
CSc 451, Spring 2003 Unicon, Slide 48
W. H. Mitchell

Defaulting and type conversion

Unicon provides a syntactic structure to specify type
conversions and default values. The general, per-parameter
form is this:

parameter-name : conversion-procedure : default-value

Both conversion-procedure and default-value are optional.

Here's an example that uses only a conversion procedure:

class Rectangle(width, height)
 initially(w:integer, h:integer)
 width := w
 height := h
end

If the value supplied for w or h is not convertible to an integer,
(i.e., if integer(...) fails) error 101 is produced:

][r := Rectangle(3, "four");
Run-time error 101
integer expected or out of range
offending value: "four"

][r := Rectangle();
Run-time error 101
integer expected or out of range
offending value: &null

Note that this specification can be used with both methods and
ordinary procedures.

Question: What's the real benefit of this language element?

CSc 451, Spring 2003 Unicon, Slide 49
W. H. Mitchell

Defaulting and type conversion, continued

For reference:

parameter-name : conversion-procedure : default-value

Recall that split()'s second argument defaults to the
character set containing a blank and a tab.

Instead of this:

procedure split(s, c)
/c := ' \t'

 ...

We could do this:

procedure split(s, c:' \t')
 ...

We could further constrain the argument values by specifying
conversion routines:

procedure split(s:string, c:cset:' \t')
 ...

Note that only a literal is permitted for the default value.

Problem: What's wrong with the following routine?

procedure f(x:list)
 ...

CSc 451, Spring 2003 Unicon, Slide 50
W. H. Mitchell

Defaulting and type conversion, continued

A user defined procedure may be specified as the conversion
routine.

If the routine fails, then a run-time error is produced. If it
succeeds, the value returned is passed as the argument value.
(Just as with a built-in routine like integer.)

Example:

procedure f(n:odd)
 return n * 2
end

procedure odd(x)
 if x % 2 = 1 then return x
end

Usage:

][f(5);
 r := 10 (integer)

][f(20);
Run-time error 123
invalid type
offending value: 20

Problem: There's no way to do something like this:

procedure f(x:(integer|string))
 ...

How could that effect be achieved?

CSc 451, Spring 2003 Unicon, Slide 51
W. H. Mitchell

The xcodes facility

The xcodes package in the IPL allows a nearly arbitrary data
structure to be written to a file and later restored.

Here is a program that generates a random list and saves it to a
file using xencode():

link xcodes, random
procedure main()
 randomize()

 L := randlist(10, 15)
 write("List: ", ltos(L))

 f := open("randlist.out", "w")

 xencode(L, f)

 close(f)
end

Execution:

% xcodes1w
List: [29,97,[34,92],[[63,6]],63,35,13]

% cat randlist.out
L
N7
N29
N97
L
N2
N34
N92
L
N1
...a few lines more...

CSc 451, Spring 2003 Unicon, Slide 52
W. H. Mitchell

The xcodes facility, continued

Here is a program that loads any structure written with
xencode():

link xcodes, image
procedure main(args)
 f := open(args[1]) | stop("Can't open file")
 S := xdecode(f)
 write("Restored structure: ", Image(S))
end

Execution:

% xcodes1r randlist.out
Restored structure: L1:[
 29,
 97,
 L2:[
 34,
 92],
 L3:[
 L4:[
 63,
 6]],
 63,
 35,
 13]

xencode() can't accurately save co-expressions, windows,
and files, but allows them to be present in the structure.

Problem: How can a facility like xencode/xdecode be
written?

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5

