics, continued

Window attributes can be queried with WAttrib(s1, s2,
...). The value of each named attribute is generated.

WWRite() is like write(), but sends output to the window.

Example:

link graphics
procedure main() # win2
 WOpen("height=100","width=300",
 "label=A Window")
 every WWrite(WAttrib("height", "width",
 "size", "label"))
 WDone()
end

Resulting window:

In essence, WWrite() treats the window as a scrolling text
window.

write() could be used instead of WWrite(); output would
then go to the "console".

CSc 451, Spring 2003 Graphics, Slide 4
W. H. Mitchell

Coordinate system

The coordinate system is integer based with (0,0) in the upper
left corner of the window. Here are the corner points for a
window with size=200,100:

CSc 451, Spring 2003 Graphics, Slide 5
W. H. Mitchell

Drawing points

The simplest drawing primitive is DrawPoint(x, y), which
draws one pixel at the specified coordinates in the foreground
color (black, by default).

Example:

link graphics
procedure main() # dp1
 WOpen("size=300,100")

 every x := 0 to 299 by 3 do
 DrawPoint(x, 50) # horizontal

 every y := 0 to 99 by 7 do
 DrawPoint(150, y) # vertical

 WDone()
end

Result:

CSc 451, Spring 2003 Graphics, Slide 6
W. H. Mitchell

Drawing points, continued

Some fun with randomly drawn points:

link graphics

$define Height 100 # symbolic constants
$define Width 300 # via preprocessor

procedure main() # dp2
 WOpen("size=" || Width ||","||Height)

 repeat {
 DrawPoint(?Width-1, ?Height-1)
 }

 WDone()
end

Another angle:

link graphics
$define Height 100
$define Width 300

procedure main(args) # dp3
 WOpen("size=" || Width ||","||Height)
 N := args[1] | 1

 repeat {
 x := y := 0
 every 1 to N do x +:= ?(Width/N)
 every 1 to N do y +:= ?(Height/N)
 DrawPoint(x,y)
 }

 WDone()
end

CSc 451, Spring 2003 Graphics, Slide 7
W. H. Mitchell

Drawing lines

DrawLine(x1, y1, x2, y2) draws a line between the
points (x1, y1) and (x2, y2), inclusive.

link graphics
procedure main(args) # dl2
 WOpen("size=300,100")
 WAttrib("linewidth=" || args[1])
 DrawLine(10, 10, 290, 90)
 DrawLine(10, 90, 290, 10)
 DrawLine(150, 10, 150, 90)
 WDone()
end

When run with no arguments, a default linewidth of 1 is
used:

Here is a linewidth of 5:

CSc 451, Spring 2003 Graphics, Slide 8
W. H. Mitchell

Drawing lines, continued

An arbitrary number of coordinate pairs can be passed to
DrawLine. It draws a line between the first and second points,
then the second and third points, etc.

procedure main() # dl3
 WOpen("size=300,100")
 DrawLine(100,10,200,10,100,90,200,90)
 WDone()
end

Result:

Icon's list invocation syntax is often used with drawing
functions that accept a variable number of arguments:

procedure main() # dl3a
 WOpen("size=300,100")

 zpts := [100,10,200,10,100,90,200,90]
 DrawLine!zpts # "list invocation"
 WDone()
end

A related function is DrawSegment, which draws disjoint
segments for each pair of coordinate pairs.

CSc 451, Spring 2003 Graphics, Slide 9
W. H. Mitchell

Drawing lines, continued

Problem: Write a program that produces an approximation of
this image:

CSc 451, Spring 2003 Graphics, Slide 10
W. H. Mitchell

Drawing rectangles

The function DrawRectangle(x, y, w, h) draws the
outline of a rectangle.

With a line width of 1, the upper left corner is at (x, y) and the
lower right corner is at (x+w, y+h).

procedure main(args) # dr1
 WOpen("size=300,150")
 x := y := 0
 every h := 10 to 35 by 5 do {
 DrawRectangle(x, y, h*2, h)
 x +:= h*2
 y +:= h
 }
 WDone()
end

Result:

CSc 451, Spring 2003 Graphics, Slide 11
W. H. Mitchell

Drawing rectangles, continued

FillRectangle(x, y, w, h) is just like
DrawRectangle but it produces a rectangle filled with the
foreground color.

A related function is EraseArea, which accepts the same
arguments and fills the rectangular area with the background
color (white, by default).

procedure main(args) # dr2
 WOpen("size=300,150")
 x := y := 0
 every h := 10 to 35 by 5 do {
 FillRectangle(x, y, h*2, h)
 EraseArea(x, y, 5, 5)
 x +:= h*2
 y +:= h
 }
 WDone()
end

Result:

CSc 451, Spring 2003 Graphics, Slide 12
W. H. Mitchell

Drawing rectangles, continued

Appendix I in the text covers some painful but important details
about the rendering of various figures.

One example of "interesting" behavior is the difference in the
rectangular area when drawn with DrawRectangle versus
FillRectangle:

CSc 451, Spring 2003 Graphics, Slide 13
W. H. Mitchell

Drawing circles

Circles are drawn with DrawCircle(x, y, radius):

procedure main(args) # dc1
 WOpen("size=200,200")

 width := 1
 every r := 3 to 100 by 20 do {
 DrawCircle(100, 100, r)
 WAttrib("linewidth=" || (width +:= 2))
 }

 WDone()
end

Result:

CSc 451, Spring 2003 Graphics, Slide 14
W. H. Mitchell

Drawing circles, continued

The previous example used some defaults. DrawCircle is
actually more general:

DrawCircle(x, y, r, start, extent)

This draws a circular arc centered at (x, y) with radius r starting
at start radians and continuing through extent radians.
(Recall that 2B radians equals 360 degrees.)

start is measured with zero at 3 o'clock. Positive values for
start and extent indicate a clockwise direction; negative values
indicate counter-clockwise direction.

DrawCircle(..., 0, &pi) DrawCircle(..., &pi, &pi)

DrawCircle(..., &pi/3, &pi*.9)

DrawCircle(..., -&pi/8, -&pi*3/2)

CSc 451, Spring 2003 Graphics, Slide 15
W. H. Mitchell

Drawing circles, continued

Here is a simple-minded test program that exercises
DrawCircle and its counterpart, FillCircle:

procedure main(args) # dc3
 WOpen("size=200,240",
 "linewidth=10")

 WWrite(repl("\n",30))
 repeat {
 EraseArea()

 WWrite("f/d, start, extent? ")

 args := split(WRead())
 p := if get(args) == "f"
 then FillCircle else DrawCircle

 every !args *:= (2*&pi)/360

 p!([100,100,90]|||args)
 WRead()
 }
end

Notes:
Via defaults, EraseArea() erases the entire window.

WRead() reads a line of input typed directly into the
window.

CSc 451, Spring 2003 Graphics, Slide 16
W. H. Mitchell

Drawing arcs

DrawArc(x, y, width, height, start, extent)
draws an arc that is "inscribed" in the rectangle specified by the
first four parameters.

start and extent specify the starting position and angular
extent of the figure, just like DrawCircle.

Here is an example from the text, page 84:

procedure main() # arc1, from GPiI, p.84
 WOpen("size=400,300")

 DrawRectangle(10, 10, 380, 280)

 DrawLine(10,10, 390, 290)
 DrawLine(10, 290, 390, 10)

 DrawArc(10, 10, 380, 280, &pi/4, &pi)
 WDone()
end

Result:

CSc 451, Spring 2003 Graphics, Slide 17
W. H. Mitchell

Drawing arcs, continued

Inscribing 2B arc in a square produces a circle:

Note that the thick stroke is centered on the bounding rectangle.
Here's the code:

procedure main(args) # arc2
 WOpen("size=300,300")

 DrawRectangle(10, 10, 280, 280)

 WAttrib("linewidth=7")

 DrawArc(10, 10, 280, 280, 0, &pi*2)

 WDone()
end

Mnemonic aid for the order of start and extent: "The start
comes first."

CSc 451, Spring 2003 Graphics, Slide 18
W. H. Mitchell

Sidebar: The case statement

Icon's case statement provides for execution of a block of code
based on a discriminating value, much like switch in Java.

A simple example:

procedure main()

 every i := ![2,1,3,4] do {

 case i of {
 1: { write("first") }
 2: { write("second") }
 3: { write("third") }
 default: {

write("other")
notify_support(i)
}

 }
 }
end

Output:

second
first
third
other

Note that the element following the colon is an expression. In
the above example the braces are optional in the first three case
clauses.

The default clause is optional. If omitted and no value
matches, the statement fails.

