
CSc 451, Spring 2003 Graphics, Slide 53
W. H. Mitchell

Multiple Windows

Icon's graphics system supports multiple windows.

WOpen() returns a value of type window. A side effect of the
first call to WOpen() is that the resulting value is assigned to
&window (the subject window).

Almost every graphics procedure accepts a window as its first
argument. Examples:

DrawPoint(W, x, y)
Font(W, s)
WWrite(W, s1, s2, ...)

If the first argument to a graphics procedure is not of type
window, &window is assumed as an implicit first argument.

This program,

procedure main()
WOpen("size=300,400")
WWrite("Hello, world!")
WDone()

end

and this program,

main()
w := WOpen("size=300,400")
WWrite(w, "Hello, world!")
WDone(w)

end

are equivalent.

CSc 451, Spring 2003 Graphics, Slide 54
W. H. Mitchell

Multiple windows, continued

This program creates four windows, using the pos attribute to
position the first three windows. The fourth window prints a
count of events received in the other three.

procedure main(args) # mwin1
 sz := "size=200,200"
 w1 := WOpen(sz, "label=One", "pos=300,0")
 w2 := WOpen(sz, "label=Two", "pos=100,300")
 w3 := WOpen(sz, "label=Three", "pos=500,300")

 wins := [w1, w2, w3]
 events := table(0)
 &window :=
 WOpen("size=200,300","font=typewriter,25")

 repeat every w := !wins do {
 if *Pending(w) > 0 then {
 WWrite(w, Event(w))
 events[w] +:= 1

 EraseArea()
 GotoRC(1,1)
 every p := !sort(events,2) do
 WWrite(left(WAttrib(p[1],"label"),10)
 ,p[2])
 }
 }
end

An altenative to polling with Pending() is to use
Active(), which returns a window that has an event pending,
blocking if there are none.

repeat {
 w := Active()
 WWrite(w, Event(w))

...

CSc 451, Spring 2003 Graphics, Slide 55
W. H. Mitchell

Multiple windows, continued

Raise(W) causes the window W to be brought to the top of the
window stack, so that no other window obscures it. Raising a
window typically causes it to become the active window.

The following program makes five overlapping windows and
then raises windows as indicated by the user.

procedure main() # mwin2
 WOpen("size=400,300")
 wins := []
 every i := 1 to 5 do {
 put(wins,WOpen("label=Window "||i,
 "size=200,200",
 "pos=500,"||i*20))
 }

 Raise(&window)
 repeat {
 WWrites("Window? ")
 win := WRead()
 Raise(wins[integer(win)])

 Raise(&window) # without this the raised
 # window would retain
 # the focus
 }
end

There is a counterpart procedure, Lower(W).

A window can be closed with WClose(W). If the subject
window is closed, &window is set to null.

CSc 451, Spring 2003 Graphics, Slide 56
W. H. Mitchell

Windows, canvases, and graphics contexts

A window is actually a coupling between a canvas and a
graphics context. Think of it this way:

record window(canvas, graphics_context)

The canvas represents the on-screen artifact. Drawing
operations change pixels on the canvas.

The graphics context holds a collection of information that is
used to control drawing on the canvas.

Each window attribute is actually associated with either the
canvas or the graphics context. Here's a partial list based on the
attributes that we've covered:

Attributes associated with the graphics context:
bg, fg, drawop, linewidth, dx, dy, font-related
attributes (font, fheight, leading, etc.),
clipping region

Attributes associated with the canvas:
Dimensions (width, rows, etc.), label, pos, row,
col, pointerx, pointery

See Appendix G in the text for a complete list.

CSc 451, Spring 2003 Graphics, Slide 57
W. H. Mitchell

Windows, canvases, and GCs, continued

This statement:

w := WOpen("size=300,300","label=MyWin",
 "linewidth=9")

Creates this coupling:

The various graphics procedures use information from the
canvas and/or the graphics context to perform the desired
operations.

CSc 451, Spring 2003 Graphics, Slide 58
W. H. Mitchell

Multiple graphics contexts for a canvas

In some cases there's a need to regularly change graphics context
attributes, perhaps toggling between two settings for color, but
it's tedious and error-prone to make regular changes with
WAttrib().

A better alternative is provided by cloning, which produces a
window that couples a new graphics context with an existing
canvas.

Given this coupling:

the statement

w2 := Clone(w, "fg=red", "linewidth=21")

produces this:

Non-overridden graphics context attributes are copied from w.

CSc 451, Spring 2003 Graphics, Slide 59
W. H. Mitchell

Multiple GCs for a canvas, continued

For reference:

A line drawn using window w will be black and 9 pixels wide.

A line drawn using window w2 will be red and 21 pixels wide.

Example:

procedure main() # clone1
 w := WOpen("size=300,300","label=MyWin",
 "linewidth=9")
 w2 := Clone(w, "fg=red", "linewidth=21")

 every x := 0 to 300 by 50 do
 every DrawLine((w2|w),x,0,x,300)

 WDone()
end

Note that the thicker line must be drawn first to achieve the
desired effect.

CSc 451, Spring 2003 Graphics, Slide 60
W. H. Mitchell

Multiple GCs for a canvas, continued

This program uses translation, clipping, and cloning to "echo"
points on the left half of the window with circles on the right
half.

procedure main() # clone2
 left := WOpen("size=600,300")

#
Constrain drawing to left half of window

 Clip(left, 0, 0, 300, 300)

#
Establish two new graphics contexts, both

 # with X-coordinate translation and one with
 # a pale red foreground color
 right := Clone(left, "dx=300","fg=pale red")
 right2 := Clone(left, "dx=300")

#
Constrain the echoes to the right half

 Clip(right, 0, 0, 300, 300)
 Clip(right2, 0, 0, 300, 300)

 Height := Width := 300
 while e := Event(left) do {
 case e of {
 &lpress|&ldrag: {
 DrawPoint(left, &x, &y)
 FillCircle(right, &x, &y, 10)
 FillCircle(right2, &x, &y, 5)
 }
 }
 }
end

What would this program be like without using translation,
clipping and cloning?

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8

