
CSc 451, Spring 2003                         Slide 113
W. H. Mitchell

Random value selection

The polymorphic unary ? operator is used to produce
random values.

If applied to an integer N > 0, an integer between 1 and N
inclusive is produced:

][ ?10;
   r := 3  (integer)

][ ?10;
   r := 5  (integer)

][ ?10;
   r := 4  (integer)

Problem: Write a procedure ab() that, on average, returns
"a" 25% of the time and "b" 75% of the time.

The same random sequence is produced every run by
default, but the "generator" can be seeded by assigning a
value to &random.  A simple seeder:

][ &clock;
   r := "17:10:46"  (string)

][ &random := &clock[-2:0];
   r := 25  (integer)



CSc 451, Spring 2003                         Slide 114
W. H. Mitchell

Random value selection, continued

If ? is applied to a string, a random character from the string
is produced:

][ ?"random";
   r := "n"  (string)

][ ?"random";
   r := "m"  (string)

Applying ? to a list produces a random element:

][ ?[10,0,"thirty"];
   r := 10  (integer)

][ ?[10,0,"thirty"];
   r := "thirty"  (string)

][ ??[10,0,"thirty"];
   r := 0.6518579154  (real)

If ? is applied to zero a real number in the range 0.0 to 1.0 is
produced:

][ ?0;
   r := 0.05072018769  (real)

][ ?0;
   r := 0.716947168  (real)

Problem: Write the procedure ab() in another way.



CSc 451, Spring 2003                         Slide 115
W. H. Mitchell

Random value selection, continued

When applied to strings and lists, the result of ? is a
variable, and can be assigned to.  Example:

procedure main()
    line := "Often wrong; never unsure!"
    every 1 to 10 do {
        ?line :=: ?line
        write(line)
        }
end

Output:

Oftengwron ; never unsure!
Oftengwrnn ; oever unsure!
Oftengw nnr; oever unsure!
Ofuengw nnr; oever tnsure!
O uengw nnr; oeverftnsure!
O unngw enr; oeverftnsure!
O unngw enr; eevorftnsure!
O unngw enr; efvoretnsure!
O unngt enr; efvorewnsure!
O unngt unr; efvorewnsere!

Problem: Write a procedure mutate(s,n) that does n
random swaps of the "words" in the string s.



CSc 451, Spring 2003                         Slide 116
W. H. Mitchell

Random value selection, continued

Problem: Write a program that generates test data for a
program that finds the longest line(s) in a file.



CSc 451, Spring 2003                         Slide 117
W. H. Mitchell

Variable length argument lists

In some cases it is useful for a procedure to handle any
number of arguments.

Here is a procedure that calculates the sum of its arguments:

procedure sum(nums[])
    total := 0

    every total +:= !nums
    return total
end

Usage:

][ sum(5,8,10);
   r := 23  (integer)

][ sum();
   r := 0  (integer)

][ sum(1,2,3,4,5,6,7);
   r := 28  (integer)



CSc 451, Spring 2003                         Slide 118
W. H. Mitchell

Variable length argument lists, continued

One or more parameters may precede a final parameter
designated to collect additional arguments.

Consider a very simplistic C-like printf:

][ printf("e = %, pi = %\n", &e, &pi);
e = 2.718281828459045, pi = 3.141592653589793

Implementation:

procedure printf(format, vals[])
    i := 0
    every e := !split(format, "%", 1) do
        if e == "%" then
            writes(vals[i+:=1])
        else
            writes(e)
    return
end



CSc 451, Spring 2003                         Slide 119
W. H. Mitchell

Procedures as values

Icon has a procedure type.  Names of built-in functions such
as write and Icon procedures such as double are simply
variables whose value is a procedure.

Suppose you'd rather use "println" than "write":

global println
procedure main()
    println := write

...
end

procedure f()
println("in f()...")

end

Consider this program:

procedure main()
    write :=: read
    while line := write() do

    read(line)
end



CSc 451, Spring 2003                         Slide 120
W. H. Mitchell

Procedures as values, continued

A procedure may be passed as an argument to a procedure.

Here is a procedure that calls the procedure p with each
element of L in turn, forming a list of the results:

procedure map(p, L)
    result := []

every e := !L do
    put(result, p(e) | &null)

    return result
end

Usage: (with double from slide 42)

][ vals := [1, "two", 3];
   r := L1:[1,"two",3]  (list)

][ map(double, vals);
   r := L1:[2,"twotwo",6]  (list)

A computation may yield a procedure:

f()(a, b)

x := (p1 | p2 | p3)(7,11)

point: = (?[up, down])(x,y)



CSc 451, Spring 2003                         Slide 121
W. H. Mitchell

String invocation

It is possible to "invoke" a string:

][ "+"(3,4);
   r := 7  (integer)

][ "*"(&lcase);
   r := 26  (integer)

][ (?"+*")(12,3);
   r := 15  (integer)

Consider a simple evaluator:

Expr? 3 + 9
12
Expr? 5 ^ 10
9765625

Expr? abc repl 5
abcabcabcabcabc

Expr? xyz... trim .
xyz

Implementation:

invocable all
procedure main()
    while writes("Expr? ") &
      e := split(read()) do
        write(e[2](e[1],e[3]))
end



CSc 451, Spring 2003                         Slide 122
W. H. Mitchell

String invocation, continued

Some details on string invocation:

• Operators with unary and binary forms are
distinguished by the number of arguments supplied:

][ star := "*";
   r := "*"  (string)

][ star(4);
   r := 1  (integer)

][ star(4,7);
   r := 28  (integer)

• User defined procedures can be called.