CSc 451, Spring 2003 Graphics, Slide 19
W. H. Mitchell

The case statement, continued

Note that the case selectors do not need to be constants:

procedure main()
 writes("x? ")
 x := read()
 writes("y? ")
 y := read()

 while line := read() do {
 case line of {
 x: write("Looks like an x...")
 y: write("It's a y!")
 default: write("Hmm...")
 }
 }
end

Interaction:

x? 3
y? 7
1
Hmm...
3
Looks like an x...
6
Hmm...
7
It's a y!
10
Hmm...

CSc 451, Spring 2003 Graphics, Slide 20
W. H. Mitchell

The case statement, continued

A selector may be an arbitrary expression, and be generative:

procedure main()
 every c := !read() do {
 what := case c of {
 !&lcase: "L"
 !&ucase: "U"
 !&digits: "D"
 "."|","|"?": "P"
 whitespace(): "W"
 "\n": c
 default: "?"
 }
 writes(what)
 }
 write()
end

procedure whitespace()
 suspend !" \t"
end

Interaction:

Line?
Test #3?? (input)
ULLLW?DPP

Note that selection is done using exact equality (===).

][case 1 of { "1": "yes" };
Failure

][case 1 of { 1: "yes" };
 r := "yes" (string)

CSc 451, Spring 2003 Graphics, Slide 21
W. H. Mitchell

Interaction basics

Certain actions by the user of a graphical Icon program cause
events to be produced.

Events fall into three categories: keystrokes, mouse actions, and
window resizing.

The Event() function returns the next event from the event
queue. If the queue is empty, Event() waits.

Mouse events are represented by keywords such as &lpress
and &rrelease.

A simple example:

procedure main() # ev1
 WOpen("size=300,400")
 repeat {
 case Event() of {
 &lpress: WWrite("left button down")
 &lrelease: WWrite("left button up")
 &rpress: break
 }
 }
end

CSc 451, Spring 2003 Graphics, Slide 22
W. H. Mitchell

Interaction basics, continued

Each event is actually represented by three values: an event
code, and x and y coordinates.

Event() returns the code for the next event and as a side effect
sets &x and &y. For mouse events the code is a small negative
integer, such as -1 for &lpress.

Here is a program that identifies the quadrant in which the left
button was clicked:

procedure main() # ev2
 WOpen("size=300,300")
 DrawSegment(150,0,150,300,0,150,300,150)
 repeat {
 case Event() of {
 &lpress: {
 if &y < WAttrib("height")/2 then
 WWrites("Upper ")
 else
 WWrites("Lower ")
 if &x < WAttrib("width")/2 then
 WWrite("left")
 else
 WWrite("right")
 }
 &rpress: break
 }
 }
end

Recall that DrawSegment draws non-contiguous lines.

CSc 451, Spring 2003 Graphics, Slide 23
W. H. Mitchell

Interaction basics, continued

Here is a very simple drawing program from the text, page 185:

procedure main() # ev3
 WOpen("size=400,300")
 repeat {
 case Event() of {
 &lpress: {
 DrawPoint(&x, &y)
 x := &x
 y := &y
 }

 &ldrag: {
 DrawLine(x, y, &x, &y)
 x := &x
 y := &y
 }

 &rpress|&rdrag:
 EraseArea(&x - 2, &y - 2, 5, 5)
 }
 }
end

Problem: Describe what would be necessary to save and load
drawings.

CSc 451, Spring 2003 Graphics, Slide 24
W. H. Mitchell

Interaction—keystroke events

Keystrokes produce events. For keys such as A, $, 4, ?, and =,
the value produced by Event() is a string that corresponds to
the key. For other keys, such as the function keys and cursor
keys, Event() produces an integer.

procedure main() # key1
 WOpen("size=300,400")
 repeat {
 case e := Event() of {
 "q"|"Q": break
 default: WWrite(image(e))
 }
 }
end

The library file keysyms.icn has $defines for various
non-textual keys. Examples:

$define Key_Home 36
$define Key_Insert 45
$define Key_F1 112

Use $include "keysyms.icn" (not link).

Keystrokes and mouse actions can be intermixed:

case Event() of {
&lpress: ...
!"Qq"|&rpress: ...
}

CSc 451, Spring 2003 Graphics, Slide 25
W. H. Mitchell

Interaction—keystrokes, continued

Just like with mouse events, &x and &y are set when a keystroke
event is fetched with Event().

The keywords &control, &shift, and &meta can be used to
test whether the control, shift, and/or meta (ALT) keys were
pressed in conjunction with generation of the event.

The keyword &interval is set to the number of milliseconds
that elapsed between this event and the last event.

This program shows information about events:

procedure main() # key3 (based on p.187 of text)
 WOpen("size=300,400")
 repeat {
 e := Event()

 WWrites(if &control then "c" else "-")
 WWrites(if &shift then "s" else "-")
 WWrites(if &meta then "m" else "-")

 WWrite(" ", left(image(e),7),
 left("("||&x||","||&y||")", 12),
 right(&interval,6), "ms")
 }
end

Notes:
(1) &control, et al. either succeed or fail
(2) It is the act of calling Event() that causes &x,

&control, &interval, etc., to be set.
(3) Two other values that are set: &row and &col

CSc 451, Spring 2003 Graphics, Slide 26
W. H. Mitchell

Sidebar: Reversible Drawing

By default, drawing is done in "copy" mode, which overwrites
existing pixels with the pixels being drawn.

If the window attribute drawop is set to reverse, drawing a
figure "inverts" the target pixels. Drawing the same figure
again in the same place causes the figure to disappear, as if it
had never been drawn.

The following program moves a circle across a grid.

procedure main() # rub1a
 WOpen("size=600,300","linewidth=3")
 every x := 50 to 550 by 50 do
 DrawLine(x, 0, x, 299)
 every y := 50 to 250 by 50 do
 DrawLine(0, y, 599, y)
 x := y := 0
 WAttrib("drawop=reverse")
 repeat {
 DrawCircle(x, y, 40) # uses defaults
 WDelay(31) # sleeps for 31 ms
 DrawCircle(x, y, 40)
 x +:= 2
 y +:= 1
 }
end

CSc 451, Spring 2003 Graphics, Slide 27
W. H. Mitchell

Interaction example: rubberbanding

This program draws "rubberbanded" lines:

procedure main() # rub2
 WOpen("size=600,300","linewidth=3")
 WAttrib("drawop=reverse")
 repeat {
 case Event() of {
 &lpress: {
 start_x := &x
 start_y := &y
 }
 &ldrag: {
 DrawLine(start_x, start_y,
 \last_x, \last_y)
 DrawLine(start_x, start_y,
 &x, &y)
 last_x := &x
 last_y := &y
 }
 &lrelease: last_x := last_y := &null
 }
 }
end

Notes:
(1) A left click establishes a starting position for the line.

(2) On each drag event the previously drawn line is erased
and the new line is drawn.

(3) A non-null/null value for last_x indicates that a
line is/is not in progress.

CSc 451, Spring 2003 Graphics, Slide 28
W. H. Mitchell

Rubberbanding, continued

This slight variation draws rubberbanded circles:

procedure main() # rub3
 WOpen("size=600,300","linewidth=3")
 WAttrib("drawop=reverse")
 repeat {
 case Event() of {
 &lpress: {
 start_x := &x
 start_y := &y
 }
 &ldrag: {
 r := sqrt((\last_x-start_x)^2 +

 (last_y-start_y)^2)

 DrawCircle(start_x, start_y, \r)

 DrawCircle(start_x, start_y,
 sqrt((&x-start_x)^2 +
 (&y-start_y)^2))

 last_x := &x
 last_y := &y
 }
 &lrelease: last_x := r := &null
 }
 }
end

CSc 451, Spring 2003 Graphics, Slide 29
W. H. Mitchell

Interaction—blocking vs. polling

The preceding event handling examples all employ
blocking—the Event() call blocks until an event is available.

An alternative to blocking is polling—the program periodically
checks to see if any events are available. If so the events are
processed. If not, other processing is done.

The Pending() function returns the list of events that are
pending. If the list is empty, no events are pending.

Here is a version of the random point drawing program that uses
polling to offer the user some control:

$define Height 100 # symbolic constants
$define Width 300 # via preprocessor
procedure main() # poll1
 WOpen("size=" || Width ||","||Height)
 repeat {
 if *Pending() = 0 then
 DrawPoint(?Width-1, ?Height-1)
 else
 case Event() of {
 &lpress: EraseArea(0,0,300,100)
 " ": until Event() === " "
 !"Qq": exit()
 }
 }
end

CSc 451, Spring 2003 Graphics, Slide 30
W. H. Mitchell

Example: Target game

This program draws a circular target. If the player clicks inside
the target within 800ms, the radius shrinks by 10%. If not, the
radius grows by 10%.

