
CSc 451, Spring 2003 Slide 185
W. H. Mitchell

Backtracking with scanning

Consider this:

]["scan this" ? every i := 1 to 10 do
 write(tab(i));

s
c
a
n

t
h
i
s
Failure

And this:

]["scan this" ? every write(tab(1 to 10));

s
sc
sca
scan
scan
scan t
scan th
scan thi
scan this
Failure

What's going on?

CSc 451, Spring 2003 Slide 186
W. H. Mitchell

Backtracking with scanning, continued

In fact, tab()is a generator.

A simple approximation of tab(n):

procedure Tab(n)
 oldpos := &pos
 &pos := n
 suspend &subject[oldpos:n]
 &pos := oldpos
end

Resumption of tab undoes any change to &pos.

move(n) is also a generator, changing &pos, suspending,
and restoring the old value if resumed.

In essence, any tab's and move's in a failing expression are
undone.

tab(upto(...)) & ="..." & move(...) &
s := tab(many(...)) & p1(...)

CSc 451, Spring 2003 Slide 187
W. H. Mitchell

Backtracking with scanning, continued

Note the difference between bounded and unbounded
tab(...) calls:

]["abc 123" ? {
 tab(many(&letters))
 tab(many(&digits))
 snap()
 };
&subject = a b c 1 2 3
&pos = 4 |

]["abc 123" ? {
 tab(many(&letters)) &
 tab(many(&digits))
 snap()
 };
&subject = a b c 1 2 3
&pos = 1 |

Two more cases:

]["abc123" ? { tab(many(&letters)) &
 tab(many(&digits))
 snap() };
&subject = a b c 1 2 3
&pos = 7 |

]["123" ? { tab(many(&letters)) &
 tab(many(&digits))
 snap() };
&subject = 1 2 3
&pos = 1 |

CSc 451, Spring 2003 Slide 188
W. H. Mitchell

Backtracking in scanning, continued

Here's a program that recognizes time duration specifications
such as "10m" or "50s":

procedure main(args)
 while line := (writes("String? "),read()) do
 line ?
 if tab(many(&digits)) & move(1) == !"ms" &
 pos(0) then write("yes")
 else write("no")
end

Interaction:

String? 10m
yes
String? 50s
yes
String? 100
no
String? 30x
no

CSc 451, Spring 2003 Slide 189
W. H. Mitchell

Backtracking in scanning, continued

A revision that also recognizes specifications such as
"10:43" or "7:18":

procedure main()
 while line := (writes("String? "), read()) do
 line ?
 if (Nsecs() | mmss()) & pos(0) then
 write("yes")
 else
 write("no")
end

procedure Nsecs()
 tab(many(&digits)) & move(1) == !"ms" &
 return
end

procedure mmss()
 mins := tab(many(&digits)) & =":" &
 nsecs := tab(many(&digits)) &
 *nsecs = 2 & return
end

Interaction:

String? 10m
yes
String? 9:41
yes
String? 8:100
no
String? 100x
no

CSc 451, Spring 2003 Slide 190
W. H. Mitchell

Backtracking in scanning, continued

Imagine a program that looks for duration specifications and
marks them:

% cat mark.1
The May 30 tests showed durations
between 75s and 2m. Further analysis
revealed the span to be 1:14 to 2:03.
%
%
% mark < mark.1
The May 30 tests showed durations

between 75s and 2m. Further analysis
 ^^^ ^^
revealed the span to be 1:14 to 2:03.
 ^^^^ ^^^^
%

The code:

procedure main()
 while line := read() do {
 write(line)
 markline := repl(" ", *line)
 line ? while skip := tab(upto(&digits)) do {
 start := &pos
 ((Nsecs|mmss)() &
 len := &pos - start &
 markline[start+:len] := repl("^", len)) |
 tab(many(&digits))
 }
 write(markline)
 }
end

Nsecs() and mmss() are unchanged.

CSc 451, Spring 2003 Slide 191
W. H. Mitchell

Backtracking in scanning, continued

Problem: Write a program that reads Image() output and
removes the list labels.

Example:

% cat samples
r := L1:[1,2,3] (list)
r := L1:[1,L2:[2],L3:[L4:[3,4]]] (list)
r := L1:[L2:[],L2,L2,L2,L2] (list)
%
% cleanlx < samples
r := [1,2,3] (list)
r := [1,[2],[[3,4]]] (list)
r := [[],L2,L2,L2,L2] (list)
%

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7

