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Overview

Main Task: Take a token sequence from the scanner 
and verify that it is a syntactically correct program.

Secondary Tasks:
� Process declarations and set up symbol table information accordingly, in 

preparation for semantic analysis.

� Construct a syntax tree in preparation for intermediate code generation.

lexical analyzer
(scanner)

syntax analyzer
(parser)

symbol table
manager

source 
program

syntax
tree

tokens



2

CSc 453: Syntax Analysis 3

Context-free Grammars

� A context-free grammar for a language 
specifies the syntactic structure of programs 
in that language.

� Components of a grammar:
� a finite set of tokens (obtained from the scanner);

� a set of variables representing “related” sets of strings, e.g., 
declarations, statements, expressions.

� a set of rules that show the structure of these strings.

� an indication of the “top-level” set of strings we care about.
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Context-free Grammars: Definition

Formally, a context-free grammar G is a 4-tuple 
G = (V, T, P, S), where:
� V is a finite set of variables (or nonterminals).  These 

describe sets of “related” strings.

� T is a finite set of terminals (i.e., tokens).

� P is a finite set of productions, each of the form

A → α

where A ∈ V is a variable, and α ∈ (V ∪ T)* is a 
sequence of terminals and nonterminals.

� S ∈ V is the start symbol.
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Context-free Grammars: An Example

A grammar for palindromic bit-strings:
G = (V, T, P, S), where:

� V = { S, B }

� T = {0, 1}

� P = { S → B,

S → ε,

S → 0 S 0,

S → 1 S 1,

B → 0,

B → 1

}
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Context-free Grammars: Terminology

� Derivation: Suppose that
� α and β are strings of grammar symbols, and 

� A → γ is a production.  

Then, αAβ ⇒ αγβ (“αAβ derives αγβ”).

� ⇒ : “derives in one step”
⇒* : “derives in 0 or more steps”

α ⇒* α (0 steps)
α ⇒* β if α ⇒ γ and  γ ⇒* β (≥ 1 steps)
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Derivations: Example

� Grammar for palindromes: G = (V, T, P, S),
� V = {S},

� T = {0, 1},

� P = { S → 0 S 0  |  1 S 1  |  0  |  1  |  ε }.

� A derivation of the string 10101:
S

⇒ 1 S 1          (using S → 1S1)

⇒ 1 0S0 1      (using S → 0S0)

⇒ 10101         (using S → 1)
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Leftmost and Rightmost Derivations

� A leftmost derivation is one where, at each 
step, the leftmost nonterminal is replaced.
(analogous for rightmost derivation)

� Example: a grammar for arithmetic expressions:
E → E + E  |  E * E  |  id

� Leftmost derivation:

E  ⇒ E * E  ⇒ E + E * E  ⇒ id + E * E  ⇒ id + id * E ⇒ id + id * id

� Rightmost derivation:

E ⇒ E + E ⇒ E + E * E ⇒ E + E * id ⇒ E + id * id ⇒ id + id * id
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Context-free Grammars: Terminology

� The language of a grammar G = (V,T,P,S) is

L(G) = { w |  w ∈ T*  and  S ⇒* w }.
The language of a grammar contains only strings of terminal 

symbols.

� Two grammars G1 and G2 are equivalent if
L(G1)  =  L(G2).
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Parse Trees

� A parse tree is a tree representation of a derivation.

� Constructing a parse tree:
� The root is the start symbol S of the grammar.

� Given a parse tree for α X β, if the next derivation step is 

α X β ⇒ α γ1…γn β then the parse tree is obtained as:
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Approaches to Parsing

� Top-down parsing:
� attempts to figure out the derivation for the input string, 

starting from the start symbol.

� Bottom-up parsing:
� starting with the input string, attempts to “derive in reverse”

and end up with the start symbol;

� forms the basis for parsers obtained from parser-generator 
tools such as yacc, bison.
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Top-down Parsing

� “top-down:” starting with the start symbol of 
the grammar, try to derive the input string.

� Parsing process: use the current state of the 
parser, and the next input token, to guide the 
derivation process.

� Implementation: use a finite state automaton 
augmented with a runtime stack     
(“pushdown automaton”).
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Bottom-up Parsing

� “bottom-up:” work backwards from the input 
string to obtain a derivation for it.

� Parsing process: use the parser state to keep 
track of:
� what has been seen so far, and 

� given this, what the rest of the input might look like.

