
CSc 451, Spring 2003 Slide 1
W. H. Mitchell

What is Icon?

Icon is a high-level, general purpose, imperative language with a
traditional appearance, but has several interesting aspects:

A rich set of built-in data types

A rich but cohesive and orthogonal set of operators and
functions

A novel expression evaluation mechanism

An integrated facility for analysis of strings

Automatic memory management (garbage collection)

A small "mental footprint"

The philosophy of Icon: (in my opinion)

Provide a “critical-mass” of types and operations

Give the programmer as much freedom as possible

Put the burden of efficiency on the language
implementation

Another opinion: Every programmer should have a language
like Icon in their “toolbox”.

CSc 451, Spring 2003 Slide 2
W. H. Mitchell

A little history

Icon is a descendent of SNOBOL4 and SL5.

Icon was designed at the University of Arizona in the late 1970s
by a team lead by Ralph Griswold.

Last major upheaval in the language itself was in 1982, but a
variety of minor elements have been added in the years since.

Idol, an object-oriented derivative was developed in 1988 by
Clint Jeffery.

Graphics extensions evolved from 1990 through 1994.

Unicon (Unified Extended Icon) evolved from 1997 through
1999 and incremental change continues. Unicon has support for
object-oriented programming, systems programming, and
programming-in-the-large.

The origin of the name "Icon" is clouded. Some have suggested
it comes from "iconoclast".

CSc 451, Spring 2003 Slide 3
W. H. Mitchell

Icon—Dead or Alive?

"I'm worried we're learning some dead language just
because it was invented here at the U of A."

—Larry Johnson, CSc 372, Fall 1996

CSc 451, Spring 2003 Slide 4
W. H. Mitchell

Running Icon

The traditional way of using Icon is to put an entire program
into a file, translate it into a bytecode executable, and run it.

In this class we'll start by using an experimental program named
ie, which evaluates Icon expressions interactively:

% /home/cs451/bin/ie
Icon Evaluator, Version 0.8.1, ? for help
][3+4;
 r1 := 7 (integer)

][3.4*5.6;
 r2 := 19.04 (real)

]["x" || "y" || "z";
 r3 := "xyz" (string)

][reverse(r3);
 r4 := "zyx" (string)

][center("hello",20,".");
 r5 := ".......hello........" (string)

][^D (control-D to exit)

%

CSc 451, Spring 2003 Slide 5
W. H. Mitchell

Variables

Variables can be declared explicitly but the more common
practice is to simply name variables when needed.

][x := 3+4;
 r := 7 (integer)

][x;
 r := 7 (integer)

][y := x + 10;
 r := 17 (integer)

][y;
 r := 17 (integer)

Variable names may consist of any number of letters, digits, and
underscores and must start with letter or underscore.

Variable names, along with everything else in Icon, are case-
sensitive.

Note that the result of assignment is the value assigned.

CSc 451, Spring 2003 Slide 6
W. H. Mitchell

Variables, continued

Uninitialized variables have a null value:

][xyz;
 r := &null (null)

A variable may be assigned the null value:

][x := 30;
 r := 30 (integer)

][x := &null;
 r := &null (null)

][x;
 r := &null (null)

&null is one of many Icon keywords—special identifiers
whose name is prefixed with an ampersand.

CSc 451, Spring 2003 Slide 7
W. H. Mitchell

Variables, continued

Icon variables have no type associated with them. Instead, types
are associated with values themselves.

Any variable may be assigned a value of any type and then later
assigned a value of a different type:

][x := "testing";
 r := "testing" (string)

][x;
 r := "testing" (string)

][x := 3.4;
 r := 3.4 (real)

][x;
 r := 3.4 (real)

][x := 100;
 r := 100 (integer)

][x;
 r := 100 (integer)

Note that there is no way to declare the type of a variable.