$define Width 600
$define Height 600
procedure main() # target
 WOpen("size="||Width||","||Height,
 "drawop=reverse")

 x := ?Width; y := ?Height; r := 50
 repeat {
 DrawCircle(x, y, r)
 hit := &null
 every 1 to 80 do {
 WDelay(10)
 while *Pending() > 0 do {
 if Event()=== &lpress then {
 if sqrt((x-&x)^2+(y-&y)^2)
 < r then {
 FillCircle(x,y, r)
 WDelay(500)
 FillCircle(x,y,r)
 hit := 1
 break break
 }
 }
 }
 }
 DrawCircle(x,y,r)
 if \hit then r *:= .9 else r *:= 1.10
 x := ?Width; y := ?Height
 }
end

CSc 451, Spring 2003 Graphics, Slide 31
W. H. Mitchell

Example: Dragging objects

This program allows manipulation of randomly drawn circles.

record circle(x,y,r)
procedure main() # drag1
 WOpen("size=600,300","drawop=reverse")

 DrawLine(300,0,300,300)

 circles := make_circles()

 repeat case Event() of {
 &lpress:
 if c := point_in(circles, &x, &y) then {
 lastx := c.x; lasty := c.y
 r := c.r
 repeat case Event() of {
 &ldrag: {
 DrawCircle(lastx, lasty, r)
 DrawCircle(lastx := &x,
 lasty := &y, r)
 }
 &lrelease: {
 DrawCircle(lastx, lasty, r)
 if &x <= 300 then {
 DrawCircle(&x, &y, r)
 c.x := &x; c.y := &y
 }
 else
 delete(circles, c)
 break
 }
 }
 }
 }
end

CSc 451, Spring 2003 Graphics, Slide 32
W. H. Mitchell

Example: Dragging objects, continued

Helper routines:

#
Return a circle that contains the point (x,y)
#
procedure point_in(circles, x, y)
 every c := !circles do
 if sqrt((c.x-x)^2+(c.y-y)^2) < c.r then
 return c
end
#
Create a set of randomly placed and sized
circles
#
procedure make_circles()
 circles := set()
 every 1 to 30 do {
 r := ?40; x := ?(300-r); y := ?300
 DrawCircle(x,y,r)
 insert(circles, circle(x,y,r))
 }
 return circles
end

Additional behaviors to consider:
(1) Dropping one circle on another adds area to target circle.
(2) Dropping a circle on right half turns it into a square.
(3) Dropping a circle on right half adds to pile at bottom of

right half.
(4) Don't center circle on pointer's hotspot.
(5) Support additional types, such as lines.
(6) Have circle pop like a bubble when dropped on right half.

CSc 451, Spring 2003 Graphics, Slide 33
W. H. Mitchell

Mouse tracking

There is no notion of mouse motion events in Icon's graphics
system but the pointer (mouse) position can be queried via the
pointerx and pointery attributes.

The following program repeatedly queries the pointer position
attributes and prints the position upon a change in either
coordinate:

procedure main() # mpoll1
 WOpen("size=300,300")
 repeat {
 x := WAttrib("pointerx")
 y := WAttrib("pointery")
 if not (x = \lastx & y = \lasty) then {
 WWrite("(", x, "," , y, ")")
 lastx := x
 lasty := y
 }

 WDelay(10)
 }
end

Notes:
(1) Without the WDelay() the CPU can be saturated.
(2) Out of window positions are reported and are relative to the

upper left corner of the window.

Speculate: On a 600Mhz Windows system, how much of the
CPU is consumed by the above program? How about with a
smaller delay—1 millisecond?

CSc 451, Spring 2003 Graphics, Slide 34
W. H. Mitchell

Mouse tracking, continued

The following program tracks the pointer on a grid.

procedure main(args) # mpoll3
 WOpen("size=300,300")
 csize := 20
 every x := 0 to 300 by csize do
 DrawLine(x,0,x,300)
 every y := 0 to 300 by csize do
 DrawLine(0,y,300,y)

 repeat {
 x := WAttrib("pointerx") - 4
 y := WAttrib("pointery") - 23
 x := (x / csize) * csize
 y := (y / csize) * csize

 EraseArea!\last
 last := [x+1, y+1, csize-1, csize-1]
 FillRectangle!last
 WDelay(10)
 }
end

Notes:
(1) Note the "fudge" values of 4 and 23.
(2) Improvement: update only on pointer movement.

CSc 451, Spring 2003 Graphics, Slide 35
W. H. Mitchell

Font handling basics

One of the attributes associated with a window is its font. A
font is a set of characters in a particular typeface (or family),
style (such as bold or italic), and size (in "points").

The font attribute can be set or queried with WAttrib() or,
more conveniently, with Font().

procedure main() # font1
 WOpen("size=600,300")
 WWrite("A line of text! (", Font(), ")\n")

 specs := [
 "Arial,20", "Chiller,bold,25",
 "Jokerman,30,italic", "Forte,35"]

 every spec := !specs do {
 Font(spec)
 WWrite("A line of text! (",Font(),")\n")
 }
 WDone()
end

CSc 451, Spring 2003 Graphics, Slide 36
W. H. Mitchell

Font handling basics, continued

Typeface names are system-specific but the following names are
"guaranteed" to work:

mono monospaced, sans-serif
typewriter monospaced, serif
sans proportionally spaced, sans-serif
serif proportionally spaced, serif

In a monospaced font, all characters are the same width.

Character widths vary in a proportionally spaced font.

Font() fails if the requested specification cannot be met.

There is no way to specify a font along with a text-output
operation such as WWrite(). The mode of operation is
always to set the font attribute and then perform text output
operations.

CSc 451, Spring 2003 Graphics, Slide 37
W. H. Mitchell

Rows and columns of characters

Icon's graphics system has some support for treating a window
as a two-dimensional array of characters. The involved
functions assume that all characters in the window are in the
same font and that the font is monospaced.

The window attributes rows and columns can be used to size
a window based on rows and columns of text. The statement

WOpen("font=typewriter,20", "rows=24",
 "columns=80", "cursor=on")

opens a window that can hold 24 rows of 80 characters of text in
a 20-point monospaced font, and turns on the text cursor.

The text cursor can be positioned at a particular row and column
with GotoRC(row, column):

GotoRC(10,20)

Two more variables that are available in conjunction with an
event are &row and &col.

CSc 451, Spring 2003 Graphics, Slide 38
W. H. Mitchell

A start on a text editor

Here is a precursor to a text editor:

$include "keysyms.icn"
procedure main(args) # font2
 #
 # Read file
 every put(lines := [], !open(args[1]))
 #
 # Find length of longest line
 maxline := sort(mapf("*", lines))[-1]

 WOpen("font=typewriter,20", "cursor=on",
 "rows="||*lines+1, "columns="||maxline)
 every WWrite(!lines)

 GotoRC(1,1)
 row := col := 1

 repeat {
 case Event() of {
 Key_Down: row +:= 1 # "Arrow keys"
 Key_Up: row -:= 1 # from keysyms.icn
 Key_Left: col -:= 1
 Key_Right: col +:= 1
 &lpress:
 GotoRC(row := &row, col := &col)
 }
 GotoRC(*lines+1,1)
 WWrites("Row ", right(row,2),
 ", Col ", right(col,2),
 " (", (lines[row][col]|" "), ")")
 GotoRC(row,col)
 }
end

Notes:
(1) Values of row and col are not constrained.
(2) &row and &col seem misaligned on Windows.

CSc 451, Spring 2003 Graphics, Slide 39
W. H. Mitchell

Details on fonts

Fonts have several attributes that can be queried. These
attributes are sometimes called font metrics.

Text is drawn so that the characters stand on a baseline. Some
characters have descenders that extend below the baseline.

The ascent provides an amount of space above the baseline that
is typically taller than the tallest character. The descent provides
space below the baseline.

The leading is the space between baselines. By default it is the
sum of the font's ascent and descent, but it can be set.

The width is the width of the font's widest character.