• The "invocable all" prevents unreferenced
procedures from being discarded.

• proc() and args() are sometimes useful when using
string invocation.



CSc 451, Spring 2003                         Slide 123
W. H. Mitchell

Mutual evaluation

One way to evaluate a series of expressions and, if all
succeed, produce the value of the final expression is this:

expr1 & expr2 & ... & exprN

The same computation can be expressed with mutual
evaluation:

(expr1, expr2, ..., exprN)

If a value other than the result of the last expression is
desired, an expression number can be specified:

][ 3(10,20,30,40);
   r := 30  (integer)

][ .every 1(x := 1 to 10, x * 3 < 10);
   1  (integer)
   2  (integer)
   3  (integer)

The expression number can be negative:

.every (-2)(x := 1 to 10, x * 3 < 10);

Now you can understand error 106:

][ bogus();
Run-time error 106
procedure or integer expected
offending value: &null



CSc 451, Spring 2003                         Slide 124
W. H. Mitchell

Mutual evaluation, continued

One use of mutual evaluation is to "no-op" a routine.

Consider this:

global debug
procedure main()

...
debug := write
...

end

procedure f(x)
debug("In f(), x = ", x)
...

end

To turn off debugging output:

debug := 1



CSc 451, Spring 2003                         Slide 125
W. H. Mitchell

File I/O

Icon has a file type and three built-in files: &input,
&output, and &errout.  These are associated with the
standard input, standard output, and error output streams.

By default:
read() reads from &input
write() and writes() output to &output
stop() writes to &errout

The open(name,mode) function opens the named file for
input and/or output (according to mode) and returns a value
of type file.  Example:

wfile := open("dictionary.txt", "r")

A file can be specified as the argument for read:

line := read(wfile)

A file can be specified as an argument to write:

logfile := open("log."||getdate(), "w")
write(logfile, "Log created at ", &dateline)

It is seldom used but any number of arguments to write
can be files:

write("abc", logfile, "xyz", &output, "pdq")

This results in "abcpdq" being written to standard output,
and "xyz" being written to logfile.



CSc 451, Spring 2003                         Slide 126
W. H. Mitchell

File I/O, continued

A very simple version of the cp command:

procedure main(a)
    in := open(a[1]) |
        stop(a[1], ": can't open for input")

    out := open(a[2], "w") |
        stop(a[2], ": can't open for output")

    while line := read(in) do
        write(out, line)
end

Usage:

% cp0 /etc/motd x
% cp0 /etc/motdxyz x
/etc/motdxyz: can't open for input
% cp0 x /etc/passwd
/etc/passwd: can't open for output

Common bug: Opening a file but forgetting to pass it to
read().



CSc 451, Spring 2003                         Slide 127
W. H. Mitchell

File I/O, continued

The read() function is designed for use with line by line
input and handles OS-specific end-of-line issues.

The reads(f,n) function is designed for reading binary
data.  It reads n bytes from the file f and returns a string.

Here is a program that reads files named on the command
line and prints out the number of bytes and null bytes (zero
bytes) in the file:

procedure main(a)
    every fname := !a do {
        f := open(fname, "ru")
        bytes := nulls := 0
        while buf := reads(f, 1024) do {
            bytes +:= *buf
            every !buf == "\x00" do
                nulls +:= 1
            }

        write(fname, ": ", bytes, " bytes, ",
            nulls, " nulls")
        }
end

Usage:

% countnulls countnulls.icn countnulls
countnulls.icn: 289 bytes, 0 nulls
countnulls: 1302 bytes, 620 nulls

Other built-in functions related to files include rename,
remove, seek, and where.



CSc 451, Spring 2003                         Slide 128
W. H. Mitchell

I/O with pipes

If the open mode includes "p", the name is considered to be
a command, which is started, and a pipe is opened to the
process.

Here is a program that reads the output of the who command
and reports the number of users:

procedure main()
    who_data := open("who", "rp")

    num_users := 0
    while read(who_data) & num_users +:= 1

    write(num_users, " users logged in")
end

Usage:

% nusers
73 users logged in



CSc 451, Spring 2003                         Slide 129
W. H. Mitchell

I/O with pipes, continued

Here is a program that opens a pipe to the ed text editor and
sends it a series of commands to delete lines from a file:

procedure main(a)
   ed := open("ed "||a[1]||" >/dev/null", "wp")|
       stop("oops!?")

   every num := !a[2:0] do
       write(ed, num, "d")

   write(ed, "w")
   write(ed, "q")
end

Usage:

% cat five
1
2
3
4
5
% dellines five 2 4
% cat five
1
3
4
%

Unfortunately, bi-directional pipes are not supported.  


	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17