CSc 451, Spring 2003 Slide 8
W. H. Mitchell

Variables, continued

The type of a value can determined with the type function:

][type("abc");
 r := "string" (string)

][type(3/4);
 r := "integer" (string)

][type(3.0/4.0);
 r := "real" (string)

][x := "abc";
 r := "abc" (string)

If the argument of type is a variable, it is the type of the value
held by the variable that is reported:

][type(x);
 r := "string" (string)

][type(type);
 r := "procedure" (string)

][type(xyz); (no value assigned...)
 r := "null" (string)

CSc 451, Spring 2003 Slide 9
W. H. Mitchell

Arithmetic operations

Integers and reals are collectively referred to as numeric types.

Icon's arithmetic operators for numeric types:

+ addition
- subtraction
* multiplication
/ division
% remaindering (reals are allowed)
^ exponentiation
- negation (unary operator)
+ (unary operator)

Examples:

][30 / 4;
 r := 7 (integer)

][30 / 4.0;
 r := 7.5 (real)

][2.3 % .4;
 r := 0.3 (real)

][-r;
 r := -0.3 (real)

][+-3;
 r1 := -3 (integer)

A binary arithmetic operator produces an integer result only if
both operands are integers.

CSc 451, Spring 2003 Slide 10
W. H. Mitchell

Arithmetic operations, continued

Exponentiation:

][2 ^ 3;
 r := 8 (integer)

][100 ^ .5;
 r := 10.0 (real)

Some implementations of Icon support infinite precision integer
arithmetic:

][x := 2 ^ 70;
 r := 1180591620717411303424 (integer)

][y := 2 ^ 62;
 r := 4611686018427387904 (integer)

][x / y;
 r := 256 (integer)

integer is the only integer type in Icon; real is the only
floating point type in Icon.

CSc 451, Spring 2003 Slide 11
W. H. Mitchell

Conversion between types

Icon freely converts between integers, reals, and strings if a
supplied value is not of the required type:

][x := 3.4 * "5";
 r := 17.0 (real)

][x := x || x;
 r := "17.017.0" (string)

][x;
 r := "17.017.0" (string)

][q := "100"/2;
 r := 50 (integer)

][q := "100.0"/2;
 r := 50.0 (real)

][q := "1e2"/2;
 r := 50.0 (real)

][q := q || q;
 r := "50.050.0" (string)

Icon never converts &null to a value of an appropriate type:

][xyz;
 r := &null (null)

][xyz + 10;

Run-time error 102
numeric expected
offending value: &null

CSc 451, Spring 2003 Slide 12
W. H. Mitchell

Strings

The string type represents character strings of arbitrary
length.

String literals are delimited by double quotes:

"just a string right here"

Any character can appear in a string.

Characters can be specified using escape sequences:

\n newline
\t tab
\" double quote
\\ backslash
\ooo octal character code
\xhh hexadecimal character code
\^c control character c

Example:

]["\n\012\x0a\^j";
 r := "\n\n\n\n" (string)

]["A\x41\101 Exterminators";
 r := "AAA Exterminators" (string)

For the full set of string literal escapes, see page 254 in the text.

CSc 451, Spring 2003 Slide 13
W. H. Mitchell

Strings, continued

The string concatenation operator is || (two "or" bars):

][s1 := "Fish";
 r := "Fish" (string)

][s2 := "Knuckles";
 r := "Knuckles" (string)

][s3 := s1 || " " || s2;
 r := "Fish Knuckles" (string)

The unary * operator is used throughout Icon to calculate the
"size" of a value. For strings, the size is the number of
characters:

][s := "abc";
 r := "abc" (string)

][*s;
 r := 3 (integer)

][*(s || s);
 r := 6 (integer)

][*s || s;
 r := "3abc" (string)

The operator * is said to be polymorphic because it can be
applied to values of many types.

CSc 451, Spring 2003 Slide 14
W. H. Mitchell

Strings, continued

Strings can be subscripted with the [] operator:

][letters := "abcdefghijklmnopqrstuvwxyz";
 r := "abcdefghijklmnopqrstuvwxyz" (string)

][letters[1];
 r := "a" (string)

][letters[*letters];
 r := "z" (string)

][letters[5] || letters[10] || letters[15];
 r := "ejo" (string)

The first character in a string is at position 1, not 0.