CSc 451, Spring 2003 Graphics, Slide 40
W. H. Mitchell

Details on fonts, continued

The routine DrawString(x, y, s) draws the string s
using y for a baseline and positioning the left edge of the first
character at x. Example:

procedure main(args) # font3
 WOpen("size=300,150","font="arial,60")
 WWrite()
 ascent := WAttrib("ascent")
 descent := WAttrib("descent")
 leading := WAttrib("leading")

y := leading

 DrawLine(0, y, 300, y)
 DrawString(50,y, "Buy low")

 DrawLine(0, y-ascent, 300, y-ascent)
 DrawLine(0, y+descent, 300, y+descent)

 y +:= leading
 DrawLine(0, y, 300, y)
 DrawString(50,y,"Sell high")

 WDone()
end

Result:

CSc 451, Spring 2003 Graphics, Slide 41
W. H. Mitchell

Example: Boxes around text

This program reads lines from standard input and tiles the
window with boxed text.

The main program reads lines and calls drawBoxedText to
actually draw the text boxes.

Before each box is drawn the width is checked using
TextWidth(s), which returns the width in pixels of the string
s when drawn in the current font.

If there is insufficient space on the current line, a new line is
started by adding leading to y, and resetting x.

record box(rect, text)
global boxes
procedure main() # font4
 boxes := set() # set of box records
 WOpen("size=600,600","font=serif,20")
 gap := 5
 x := gap
 y := 0
 while word := reverse(trim(reverse(read())))do{
 width := TextWidth(word)
 if x + width > WAttrib("width") then {
 x := gap
 y +:= WAttrib("leading") + gap
 }

 x +:= drawBoxedText(x, y, word) + gap
 }

 process(0, y)
end

CSc 451, Spring 2003 Graphics, Slide 42
W. H. Mitchell

Boxes around text, continued

The following routine displays the string s in a box with an
upper left corner at (x,y).

procedure drawBoxedText(x,y,s)
 hspace := 2 # pad with two pixels
 width := TextWidth(s) + hspace*2
 ascent := WAttrib("ascent")
 descent := WAttrib("descent")
 baseline := y + ascent
 height := ascent + descent

 DrawString(x+hspace, baseline, s)

 rect := [x,y,width,height]
 DrawRectangle!rect

 insert(boxes, box(rect,s))
 return width
end

The following routine uses GotoXY() to position the text
cursor and then processes events, using WWrite() to print
words that are clicked on.

procedure process(x, y)
 Font(Font()||",italic")
 GotoXY(x,y + WAttrib("leading") * 2)
 repeat case Event() of {
 &lpress: {
 every b := !boxes do {
 rect := b.rect
 if rect[1] <= &x <= rect[1]+rect[3] &
 rect[2] <= &y <= rect[2]+rect[4] then
 WWrite(b.text)
 }
 }
 }
end

CSc 451, Spring 2003 Graphics, Slide 43
W. H. Mitchell

DrawString vs. WWrite et al.:

WWrite() and WWrites() produce output at the current
position of the text cursor and appropriately update the position
of the text cursor.

The text cursor's position can be set with GotoRC() and
GotoXY(). Its position can be queried via the attributes x and
y (coordinates) and row and col.

DrawString() produces output at the specified position and
does not update the text cursor.

DrawString() changes only the pixels of the characters;
WWrite() outputs a rectangle of pixels.

DrawString(), in conjunction with drawop=reverse,
can be used to animate text. (But this does not work on
Windows.)

Bottom line:

WWrite() is convenient, especially with monospaced
text.

DrawString() provides full control.

DrawString/TextWidth and GotoXY/WWrites are
roughly equal "teams".

CSc 451, Spring 2003 Graphics, Slide 44
W. H. Mitchell

Coordinate translation

The dx and dy attributes specify a translation of the X and Y
coordinates. If dx and/or dy have a non-zero value the value is
automatically added to the X and/or Y coordinate specified in
subsequent graphics calls.

Consider this figure:

Here is code to draw it centered at (100,00) with a radius of 75:

x := y := 100
r := 75
DrawCircle(x, y, r)
DrawSegment(x-r, y, x+r, y, x, y-r, x, y+r)

Here is code that uses translation:

WAttrib("dx=100","dy=100")
r := 75
DrawCircle(0, 0, r)
DrawSegment(-r, 0, r, 0, 0, -r, 0, r)

Changes to dx and dy are not cumulative.

CSc 451, Spring 2003 Graphics, Slide 45
W. H. Mitchell

Clipping

Graphics libraries and/or host operating systems typically
constrain graphical output to the target window—if a figure
extends beyond the bounds of the window the out of bounds
pixels are simply not drawn.

In some cases it is desirable to limit drawing to a portion of a
window. The procedure Clip(x, y, w, h) sets a clipping
region—no pixels will be drawn outside the specified rectangle.

The following program draws randomly sized characters at
random positions on the screen. A clipping region is used to
constrain the output to the center of the window.

procedure main() # clip1
 WOpen("size=400,400")
 center_square := [50,50,300,300]
 DrawRectangle!center_square
 Clip!center_square
 repeat {
 Font("serif,"||(60+?200)) | stop()
 DrawString(?400, ?400, ?&letters)
 if *Pending() > 0 then
 Event() & Event()
 WDelay(70)
 }
end

CSc 451, Spring 2003 Graphics, Slide 46
W. H. Mitchell

Example: Clipping and translation

This program draws random circles. A square clipping region is
initially established at the center of the window and gradually
increased.

When the clipping region reaches the full size of the window,
the foreground and background colors are reversed (via the
reverse attribute), the window is erased, and the process
repeats.

Coordinate translation is used both for drawing and defining the
clipping region.

procedure main() # clip2
 WOpen("size=400,400","dx=200","dy=200")

 rev := create |!["on","off"]
 side := 400
 repeat {

 every i := 1 to side by 5 do {
 WAttrib("dx="||200-i/2,
 "dy="||200-i/2)

 Clip(0,0,i,i)
 every 1 to 20 do
 DrawCircle(?i, ?i, ?25)

 if *Pending() > 0 then
 Event() & Event()
 WDelay(70)
 }
 WAttrib("reverse="||@rev)
 EraseArea()
 }
end

CSc 451, Spring 2003 Graphics, Slide 47
W. H. Mitchell

Color specification

A window has attributes for the foreground and background
colors (fg and bg). They can be set via WAttrib() or with
the Fg(s) and Bg(s) procedures.

Routines such as DrawCircle and FillRectangle draw
pixels in the foreground color, which is black by default.

A simple way to specify a color is by naming one of these hues:

black orange
gray yellow
white green
pink cyan
violet blue
brown purple
red magenta

One way to think of hue: The basic nature of a color.

Example:

procedure main() # color1
 WOpen("size=300,300")
 colors := split("black gray white pink _
 violet brown red orange yellow green _
 cyan blue purple magenta")

 every color := !colors do {
 Bg(color)
 EraseArea()
 until Event() === &lpress
 }
end

CSc 451, Spring 2003 Graphics, Slide 48
W. H. Mitchell

Color specification, continued

Icon's color naming system was inspired by a 1982 paper by
Berk, et al.: A New Color-Naming System for Graphics
Languages that uses natural language to describe a color. Here
is the full form:

lightness saturation hue1 hue2

pale
light
medium
dark
deep

weak
moderate
strong
vivid

hue[ish] hue

Saturation is a measure of how far the color is from a gray.

Lightness is the intensity of a color.

Examples:

pale green
pale weak green
yellow green
greenish yellow
pale greenish yellow
moderate pinkish red
dark bluish purple

All elements are optional except for hue2. The defaults of
medium and vivid are underlined.

A specification like "yellow orange" selects a color
halfway between yellow and orange. "yellowish orange"
specifies a color 3/4 of the way toward orange.

CSc 451, Spring 2003 Graphics, Slide 49
W. H. Mitchell

Color specification, continued

The colrbook program in the IPL displays a hue with varying
levels of lightness and saturation.

Here's a simple program for testing color specifications:

procedure main() # color2
 WOpen("size=300,600")

 WAttrib("font=serif,30")
 WWrite()

 y := WAttrib("fheight")
 striph := 75

 while GotoRC(1,1) &
 WWrites(repl(" ",100),"\r") &
 color := WRead() do {
 if *color = 0 then { # <Enter> clears
 EraseArea()
 y := WAttrib("fheight")
 next
 }
 Fg(color) | next
 FillRectangle(0,y,300,striph)
 Fg("black")
 DrawString(10,y+striph/2,color)
 y +:= striph
 }
end

CSc 451, Spring 2003 Graphics, Slide 50
W. H. Mitchell

Numerical color specification

A color can also be specified numerically, in terms of the
brightness of red, green, and blue light. One form is a comma-
separated triple of decimal integer values in the range 0 to
65,535:

<red>,<green>,<blue>

Examples:

Fg("60000,0,0") # bright red
Fg("0,0,30000") # fairly dark blue
Bg("50000,50000,50000") # light gray
Fg("40000,30000,50000") # pale purple

Zero for all three yields black; maximum values yield white.