� Implementation: use a finite state automaton 
augmented with a runtime stack (“pushdown 
automaton”).
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Parsing: Top-down vs. Bottom-up
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Parsing Problems: Ambiguity

� A grammar G is ambiguous if some string in L(G) 
has more than one parse tree.

� Equivalently: if some string in L(G) has more than 
one leftmost (rightmost) derivation.

� Example: The grammar 
E → E + E  |  E * E  |  id

is ambiguous, since “id+id*id” has multiple parses:
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Dealing with Ambiguity

1. Transform the grammar to an equivalent 
unambiguous grammar.

2. Use disambiguating rules along with the 
ambiguous grammar to specify which parse 
to use.

Comment: It is not possible to determine 
algorithmically whether:

� Two given CFGs are equivalent;

� A given CFG is ambiguous.
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Removing Ambiguity: Operators

� Basic idea: use additional nonterminals to 
enforce associativity and precedence:
� Use one nonterminal for each precedence level:

� E → E * E   |   E + E   |   id

needs 2 nonterminals (2 levels of precedence).
� Modify productions so that “lower precedence”

nonterminal is in direction of precedence:

E → E + E     ⇒ E → E + T  (+ is left-associative) 
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Example

� Original grammar: 
E → E * E  |  E / E  |  E + E  |  E – E  |  ( E )  | id

precedence levels:  { *, / }  >  { +, – }

associativity: *, /, +, – are all left-associative.

� Transformed grammar:
E → E + T  |  E – T  |  T       (precedence level for: +, -)

T → T * F  |  T /  F  |  F       (precedence level for: *, /)

F → ( E )   |  id
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Bottom-up parsing: Approach

1. Preprocess the grammar to compute some 
info about it.                                          
(FIRST and FOLLOW sets)

2. Use this info to construct a pushdown 
automaton for the grammar:

� the automaton uses a table (“parsing table”) to guide its 
actions;

� constructing a parser amounts to constructing this table.
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FIRST Sets

Defn: For any string of grammar symbols α, 
� FIRST(α) = { a | a is a terminal and α ⇒*  aβ}.

� if α ⇒*  ε then ε is also in FIRST(α).

� Example: E → T E′

E′→ + T E′ |  ε
T → F T′

T′→ * F T′ |  ε
F → ( E )  |  id

FIRST(E) = FIRST(T) = FIRST(F) = { (, id }

FIRST(E′) = { +, ε }

FIRST(T′) = { *, ε }
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Computing FIRST Sets

Given a sequence of grammar symbols A: 
� if A is a terminal or A = ε then FIRST(A) = {A}.

� if A is a nonterminal with productions A → α1 | … | αn
then:

� FIRST(A) =  FIRST(α1)  ∪ … ∪ FIRST(αn).

� if A is a sequence of symbols Y1 … Yk then:
� for i = 1 to k do:

� add each  a ∈ FIRST(Yi), such that a ≠ ε, to FIRST(A).

� if ε ∉ FIRST(Yi) then break;

� if ε is in each of FIRST(Y1), …,  FIRST(Yk) then add ε to 
FIRST(A).
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Computing FIRST sets: cont’d

� For each nonterminal A in the grammar, initialize 
FIRST(A) = ∅.

� repeat {
for each nonterminal A in the grammar {

compute FIRST(A);    /* as described previously */

}
} until there is no change to any FIRST set.
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Example (FIRST Sets)

X → YZ   |   a

Y → b |  ε
Z → c |  ε

� X → a,  so add a to FIRST(X).

� X → YZ,  b ∈ FIRST(Y), so add b to FIRST(X).

� Y → ε, i.e. ε ∈ FIRST(Y), so add non-ε symbols from FIRST(Z) 
to FIRST(X).

► add c to FIRST(X).

� ε ∈ FIRST(Y) and ε ∈ FIRST(Z), so add ε to FIRST(X).

Final: FIRST(X) = { a, b, c, ε }.
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FOLLOW Sets

Definition: Given a grammar G = (V, T, P, S), 
for any nonterminal A ∈ V:

� FOLLOW(A) = { a ∈ T | S ⇒* αAaβ for some α, β}.
i.e., FOLLOW(A) contains those terminals that can appear after A in something 

derivable from the start symbol S.

� if S ⇒* αA then $ is also in FOLLOW(A).                           
($ ≡ EOF, “end of input.”)

Example: 
E → E + E  |  id

FOLLOW(E)  =  { +, $ }.
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Computing FOLLOW Sets

Given a grammar G = (V, T, P, S):
1. add $ to FOLLOW(S);

2. repeat {
� for each production A → αBβ in P, add every non-ε symbol 

in FIRST(β) to FOLLOW(B).