A character can be changed with assignment:

][letters[13] := "X";
 r := "X" (string)

][letters;
 r := "abcdefghijklXnopqrstuvwxyz" (string)

A little fun—Icon has a swap operator:

][letters[1] :=: letters[26];
 r := "z" (string)

][letters;
 r := "zbcdefghijklXnopqrstuvwxya" (string)

Note that there is no character data type in Icon; single
characters are simply represented by one-character strings.

1 Icon reference material is on the Web at
http://www.cs.arizona.edu/icon/refernce/ref.htm

CSc 451, Spring 2003 Slide 15
W. H. Mitchell

Strings, continued

Icon has a number of built-in functions and a number of them
operate on strings.

Appendix A in the text enumerates the full set of built-in
functions starting on page 2751. The function descriptions take
this form:

repl(s1, i) : s2 replicate string

repl(s1, i) produces a string consisting of i concatenations
of s1

 Errors:
101 i not integer
103 s1 not string
205 i < 0
306 inadequate space in string region

Usage of repl:

][repl("x", 10);
 r := "xxxxxxxxxx" (string)

][*repl(r, 100000);
 r := 1000000 (integer)

CSc 451, Spring 2003 Slide 16
W. H. Mitchell

Failure

A unique aspect of Icon is that expressions can fail to produce a
result. A simple example of an expression that fails is an out of
bounds string subscript:

][s := "testing";
 r := "testing" (string)

][s[5];
 r := "i" (string)

][s[50];
Failure

It is said that "s[50] fails"—it produces no value.

If an expression produces a value it is said to have succeeded.

When an expression is evaluated it either succeeds or fails.

CSc 451, Spring 2003 Slide 17
W. H. Mitchell

Failure, continued

An important rule:

An operation is performed only if a value is present for all
operands. If a value is not present for all operands, the
operation fails.

Another way to say it:

If evaluation of an operand fails, the operation fails.

Examples:

][s := "testing";
 r := "testing" (string)

]["x" || s[50];
Failure

][reverse("x" || s[50]);
Failure

][s := reverse("x" || s[50]);
Failure

][s;
 r := "testing" (string)

Note that failure propagates.

CSc 451, Spring 2003 Slide 18
W. H. Mitchell

Failure, continued

Another example of an expression that fails is a comparison
whose condition does not hold:

][1 = 0;
Failure

][4 < 3;
Failure

][10 >= 20;
Failure

A comparison that succeeds produces the value of the right hand
operand as the result of the comparison:

][1 < 2;
 r := 2 (integer)

][1 = 1;
 r := 1 (integer)

][10 ~= 20;
 r := 20 (integer)

What do these expressions do?

max := max < n

x := 1 + 2 < 3 * 4 > 5

CSc 451, Spring 2003 Slide 19
W. H. Mitchell

Failure, continued

Fact:
Unexpected failure is the root of madness.

Consider this code:

write("Before make_block")
text := make_block(x, y, z)
write(text[10])
write("After make_block")

Output:

Before make_block
After make_block

Problem:
Contrast expression failure to Java's exception handling
facility.

CSc 451, Spring 2003 Slide 20
W. H. Mitchell

Producing output

The built-in function write prints a string representation of
each of its arguments and appends a final newline.

][write(1);
1
 r := 1 (integer)

][write("r is ", r);
r is 1
 r := 1 (integer)

][write(r, " is the value of r");
1 is the value of r
 r := " is the value of r" (string)

][write(1,2,3,"four","five","six");
123fourfivesix
 r := "six" (string)

write returns the value of the last argument.

If an argument has the null value, a null string is output:

][write("x=", x, ",y=", y, ".");
x=,y=.
 r := "." (string)

The built-in function writes is identical to write, but it
does not append a newline.

CSc 451, Spring 2003 Slide 21
W. H. Mitchell

Reading input

The built-in function read() reads one line from standard
input.

][line := read();

Here is some input (typed by user)
 r := "Here is some input" (string)

][line2 := read();

 (user pressed <ENTER>)
 r := "" (string)

On end of file, such as a control-D from the keyboard, read
fails:

][line := read();
^D
Failure

Question: What is the value of line?

CSc 451, Spring 2003 Slide 22
W. H. Mitchell

The while expression

Icon has several traditionally-named control structures, but they
are driven by success and failure.