Alternatively, values can be specified using triples of 1-4 hex
digits:

Fg("#f00")
Bg("#ff21a")
Fg("#7ffa00b88")
Bg("#123456789abc")

With the hexademical form the number of digits must be a
multiple of three.

The procedure ColorValue(s) produces a string that is the
decimal triple form of the color named by the string s.

The sample program color2a is simply color2 augmented
to show the result of ColorValue().

CSc 451, Spring 2003 Graphics, Slide 51
W. H. Mitchell

Color models

The RGB color model is additive—light from three different
component colors contribute to the final value.

The CMY color model is commonly used when printing colors.
It is called a subtractive model because ink is used to subtract
colors from the image. The colors cyan, magenta, and yellow
reflect no red, green, or blue light, respectively.

Diagrams from Adobe.com

CSc 451, Spring 2003 Graphics, Slide 52
W. H. Mitchell

Color models, continued

A third color model is HSV (Hue, Saturation, Value). "Value"
is the brightness of the color. Here is a conical view of the HSV
space from www.wikipedia.org:

The IPL program colrpick can be used to see the
correspondence between the RGB and HSV models:

CSc 451, Spring 2003 Graphics, Slide 53
W. H. Mitchell

Multiple Windows

Icon's graphics system supports multiple windows.

WOpen() returns a value of type window. A side effect of the
first call to WOpen() is that the resulting value is assigned to
&window (the subject window).

Almost every graphics procedure accepts a window as its first
argument. Examples:

DrawPoint(W, x, y)
Font(W, s)
WWrite(W, s1, s2, ...)

If the first argument to a graphics procedure is not of type
window, &window is assumed as an implicit first argument.

This program,

procedure main()
WOpen("size=300,400")
WWrite("Hello, world!")
WDone()

end

and this program,

main()
w := WOpen("size=300,400")
WWrite(w, "Hello, world!")
WDone(w)

end

are equivalent.

CSc 451, Spring 2003 Graphics, Slide 54
W. H. Mitchell

Multiple windows, continued

This program creates four windows, using the pos attribute to
position the first three windows. The fourth window prints a
count of events received in the other three.

procedure main(args) # mwin1
 sz := "size=200,200"
 w1 := WOpen(sz, "label=One", "pos=300,0")
 w2 := WOpen(sz, "label=Two", "pos=100,300")
 w3 := WOpen(sz, "label=Three", "pos=500,300")

 wins := [w1, w2, w3]
 events := table(0)
 &window :=
 WOpen("size=200,300","font=typewriter,25")

 repeat every w := !wins do {
 if *Pending(w) > 0 then {
 WWrite(w, Event(w))
 events[w] +:= 1

 EraseArea()
 GotoRC(1,1)
 every p := !sort(events,2) do
 WWrite(left(WAttrib(p[1],"label"),10)
 ,p[2])
 }
 }
end

An altenative to polling with Pending() is to use
Active(), which returns a window that has an event pending,
blocking if there are none.

repeat {
 w := Active()
 WWrite(w, Event(w))

...

CSc 451, Spring 2003 Graphics, Slide 55
W. H. Mitchell

Multiple windows, continued

Raise(W) causes the window W to be brought to the top of the
window stack, so that no other window obscures it. Raising a
window typically causes it to become the active window.

The following program makes five overlapping windows and
then raises windows as indicated by the user.

procedure main() # mwin2
 WOpen("size=400,300")
 wins := []
 every i := 1 to 5 do {
 put(wins,WOpen("label=Window "||i,
 "size=200,200",
 "pos=500,"||i*20))
 }

 Raise(&window)
 repeat {
 WWrites("Window? ")
 win := WRead()
 Raise(wins[integer(win)])

 Raise(&window) # without this the raised
 # window would retain
 # the focus
 }
end

There is a counterpart procedure, Lower(W).

A window can be closed with WClose(W). If the subject
window is closed, &window is set to null.

CSc 451, Spring 2003 Graphics, Slide 56
W. H. Mitchell

Windows, canvases, and graphics contexts

A window is actually a coupling between a canvas and a
graphics context. Think of it this way:

record window(canvas, graphics_context)

The canvas represents the on-screen artifact. Drawing
operations change pixels on the canvas.

The graphics context holds a collection of information that is
used to control drawing on the canvas.

Each window attribute is actually associated with either the
canvas or the graphics context. Here's a partial list based on the
attributes that we've covered:

Attributes associated with the graphics context:
bg, fg, drawop, linewidth, dx, dy, font-related
attributes (font, fheight, leading, etc.),
clipping region

Attributes associated with the canvas:
Dimensions (width, rows, etc.), label, pos, row,
col, pointerx, pointery

See Appendix G in the text for a complete list.

CSc 451, Spring 2003 Graphics, Slide 57
W. H. Mitchell

Windows, canvases, and GCs, continued

This statement:

w := WOpen("size=300,300","label=MyWin",
 "linewidth=9")

Creates this coupling:

The various graphics procedures use information from the
canvas and/or the graphics context to perform the desired
operations.

CSc 451, Spring 2003 Graphics, Slide 58
W. H. Mitchell

Multiple graphics contexts for a canvas

In some cases there's a need to regularly change graphics context
attributes, perhaps toggling between two settings for color, but
it's tedious and error-prone to make regular changes with
WAttrib().

A better alternative is provided by cloning, which produces a
window that couples a new graphics context with an existing
canvas.

Given this coupling:

the statement

w2 := Clone(w, "fg=red", "linewidth=21")

produces this:

Non-overridden graphics context attributes are copied from w.

CSc 451, Spring 2003 Graphics, Slide 59
W. H. Mitchell

Multiple GCs for a canvas, continued

For reference:

A line drawn using window w will be black and 9 pixels wide.

A line drawn using window w2 will be red and 21 pixels wide.

Example:

procedure main() # clone1
 w := WOpen("size=300,300","label=MyWin",
 "linewidth=9")
 w2 := Clone(w, "fg=red", "linewidth=21")

 every x := 0 to 300 by 50 do
 every DrawLine((w2|w),x,0,x,300)

 WDone()
end

Note that the thicker line must be drawn first to achieve the
desired effect.

CSc 451, Spring 2003 Graphics, Slide 60
W. H. Mitchell

Multiple GCs for a canvas, continued

This program uses translation, clipping, and cloning to "echo"
points on the left half of the window with circles on the right
half.

procedure main() # clone2
 left := WOpen("size=600,300")

#
Constrain drawing to left half of window

 Clip(left, 0, 0, 300, 300)

#
Establish two new graphics contexts, both

 # with X-coordinate translation and one with
 # a pale red foreground color
 right := Clone(left, "dx=300","fg=pale red")
 right2 := Clone(left, "dx=300")

#
Constrain the echoes to the right half

 Clip(right, 0, 0, 300, 300)
 Clip(right2, 0, 0, 300, 300)

 Height := Width := 300
 while e := Event(left) do {
 case e of {
 &lpress|&ldrag: {
 DrawPoint(left, &x, &y)
 FillCircle(right, &x, &y, 10)
 FillCircle(right2, &x, &y, 5)
 }
 }
 }
end

What would this program be like without using translation,
clipping and cloning?

CSc 451, Spring 2003 Graphics, Slide 61
W. H. Mitchell

VIB and Vidgets

Icon has a set of high-level interface objects known as vidgets
(virtual input gadgets).

The program VIB (visual interface builder) is a WYSIWYG tool
for building user interfaces. The command vib starts VIB.
Here is the initial screen:

The icons below the menu bar represent the available vidgets:

Button
Radio buttons
Text list
Text entry
Slider

Scrollbar
Region
Label
Line

CSc 451, Spring 2003 Graphics, Slide 62
W. H. Mitchell

VIB, continued

Clicking on vidget's icon causes it to be added to the canvas of
the interface. A vidget can be moved with a left-drag and its
size can be adjusted by dragging on one of the resize handles.

Here is an interface with several vidgets:

The overall size of the interface can be adjusted via the target in
the lower right hand corner.

CSc 451, Spring 2003 Graphics, Slide 63
W. H. Mitchell

Vidget properties

Right-clicking on a vidget brings up a properties dialog for the
vidget. Here are the properties for the button:

The label is the text displayed on the button.

ID is the internal name of the vidget.

x, y, width, and height are positioning and sizing
information.

regular, check, etc. and outline specify details of the
button's appearance.

toggle indicates whether the button stays pressed or rebounds.

callback specifies the procedure that is called when the
button is pressed.

CSc 451, Spring 2003 Graphics, Slide 64
W. H. Mitchell

Vidget properties, continued

Here are the properties for the radio buttons:

A button can be added or removed by clicking the add or del
button in the appropriate position.