� for each production A → αBβ in P, where ε ∈ FIRST(β), 
add everything in FOLLOW(A) to FOLLOW(B).

� for each production A → αB in P, add everything in 
FOLLOW(A) to FOLLOW(B).

} until no change to any FOLLOW set.
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Example (FOLLOW Sets)

X → YZ   |   a
Y → b |  ε
Z → c |  ε

� X is start symbol: add $ to FOLLOW(X);
� X → YZ, so add everything in FOLLOW(X) to FOLLOW(Z).
►add $ to FOLLOW(Z).

� X → YZ, so add every non-ε symbol in FIRST(Z) to 
FOLLOW(Y).
►add c to FOLLOW(Y).

� X → YZ and ε ∈ FIRST(Z), so add everything in FOLLOW(X) 
to FOLLOW(Y).
►add $ to FOLLOW(Y).
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Shift-reduce Parsing

� An instance of bottom-up parsing
� Basic idea: repeat

1. in the string being processed, find a substring α such that  
A→α is a production;

2. replace the substring α by A (i.e., reverse a derivation step).

until we get the start symbol.
� Technical issues: Figuring out

1. which substring to replace; and

2. which production to reduce with.
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Shift-reduce Parsing: Example

aABe (using S → aABe)⇒

S⇒

aAde (using B → d)⇒

aAbcde (using A → Abc )⇒

abbcde (using A → b)Input:

B → d

A → Abc | b

S → aABeGrammar:
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Shift-Reduce Parsing: cont’d

� Need to choose reductions carefully:
abbcde ⇒ aAbcde ⇒ aAbcBe ⇒ …

doesn’t work.

� A handle of a string s is a substring α s.t.:
� α matches the RHS of a rule A→ α; and

� replacing α by A (the LHS of the rule) represents a step in 
the reverse of a rightmost derivation of s.

� For shift-reduce parsing, reduce only 
handles.
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Shift -reduce Parsing: 
Implementation

� Data Structures:
� a stack, its bottom marked by ‘$’.  Initially empty.

� the input string, its right end marked by ‘$’.  Initially w.

� Actions: 
repeat

1. Shift some (≥ 0) symbols from the input string onto the stack, 
until a handle β appears on top of the stack.

2. Reduce β to the LHS of the appropriate production.

until ready to accept.

� Acceptance: when input is empty and stack contains only 
the start symbol.
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Example

B → d

A → Abc | b

S → aABe

Grammar :

accept$$S

reduce: S → aABe$$aABe

shifte$$aAB

reduce: B → de$$aAd

shiftde$$aA

reduce: A → Abcde$$aAbc

shiftcde$$aAb

shiftbcde$$aA

reduce: A → bbcde$$ab

shiftbbcde$$a

shiftabbcde$$

ActionInputStack (→)
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Conflicts

� Can’t decide whether to shift or to reduce ―
both seem OK (“shift-reduce conflict”).

Example:   S → if E then S |  if E then S else S  |  …

� Can’t decide which production to reduce with 
― several may fit (“reduce-reduce conflict”).

Example: Stmt → id ( args ) |  Expr

Expr→ id ( args )
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LR Parsing

� A kind of shift-reduce parsing.  An LR(k) parser:
� scans the input L-to-R;

� produces a Rightmost derivation (in reverse); and

� uses k tokens of lookahead.

� Advantages:
� very general and flexible, and handles a wide class of grammars;

� efficiently implementable.

� Disadvantages:
� difficult to implement by hand (use tools such as yacc or bison).

CSc 453: Syntax Analysis 34

LR Parsing: Schematic

� The driver program is the same for all LR parsers 
(SLR(1), LALR(1), LR(1), …).  Only the parse table 
changes.

� Different LR parsing algorithms involve different 
tradeoffs between parsing power, parse table size.
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LR Parsing: the parser stack

� The parser stack holds strings of the form
s0 X1s1 X2s2 … Xmsm (sm is on top)

where si are parser states and Xi are grammar 
symbols.

(Note : the Xi and si always come in pairs, with the state 
component si on top.)

� A parser configuration is a pair 
〈stack contents,  unexpended input〉
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LR Parsing: Roadmap 

� LR parsing algorithm:
� parse table structure

� parsing actions

� Parse table construction:
� viable prefix automaton

� parse table construction from this automaton

� improving parsing power: different LR parsing algorithms
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LR Parse Tables

� The parse table has two parts: the action
function and the goto function.