The general form of the while expression is:

while expr1 do
expr2

If expr1 succeeds, expr2 is evaluated. This continues
until expr1 fails.

Here is a loop that reads lines and prints them:

while line := read() do
 write(line)

If no body is needed, the do clause can be omitted:

while write(read())

What does the following code do?

while line := read()
 write(line)

Problem: Write a loop that prints "yes" repeatedly.

CSc 451, Spring 2003 Slide 23
W. H. Mitchell

Compound expressions

A compound expression groups a series of expressions into a
single expression.

The general form of a compound expression is:

{ expr1; expr2; ...; exprN }

Each expression is evaluated in turn. The result of the
compound expression is the result of exprN, the last expression:

][{ write(1); write(2); write(3)};
1
2
3
 r := 3 (integer)

A failing expression does not stop evaluation of subsequent
expressions:

][{ write(1); write(2 < 1); write(3)};
1
3
 r := 3 (integer)

CSc 451, Spring 2003 Slide 24
W. H. Mitchell

Compound expressions, continued

Recall the general form of the while expression:

while expr1 do
expr2

Here the body of a while loop is a compound expression:

line_count := 0;

while line := read() do {
 write(line);
 line_count := line_count + 1;
 }

write(line_count, " lines read");

CSc 451, Spring 2003 Slide 25
W. H. Mitchell

Semicolon insertion

The Icon translator will "insert" a semicolon if an expression
ends on one line and the next line begins with another
expression.

Given this multi-line input:

{
write(1)
write(2)
write(3)

}

The translator considers it to be:

{
write(1);
write(2);
write(3)

}

It is standard practice to rely on the translator to insert
semicolons. But, there is a danger of an unexpected insertion of
a semicolon:

][{ x := 3
... - 2 };
 r := -2 (integer)

A good habit: Always break expressions after an operator:

][{ x := 3 -
... 2 };
 r := 1 (integer)

CSc 451, Spring 2003 Slide 26
W. H. Mitchell

Problem: Reversal of line order

Write a segment of code that reads lines from standard input
and upon end of file, prints the lines in reverse order.

For this input:

line one
the second line
#3

The output is:

#3
the second line
line one

CSc 451, Spring 2003 Slide 27
W. H. Mitchell

Problem: Line numbering with a twist

Write a segment of code that reads lines from standard input and
produces a numbered listing of those lines on standard output.

For this input:

just
testing
this

We want this output:

 1 just
 2 testing
 3 this

Line numbers are to be right justified in a six-character field and
followed by two spaces. The text from the input line then
follows immediately.

Ignore the possibility that more than 999,999 lines might be
processed.

The twist: Don't use any digits in your code.

Handy: The right(s,n) function right-justifies the string s
in a field of width n:

][right("abc", 5);
 r := " abc" (string)

CSc 451, Spring 2003 Slide 28
W. H. Mitchell

if-then-else

The general form of the if-then-else expression is

if expr1 then expr2 else expr3

If expr1 succeeds the result of the if-then-else expression is the
result of expr2. If expr1 fails, the result is the result of expr3.

][if 1 < 2 then 3 else 4;
 r := 3 (integer)

][if 1 > 2 then 3 else 4;
 r := 4 (integer)

][if 1 < 2 then 2 < 3 else 4 < 5;
 r := 3 (integer)

][if 1 > 2 then 2 > 3 else 4 > 5;
Failure

Explain this expression:

label := if min < x < max then
"in range"

 else
"out of bounds"

CSc 451, Spring 2003 Slide 29
W. H. Mitchell

if-then-else, continued

There is also an if-then expression:

if expr1 then expr2

If expr1 succeeds, the result of the if-then expression is the
result of expr2. If expr1 fails, the if-then fails.

Examples:

][if 1 < 2 then 3;
 r := 3 (integer)

][if 1 > 2 then 3;
Failure

What is the result of this expression?

x := 5 + if 1 > 2 then 3

One way to nest if-then-elses:

if (if x < y then x else y) > 5 then
 (if x > 6 then 7)
else
 (if x < 8 then 9)

The if-then-else and if-then expressions are considered to be
control structures rather than operators.