CSc 451, Spring 2003 Graphics, Slide 65
W. H. Mitchell

Vidget properties, continued

Here are the properties for the slider:

vertical/horizontal specifies the orientation, which can
also be changed with the mouse.

top/left and bottom/right indicate the values that
correspond to the left- and right-most positions of the thumb.
initial is the starting position of the thumb.

filter indicates whether to filter out notifications of position
when the slider is being adjusted.

CSc 451, Spring 2003 Graphics, Slide 66
W. H. Mitchell

Details on using VIB

If run with no arguments, VIB generates a file named
app1.icn if no file by that name exists. If app1.icn exists,
then VIB uses app2.icn, and so forth.

If a file is named on the command line, that name is used.

The File menu operations new, open, save, save as, and
quit do what their name implies.

new and quit will warn if changes have been made since the
last save, but no such check is made if the windowing system
exit is actuated.

The operation File | refresh (ALT-R) simply redraws the
screen.

The Edit | copy and delete operations simply copy or
delete the selected vidget. undelete undoes the last deletion.

The Select menu item simply shows a list of all the vidgets
that have been placed. Use it to select a vidget that is obscured.

CSc 451, Spring 2003 Graphics, Slide 67
W. H. Mitchell

Details on using VIB, continued

The Edit | align vert operation is used to vertically align
vidgets. To use it:

(1) Select a vidget.

(2) Click on Edit | align vert.

(3) Clicking on a vidget to cause its Y-coordinate to be set
to match the vidget selected in the first step.

(4) When all vertical adjustments have been made, click on
the canvas (i.e., not on a vidget) to exit the alignment
mode.

The operation of Edit | align horz operation is similar, but
for horizonal alignment.

On UNIX systems a different mouse cursor is used when in
alignment mode.

CSc 451, Spring 2003 Graphics, Slide 68
W. H. Mitchell

Prototype execution with VIB

One of the entries on VIB's File menu is prototype
(accessible with ALT-P). This causes generation, compilation
and execution of an Icon source file named vibproto.icn.

vibproto.icn includes a "stub" routine for each vidget's
callback. Each stub prints the ID of the vidget and the
accompanying data that is passed to the callback. Here's a
sample:

callback: id=button1, value=1
callback: id=button1, value=1
callback: id=radio_button1, value="A"
callback: id=radio_button1, value="C"
callback: id=slider1, value=0.0
callback: id=slider1, value=1.0
callback: id=region1, value=-1
callback: id=region1, value=-4
callback: id=region1, value="a"
callback: id=region1, value="b"

CSc 451, Spring 2003 Graphics, Slide 69
W. H. Mitchell

VIB-generated code

Here is the first portion of the file generated for the example at
hand:

link vsetup

procedure main(args)
 local vidgets, root, paused

 (WOpen ! ui_atts()) | stop("can't open window")
 vidgets := ui() # set up vidgets
 root := vidgets["root"]

 paused := 1 # flag no work to do
 repeat {
 # handle any events that are available, or
 # wait for events if there is no other work to do
 while (*Pending() > 0) | \paused do {
 ProcessEvent(root, QuitCheck)
 }
 # if <paused> is set null, code can be added here
 # to perform useful work between checks for input
 }
end

Both ui() and ui_attrs() are VIB-maintained procedures.

CSc 451, Spring 2003 Graphics, Slide 70
W. H. Mitchell

VIB-generated code, continued

The next portion of the file is simply callback routines that do
nothing but return:

procedure button_cb1(vidget, value)
 return
end

procedure radio_button_cb1(vidget, value)
 return
end

procedure region_cb1(vidget, e, x, y)
 return
end

procedure slider_cb1(vidget, value)
 return
end

CSc 451, Spring 2003 Graphics, Slide 71
W. H. Mitchell

VIB-generated code, continued

Here is the last portion of the generated file:

#===<<vib:begin>>=== modify using vib; do not remove this
marker line
procedure ui_atts()
 return ["size=486,191", "bg=#C0C0C0"]
end

procedure ui(win, cbk)
return vsetup(win, cbk,
 [":Sizer:::0,0,486,191:",],
 ["button1:Button:regular::15,13,32,20:push",button_cb1],
 ["label1:Label:::213,8,54,14:The Region",],
 ["line1:Line:::292,16,382,16:",],
 ["line2:Line:::98,16,188,16:",],
 ["radio_button1:Choice::3:16,43,55,66:",radio_button_cb1,
 ["one","two","three"]],
 ["slider1:Slider:h:1:19,122,51,12:0.0,1.0,0.5",slider_cb1],
 ["region1:Rect:grooved::95,29,289,147:",region_cb1],)
end
#===<<vib:end>>=== end of section maintained by vib

The ui() routine specifies all the attributes of each vidget.

NOTE: The main routine and the callbacks are generated only
on VIB's initial run for the application. On subsequent runs
VIB only manipulates the ui_atts() and ui() routines.

If you add a vidget in a subsequent run you'll need to edit the
file and add a callback routine for it.

BE SURE to exit VIB before manually editing the generated
file.

CSc 451, Spring 2003 Graphics, Slide 72
W. H. Mitchell

Example: Random points

Consider a VIB-built interface for a program, rpoints, that
randomly draws points:

"Clear" is a rebounding button that clears the grid.

"Pause" is a toggle button that pauses drawing.

The radio buttons set the color used for further points.

CSc 451, Spring 2003 Graphics, Slide 73
W. H. Mitchell

Drawing in a region

The most complex problem deals with drawing the points in the
region.

Each vidget is represented by a record. Every type of vidget
except for lines has the fields ax, ay, aw, and ah that describes
the rectangle that the vidget covers.

Regions have an additional set of fields, ux, uy, uw, and uh
that describe the usable area of the vidget.

The variable vidgets references a table keyed by vidget IDs.
(By default it is local but it is sometimes more convenient to
make it a global.)

The first modification is in main, calling a routine that will
cause point_win, a new variable, to reference the usable area
of the region:

global point_win # ADDED
procedure main(args)
 local vidgets, root

 (WOpen ! ui_atts()) | stop("can't open window")
 vidgets := ui() # set up vidgets
 root := vidgets["root"]

 point_win := setup_point_win(vidgets) # ADDED
 ...

CSc 451, Spring 2003 Graphics, Slide 74
W. H. Mitchell

Drawing in a region, continued

Here is the setup_point_win routine:

procedure setup_point_win(vidgets)
 local region
 #
 # Get the record representing the region
 #
 r := vidgets["region1"]

 #
 # The subject window is cloned and translation is applied so
 # so that (0,0) in point_win references the upper left corner of
 # the usable area of the region.
 #
 point_win := Clone(&window,"dx="||r.ux, "dy="||r.uy)

 #
 # Clipping is applied so that EraseArea() is limited to the
 # region.
 Clip(point_win, 0, 0, r.uw, r.uh)

 #
 # Use a white background for the region.
 Bg(point_win, "white")
 EraseArea(point_win)

 return point_win
end

End result: We can use point_win to draw points in the
region.

CSc 451, Spring 2003 Graphics, Slide 75
W. H. Mitchell

Handling the radio buttons

The next thing is to handle the radio buttons that control the
color of the points. We start with a callback routine:

procedure color_cb(vidget, value)
 Fg(point_win, map(value))
 return
end

When one of the radio buttons is pressed, color_cb is called.
value will be set to the label of the button that was pressed,
i.e., either "Black", "Red", or "White".

The value is mapped to lower case and then Fg is called to set
the selected color as the foreground color of point_win.

We also need another line in main:

root := vidgets["root"]

point_win := setup_point_win(vidgets)
VSetState(vidgets["radio_button1"], "Black") # ADDED

The library procedure VSetState(vidget, value) sets
the state of the specified vidget to the given value.

Calling VSetState simulates the effect of the user performing
the corresponding operation, so color_cb is called.

CSc 451, Spring 2003 Graphics, Slide 76
W. H. Mitchell

Handling the Pause button

One element of handling Pause is trivial—a callback routine that
sets the global variable paused:

procedure pause_cb(vidget, value)
 paused := value
 return
end

Because the Pause button is declared as a toggle, value will be
1 when the button is toggled on, and &null when toggled off.

CSc 451, Spring 2003 Graphics, Slide 77
W. H. Mitchell

Handling the Pause button, continued

The next step is to adjust the event processing loop in main. Here
is the original VIB-generated code and comments:

 paused := 1 # flag no work to do

 repeat {

 # handle any events that are available, or

 # wait for events if there is no other work to do

 while (*Pending() > 0) | \paused do {

 ProcessEvent(root, QuitCheck)

 }

 # if <paused> is set null, code can be added here

 # to perform useful work between checks for input

 }

The VIB-generated loop accommodates the potential need to
interleave other processing with vidget event handling.

