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Multiple Windows

Icon's graphics system supports multiple windows.

WOpen() returns a value of type window.  A side effect of the
first call to WOpen() is that the resulting value is assigned to
&window (the subject window).

Almost every graphics procedure accepts a window as its first
argument.  Examples:

DrawPoint(W, x, y)
Font(W, s)
WWrite(W, s1, s2, ...)

If the first argument to a graphics procedure is not of type
window, &window is assumed as an implicit first argument.

This program,

procedure main()
WOpen("size=300,400")
WWrite("Hello, world!")
WDone()

end

and this program,

main()
w := WOpen("size=300,400")
WWrite(w, "Hello, world!")
WDone(w)

end

are equivalent.
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Multiple windows, continued

This program creates four windows, using the pos attribute to
position the first three windows.  The fourth window prints a
count of events received in the other three.

procedure main(args) # mwin1
    sz := "size=200,200"
    w1 := WOpen(sz, "label=One", "pos=300,0")
    w2 := WOpen(sz, "label=Two", "pos=100,300")
    w3 := WOpen(sz, "label=Three", "pos=500,300")

    wins := [w1, w2, w3]
    events := table(0)
    &window :=
        WOpen("size=200,300","font=typewriter,25")

    repeat every w := !wins do {
        if *Pending(w) > 0 then {
            WWrite(w, Event(w))
            events[w] +:= 1

            EraseArea()
            GotoRC(1,1)
            every p := !sort(events,2) do
              WWrite(left(WAttrib(p[1],"label"),10)
                     ,p[2])
            }
        }
end

An altenative to polling with Pending() is to use
Active(), which returns a window that has an event pending,
blocking if there are none. 

repeat {
        w := Active()
        WWrite(w, Event(w))

...
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Multiple windows, continued

Raise(W) causes the window W to be brought to the top of the
window stack, so that no other window obscures it.  Raising a
window typically causes it to become the active window.

The following program makes five overlapping windows and
then raises windows as indicated by the user.

procedure main() # mwin2
    WOpen("size=400,300")
    wins := []
    every i := 1 to 5 do {
        put(wins,WOpen("label=Window "||i,
                       "size=200,200",
                       "pos=500,"||i*20))
        }

    Raise(&window)
    repeat {
        WWrites("Window? ")
        win := WRead()
        Raise(wins[integer(win)])

        Raise(&window) # without this the raised
                       # window would retain
                       # the focus
        }
end

There is a counterpart procedure, Lower(W).

A window can be closed with WClose(W).  If the subject
window is closed, &window is set to null.
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Windows, canvases, and graphics contexts

A window is actually a coupling between a canvas and a
graphics context.  Think of it this way:

record window(canvas, graphics_context)

The canvas represents the on-screen artifact.  Drawing
operations change pixels on the canvas.

The graphics context holds a collection of information that is
used to control drawing on the canvas.

Each window attribute is actually associated with either the
canvas or the graphics context.  Here's a partial list based on the
attributes that we've covered:

Attributes associated with the graphics context:
bg, fg, drawop, linewidth, dx, dy, font-related
attributes (font, fheight, leading, etc.),
clipping region

Attributes associated with the canvas:
Dimensions (width, rows, etc.), label, pos, row,
col, pointerx, pointery

See Appendix G in the text for a complete list.
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Windows, canvases, and GCs, continued

This statement:

w := WOpen("size=300,300","label=MyWin",
       "linewidth=9")

Creates this coupling:

The various graphics procedures use information from the
canvas and/or the graphics context to perform the desired
operations.
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Multiple graphics contexts for a canvas

In some cases there's a need to regularly change graphics context
attributes, perhaps toggling between two settings for color, but
it's tedious and error-prone to make regular changes with
WAttrib().

A better alternative is provided by cloning, which produces a
window that couples a new graphics context with an existing
canvas.

Given this coupling:

the statement

w2 := Clone(w, "fg=red", "linewidth=21")

produces this:

Non-overridden graphics context attributes are copied from w.



CSc 451, Spring 2003            Graphics, Slide 59
W. H. Mitchell

Multiple GCs for a canvas, continued

For reference:

A line drawn using window w will be black and 9 pixels wide.

A line drawn using window w2 will be red and 21 pixels wide.

Example:

procedure main() # clone1
    w := WOpen("size=300,300","label=MyWin",
               "linewidth=9")
    w2 := Clone(w, "fg=red", "linewidth=21")

    every x := 0 to 300 by 50 do
        every DrawLine((w2|w),x,0,x,300)

    WDone()
end

Note that the thicker line must be drawn first to achieve the
desired effect.
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Multiple GCs for a canvas, continued

This program uses translation, clipping, and cloning to "echo"
points on the left half of the window with circles on the right
half.

procedure main() # clone2
    left := WOpen("size=600,300")

#
# Constrain drawing to left half of window

    Clip(left, 0, 0, 300, 300)

#
# Establish two new graphics contexts, both

    # with X-coordinate translation and one with
    # a pale red foreground color
    right := Clone(left, "dx=300","fg=pale red")
    right2 := Clone(left, "dx=300")

#
# Constrain the echoes to the right half

    Clip(right, 0, 0, 300, 300)
    Clip(right2, 0, 0, 300, 300)

    Height := Width := 300
    while e := Event(left) do {
        case e of {
            &lpress|&ldrag: {
                DrawPoint(left, &x, &y)
                FillCircle(right, &x, &y, 10)
                FillCircle(right2, &x, &y, 5)
                }
            }
        }
end

What would this program be like without using translation,
clipping and cloning?
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