A characteristic of a control structure is that a constituent
expression can fail without terminating evaluation of the
containing expression (i.e., the control structure).

CSc 451, Spring 2003 Slide 30
W. H. Mitchell

The break and next expressions

The break and next expressions are similar to break and
continue in Java.

This is a loop that reads lines from standard input, terminating
on end of file or when a line beginning with a period is read.
Each line is printed unless the line begins with a # symbol.

while line := read() do {
if line[1] == "." then

break

if line[1] == "#" then
next

write(line)
}

The operator == tests equality of two strings.

CSc 451, Spring 2003 Slide 31
W. H. Mitchell

The not expression

The not expression, a control structure, has this form:

not expr

If expr produces a result, the not expression fails.

If expr fails, the not expression produces the null value.

Examples:

][not 0;
Failure

][not 1;
Failure

][not (1 > 2);
 r := &null (null)

][if not (1 > 2) then write("ok");
ok
 r := "ok" (string)

not has very high precedence. As a rule its expr should
always be enclosed in parentheses.

Question: Could not be implemented as an operator rather than
a control structure?

CSc 451, Spring 2003 Slide 32
W. H. Mitchell

The & operator

The general form of the & operator:

expr1 & expr2

expr1 is evaluated first. If expr1 succeeds, expr2 is
evaluated. If expr2 succeeds, the entire expression succeeds
and produces the result of expr2. If either expr1 or expr2
fails, the entire expression fails.

Examples:

][1 & 2;
 r := 2 (integer)

][0 & 2 < 4;
 r := 4 (integer)

][r > 3 & write("r = ", r);
r = 4
 r := 4 (integer)

][while line := read() & line[1] ~== "." do
... write(line);
a
a
test
test
.here
Failure

& has the lowest precedence of any operator.

Problem: Describe the implementation of the & operator.

CSc 451, Spring 2003 Slide 33
W. H. Mitchell

Comparison operators

There are six operators for comparing values as numeric
quantities:

< > <= >= = ~=

There are six operators for comparing values as strings:

<< >> <<= >>= == ~==

Question: Why aren't the comparison operators overloaded so
that one set of operators would suffice for both numeric and
string conversions?

CSc 451, Spring 2003 Slide 34
W. H. Mitchell

Comparison operators, continued

Analogous comparison operators can produce differing results
for a given pair of operands:

]["01" = "1";
 r := 1 (integer)

]["01" == "1";
Failure

]["01" < "1";
Failure

]["01" << "1";
 r := "1" (string)

The === and ~=== operators test for exact equivalence—both
the type and value must be identical:

][2 === "2";
Failure

][2 ~=== "2";
 r := "2" (string)

]["xyz" === "x" || "y" || "z";
 r := "xyz" (string)

CSc 451, Spring 2003 Slide 35
W. H. Mitchell

Comparison operators, continued

The unary operators / and \ test to see if a value is null or not,
respectively.

The expression /expr succeeds and produces expr if expr
has a null value.

The expression \expr succeeds and produces expr if expr
has a non-null value.

Examples:

][x;
 r := &null (null)

][\x;
Failure

][/x;
 r := &null (null)

][/x := 5;
 r := 5 (integer)

][/x := 10;
Failure

][x;
 r := 5 (integer)

As a mnemonic aid, think of /x as succeeding when x is null
because the null value allows the slash to fall flat.

CSc 451, Spring 2003 Slide 36
W. H. Mitchell

Explicit conversions

In addition to the implicit conversions that Icon automatically
performs as needed, there are conversion functions to produce a
value of a specific type from a given value.

The functions integer and real attempt to produce a integer
or real value, respectively. numeric produces either an integer
or a real, preferring integers. Examples:

][integer("12");
 r := 12 (integer)

][integer(.01);
 r := 0 (integer)

][real("12");
 r := 12.0 (real)

][real("xx");
Failure

][numeric("12");
 r := 12 (integer)

][numeric("12.0");
 r := 12.0 (real)

The string function produces a string corresponding to a
given value.

][string(2^32);
 r := "4294967296" (string)

][string(234.567e-30);
 r := "2.34567e-28" (string)

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36