Here is a revised version that meets our needs:

 paused := &null # CHANGED

 repeat {

 while (*Pending() > 0) | \paused do {

 ProcessEvent(root, QuitCheck)

 }

 draw_points(point_win) # ADDED

 }

When the Pause button is toggled on, pause is non-null and the
application stays in the while loop whether there are events
pending or not. When Pause is toggled off, pause is &null,
causing execution to drop out of the while loop (if no events
pending) and call draw_points().

Note that the variable paused is generated by VIB but declared as
a local. It must be changed to be a global.

CSc 451, Spring 2003 Graphics, Slide 78
W. H. Mitchell

Finishing up

Here is the routine draw_points:

procedure draw_points(W)
 static width, height
 initial {
 width := WAttrib(W, "width")
 height := WAttrib(W, "height")
 }

 every 1 to 100 do
 DrawPoint(W, ?width, ?height)
end

Finally, here is a callback for the Clear button:

procedure clear_cb(vidget, value)
 EraseArea(point_win)
 return
end

Because the Clear button is a rebounding button, value is
always 1.

CSc 451, Spring 2003 Graphics, Slide 79
W. H. Mitchell

Pausing with a click in the points

Problem: Modify the program so that a left click in the points
has the same effect as toggling the Pause button on. A right
click in the points toggles the Pause button off.

Here is the callback for the region:

procedure region_cb1(vidget, e, x, y)
 return
end

Note that the callback for a region is passed the event and the
coordinates of the event.

CSc 451, Spring 2003 Graphics, Slide 80
W. H. Mitchell

rpoints: Complete source

For reference, here is the complete source for rpoints.

link vsetup

global point_win

global paused # CHANGED

global vidgets # CHANGED

procedure main(args)

 local root # CHANGED

 (WOpen ! ui_atts()) | stop("can't open window")

 vidgets := ui() # set up vidgets

 root := vidgets["root"]

 point_win := setup_point_win(vidgets)

 VSetState(vidgets["radio_button1"], "Black")

 paused := &null # CHANGED!

 repeat {

 # handle any events that are available, or

 # wait for events if there is no other work to do

 while (*Pending() > 0) | \paused do {

 ProcessEvent(root, QuitCheck)

 }

 # if <paused> is set null, code can be added here

 # to perform useful work between checks for input

 draw_points(point_win)

 }

end

procedure setup_point_win(vidgets)

 local region

 r := vidgets["region1"]

 point_win := Clone(&window,

 "dx="||r.ux, "dy="||r.uy)

 Clip(point_win, 0, 0, r.uw, r.uh)

 Bg(point_win, "white")

 EraseArea(point_win)

 return point_win

end

CSc 451, Spring 2003 Graphics, Slide 81
W. H. Mitchell

rpoints: Complete source, continued

procedure draw_points(W)

 static width, height

 initial {

 width := WAttrib(W, "width")

 height := WAttrib(W, "height")

 }

 every 1 to 100 do

 DrawPoint(W , ?width, ?height)

end

procedure clear_cb(vidget, value)

 EraseArea(point_win)

 return

end

procedure pause_cb(vidget, value)

 paused := value

 return

end

procedure color_cb(vidget, value)

 Fg(point_win, value)

 return

end

procedure region_cb1(vidget, e, x, y)

 case e of {

 &lpress: VSetState(vidgets["button2"], 1)

 &rpress: VSetState(vidgets["button2"], &null)

 }

 return

end

CSc 451, Spring 2003 Graphics, Slide 82
W. H. Mitchell

rpoints: Complete source, continued

#===<<vib:begin>>=== modify using vib; do not remove this marker

line

procedure ui_atts()

 return ["size=378,198", "bg=#C0C0C0"]

end

procedure ui(win, cbk)

return vsetup(win, cbk,

 [":Sizer:::0,0,378,198:",],

 ["button1:Button:regular::285,9,84,20:Clear",clear_cb],

 ["button2:Button:regular:1:287,43,84,20:Pause",pause_cb],

 ["radio_button1:Choice::3:288,74,57,66:",color_cb,

 ["Black","Red","W hite"]],

 ["region1:Rect:grooved::8,6,262,182:",region_cb1],

)

end

#===<<vib:end>>=== end of section maintained by vib

CSc 451, Spring 2003 Graphics, Slide 83
W. H. Mitchell

Text lists

The text list vidget displays a scrollable list of lines of text.
Here is a text list with the letters A-F:

A text list can be configured as "select one", "select many", or
"read only". The list can be scrolled vertically but not
horizontally.

The items of a text list can be set with VSetItems():

VSetItems(vidgets["list1"],
 ["A","B","C","D","E","F"])

There is no provision for adjusting the list other than to call
VSetItems() with a different list of values.

The list can be retrieved with VGetItems(V).

CSc 451, Spring 2003 Graphics, Slide 84
W. H. Mitchell

Text lists, continued

Here is the VIB-generated callback for a text list:

procedure list_cb1(vidget, value)
 return
end

If the list is single-selection, clicking on an item (e.g., "A")
produces a callback with value equal to "A".

If the list is multiple-selection, the callback is invoked with a list
of the currently selected items, such as ["A"], ["B","E"],
or [] (if no items are selected).

The state of a list can be retrieved with VGetState(V). The
value produced is a list. The first element is the index of the
first visible list entry. The following elements are the indices of
the selected entries, if any.

 (textlist2)

Vidget: list2
Value: "B"
State: [1,2]

Vidget: list3
Value: ["C","E","F"]
State: L7:[3,3,5,6]

CSc 451, Spring 2003 Graphics, Slide 85
W. H. Mitchell

Text lists, continued

For reference:

Here is the pertinent code:

File scope:
global vidgets

In main:

every VSetItems(vidgets["list"||(1 to 3)],
 ["A","B","C","D","E","F","G","H"])

In list_cb:

procedure list_cb(vidget, value)
 vidget := vidgets[vidget.id] # REQUIRED!?!
 write("Vidget: ", vidget.id)

write("Value: ", Image(value,3))
write("State: ", Image(VGetState(vidget),3))
write()

 return
end

Note that the same callback, list_cb, is specified for all three lists.

CSc 451, Spring 2003 Graphics, Slide 86
W. H. Mitchell

sel—A line selection tool

sel reads lines on standard input and displays a text list containing the
lines. The user then indicates which lines are of interest and then sel
prints them on standard output.

If the file days contains the days of the week, the command

sel < days

displays this:

Clicking on "Sunday", then "Friday", then Done would produce two
lines of output. The same clicks, then Invert, then Done, would
produce five lines of output.

This tool might be used to produce an argument list for another
command:

% rm `ls | sel`
% tar cvf x.tar `ls | sel`

(The shell construct `x` runs the command x and substitutes the output
in the command line.)

CSc 451, Spring 2003 Graphics, Slide 87
W. H. Mitchell

sel—Implementation

In main, just above the event-processing loop:

every put(items := [], !&input)
VSetItems(vidgets["list1"], items)

Callbacks:

global selected
procedure list_cb1(vidget, value)
 selected := value
 return
end

#
To invert the list we first query the state and
then build a list, 'inverted', that contains
every position that doesn't appear in the current
state.
#
Example: With a five item list, if the state is
[2,4] then inverted will be [1,3,5].

procedure invert_cb(vidget, value)
 vidget := vidgets["list1"] # REQUIRED!?!
 selected := VGetState(vidget)

 inverted := [get(selected)] # preserve position

 every i := 1 to *VGetItems(vidget) do
 if not (i = !selected) then put(inverted,i)

 VSetState(vidget, inverted) # calls list_cb1
 return
end

procedure done_cb(vidget, value)
 every write(!selected)
 exit()
end

CSc 451, Spring 2003 Graphics, Slide 88
W. H. Mitchell

Sliders and scrollbars

Consider a program, adjust, that permits adjustment of the "height"
and line width of an ellipse via a scrollbar and a slider:

The implementation is simple: Redraw the ellipse whenever the slider or
scrollbar is adjusted, using the current state of the two vidgets to control
the height and line width.

The slider is configured with a minimum value of 1 and a maximum of
20, directly specifying a line width. The initial value is 1. Filtering is
turned off.

The scrollbar uses the default range of 0.0 to 1.0 and an initial value of
0.5. Filtering is turned off.

CSc 451, Spring 2003 Graphics, Slide 89
W. H. Mitchell

Sliders and scrollbars, continued

As in the rpoints example, a cloned window (ewin) that
corresponds to the region is established:

procedure setup_ewin()
 r := vidgets["region1"]
 ewin := Clone(&window,
 "dx="||r.ux, "dy="||r.uy)
 Clip(ewin, 0, 0, r.uw, r.uh)
end

Note that both ewin and vidgets are declared as globals.

Upon an adjustment we simply call draw(), which actually draws the
ellipse. The same callback can be used by both the slider and the
scrollbar:

procedure adjust_cb(vidget, value)
 draw()
 return
end

In main, we simply create ewin and call draw() to get the initial
ellipse:

...
root := vidgets["root"]

setup_ewin() # Added
draw() # Added

paused := 1
repeat {
...

CSc 451, Spring 2003 Graphics, Slide 90
W. H. Mitchell

Sliders and scrollbars, continued

Here is the drawing routine:

procedure draw()
 static height, width
 initial {
 width := WAttrib(ewin, "clipw")
 height := WAttrib(ewin, "cliph")
 }

 EraseArea(ewin)

 curheight :=
 VGetState(vidgets["sbar1"]) * (height-20)

 WAttrib(ewin, "linewidth=" ||
 VGetState(vidgets["slider1"]))

 DrawArc(ewin, 10, 10, width-20, curheight)
end

VGetState() is used to query the positions of both the scrollbar and
the slider.

The range of the scrollbar (sbar1) is 0.0 to 1.0 and that value is scaled
by the height.

The range of the slider is 1 to 20 and that value is used as the line width.

An alternative to the VGetState() calls would be to use separate
callbacks for the slider and scrollbar. The slider callback would use
WAttrib() to set the line width. The scrollbar callback would put the
value passed to the callback (the second argument) in a global variable
that would be accessed in draw().

The 10s and 20s simply provide centering of the ellipse.

CSc 451, Spring 2003 Graphics, Slide 91
W. H. Mitchell

Text vidgets

A text vidget consists of a label and a field in which to type text. This
application, text1, has two text vidgets and, on the line below, a label.
To the right of the label is a region with an invisible border.

The concatenation of the text entered in the two text vidgets, and the
length, is displayed.

Text vidgets are somewhat limited in functionality. Characters are
recognized only when the mouse is over the vidget. A callback is
generated only when the user presses return and until the user the
presses return, VGetState() returns null.

Further, due to a bug in the Windows implementation the input-
sensitive region is not aligned what's drawn on the screen. The
atrocious but currently best workaround for this is to position the
window so that the upper left corner of the canvas is in the upper left
corner of the display. On Windows NT, this does it:

WAttrib("pos=-4,-23")

CSc 451, Spring 2003 Graphics, Slide 92
W. H. Mitchell

Text vidgets, continued

The callback for each text vidget simply stores the value in a global
variable, and calls a routine to update the result:

procedure text_input_cb1(vidget, value)
 first_part := value
 show_result()
 return
end

text_input_cb2 is similar, but assigns to second_part.

CSc 451, Spring 2003 Graphics, Slide 93
W. H. Mitchell

Text vidgets, continued

The common way to produce computed text on a VIB interface is to
create an invisible region where the text is to appear and use the
coordinates and size of that region to control the output.

Here is a utility routine that is like WWrites(), but accepts a region
vidget (or its ID) as its first argument and writes the text of the
following arguments into the region, truncating appropriately.

procedure RWWrites(rvidget, args[])
 r := \vidgets[rvidget] | rvidget
 GotoXY(r.ux, r.uy+WAttrib("ascent"))

 s := ""
 every s ||:= !args
 WWrites(left(s, r.uw/TextWidth("x")))
 return
end

Use link whmvib to access the routine.

Here is the routine called by the text vidget callbacks:

procedure show_result()
 RWWrites("region1",
 s := first_part || " " || second_part,
 " (", *s, " chars)")
end

CSc 451, Spring 2003 Graphics, Slide 94
W. H. Mitchell

Example: A text window

Here is an example of using keyboard events from a region to
implement a very simple text editing window.

procedure region_cb1(vidget, e, x, y)
 static r
 initial r := ""
 case e of {
 default: if type(e) == "string" then {
 case e of {
 "\r": r ||:= "\r\n"
 "\b": if r[-1] == "\n" then
 r[0-:2] := ""
 else
 r[-1] := ""
 default:
 r ||:= e
 }
 EraseArea(point_win)
 GotoRC(point_win,1,1)
 WWrites(point_win,r,"_")
 }
 }
 return
end

CSc 451, Spring 2003 Graphics, Slide 95
W. H. Mitchell

VIB dialogs

In addition to creating program interfaces, VIB can create dialog
boxes. Here is a dialog for picking a color:

Use VIB as usual to create the interface and then click on the
lower right corner to bring up the interface properties. Set the
procedure name (color_dialog) and select "dialog
window".

CSc 451, Spring 2003 Graphics, Slide 96
W. H. Mitchell

VIB dialogs, continued

Here is a simple program to exercise the dialog: (dlg1)

By default, a black circle is drawn in response to a click in the
region. Pressing the Color button brings up the color selection
dialog to specify the color of subsequent circles.

CSc 451, Spring 2003 Graphics, Slide 97
W. H. Mitchell

VIB dialogs, continued

The color dialog is handled entirely in the callback for the
Color button:

procedure color_cb(vidget, value)
 attribs := table()
 attribs["lightness"] := "medium"
 attribs["hue1"] := "black"

 if color_dialog(&window, attribs) == "Okay"
 then
 Fg(dwin, attribs["lightness"] || " " ||
 attribs["hue1"] || " " ||
 attribs["hue2"])
 return
end

The dialog is brought up by calling color_dialog, the
procedure name specified in the interface properties, as shown
on slide 95.

Two arguments are passed to color_dialog: the window to
associate the dialog with, and a table specifying initial values for
the vidgets in the dialog.

When the dialog is dismissed, color_dialog returns the
label of the button used to dismiss it.

In the above example, if the user pressed the Okay button, the
color for dwin (a cloned window for the region) is set based on
values in attribs, which in turn were set to the vidget values
present when the dialog was dismissed.

CSc 451, Spring 2003 Graphics, Slide 98
W. H. Mitchell

VIB dialogs, continued

There can only be one VIB-generated interface in a source file,
so each dialog must be in its own source file.

The color dialog was created with 'vib cdialog.icn'. Here
is cdialog.icn, minus comments:

link dsetup
#===<<vib:begin>>=== modify using vib;
procedure color_dialog(win, deftbl)
static dstate
initial dstate := dsetup(win,
 ["color_dialog:Sizer::1:0,0,243,120:",],

["button1:Button:regular:-1:101,86,35,20:Okay",],

["button2:Button:regular::152,86,49,20:Cancel",],
 ["hue1:Text::14:87,23,150,20:Hue #1\\=",],
 ["hue2:Text::14:89,53,150,20:Hue #2\\=",],
 ["lightness:Choice::5:8,9,72,110:",,
 ["pale","light","medium","dark","deep"]],
)
return dpopup(win, deftbl, dstate)
end
#===<<vib:end>>===

The program was built with the command

icont dlg1.icn cdialog.icn

Note that VIB assumes that non-toggling buttons dismiss the
dialog. If a button is specified (via VIB) as "dialog default",
then hitting <Enter> will simulate a button press on it.

CSc 451, Spring 2003 Graphics, Slide 99
W. H. Mitchell

Utility dialogs

There are several other utility dialogs, such as Notice(). One
is TextDialog, which presents a set of labeled text vidgets.
This program:

global dialog_value
procedure main() # dlg2
 rslt := TextDialog("What is your birthday?",
 ["Month", "Day", "Year"],
 [1,1,2000],
 [2,2,4], # field widths
 ["Done","Cancel"])

 write(Image([rslt, dialog_value],3))
end

Produces this dialog:

When dismissed, the global dialog_value is set to the
values of the fields and the label of the button pressed is
returned.

The above Image might produce this:
["Done",["7","4","1976"]]

CSc 451, Spring 2003 Graphics, Slide 100
W. H. Mitchell

Utility dialogs, continued

Other utility dialogs are:

SelectDialog—displays a set of radio buttons

ToggleDialog—displays a set of toggle buttons

ColorDialog—allows selection of a color using the
RGB or HSV color models

OpenDialog, SaveDialog—simple front-ends to
TextDialog to prompt for file names

Chapter 14 in the graphics text describes the utility dialogs in
detail.

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92
	Page 93
	Page 94
	Page 95
	Page 96
	Page 97
	Page 98
	Page 99
	Page 100