� At each point, the parser’s next move is given 
by   action [sm, ai],  where:
� sm is the state on top of the parser stack, and 

� ai the next input token.

� The goto function is used only during reduce
moves.
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LR Parser Actions: shift

� Suppose:
� the parser configuration is 〈s0 X1s1 … Xmsm,   ai … an〉, and

� action[sm, ai] = ‘shift sn’ .

� Effects of shift move:
1. push the next input symbol ai; and

2. push the state sn

� New configuration: 〈s0 X1s1 … Xmsmai sn,  ai+1 … an〉
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LR Parser Actions: reduce 

� Suppose:
� the parser configuration is 〈s0 X1s1 … Xmsm,   ai … an〉, and

� action[sm, ai] = ‘reduce A→ β’.

� Effects of reduce move:
1. pop n states and n grammar symbols off the stack (2n symbols total), 

where n = |β|.

2. suppose the (newly uncovered) state on top of the stack is t, and 
goto[t, A] = u.

3. push A, then u.

� New configuration: 〈s0 X1s1 … Xm-nsm-n A u,   ai … an〉
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LR Parsing Algorithm

1. set ip to the start of the input string w$.
2. while TRUE do :

1. let s= state on top of parser stack, a = input symbol pointed at 
by ip.

2. if action[s,a] == ‘shift t’ then: (i) push the input symbol a on the 
stack, then the state t; (ii ) advance ip.

3. if action[s,a] == ‘reduce A→ β’ then: (i) pop 2*|β| symbols off 
the stack; (ii ) suppose t is the state that now gets uncovered on 
the stack; (iii ) push the LHS grammar symbol A and the state u
= goto[A, t].

4. if action[s,a] == ‘accept’ then accept;

5. else signal a syntax error.
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LR parsing: Viable Prefixes

� Goal: to be able to identify handles, and so 
produce a rightmost derivation in reverse.

� Given a configuration 〈s0 X1s1 … Xmsm, ai … an〉:
� X1 X2 … Xmai … an is obtainable on a rightmost 

derivation.

� X1 X2 … Xm is called a viable prefix.

� The set of viable prefixes of a grammar are 
recognizable using a finite automaton.
This automaton is used to recognize handles.
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Viable Prefix Automata

� An LR(0) item of a grammar G is a production 
of G with a dot “•” somewhere in the RHS.
� Example: The rule A→ a A b gives these LR(0) items:

� A→ •••• a A b
� A→ a • A b
� A→ a A • b
� A→ a A b ••••

� Intuition: ‘A→α • β’ denotes that:
� we’ve seen something derivable from α; and

� it would be legal to see something derivable from β at this 
point.
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Overall Approach

Given a grammar G with start symbol S:
� Construct the augmented grammar by adding a new start 

symbol S′ and a new production S′ → S.

� Construct a finite state automaton whose start state is 
labeled by the LR(0) item S′ → • S.

� Use this automaton to construct the parsing table.
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Viable Prefix NFA for LR(0) items

� Each state is labeled by an LR(0) item.  The 
initial state is labeled S′ → • S. 

� Transitions:
1.                                                              

where X is a terminal or nonterminal.

2. 

where X is a nonterminal, and X→ γ is a production.
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Viable Prefix NFA: Example

Grammar :  
S→ 0 S1  

S → ε
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Viable Prefix NFA ⇒⇒⇒⇒ DFA

� Given a set of LR(0) items I, the set 
closure(I) is constructed as follows:
repeat

1. add every item in I to closure(I);

2. if A→ α • Bβ ∈ closure(I) and B is a nonterminal, then for each 
production B→ γ, add the item B→ • γ to closure(I).

until no new items can be added to closure(I).

� Intuition: 
A→ α • Bβ ∈ closure(I) means something derivable from Bβ is legal at this 

point.  This means that something derivable from B (and thus γ) is also legal.
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Viable Prefix NFA ⇒⇒⇒⇒ DFA (cont’d)

� Given a set of LR(0) items I, the set goto(I,X) 
is defined as

goto(I, X) = closure({ A→ α X • β |   A→ α • X β ∈ I })

� Intuition:
� if A→ α • X β ∈ I then (a) we’ve seen something derivable from α; and (b) 

something derivable from Xβ would be legal at this point.

� Suppose we now see something derivable from X.  

The parser should “go to” a state where (a) we’ve seen something derivable 
from αX; and (b) something derivable from β would be legal.
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Example

� Let I0 = {S′ → •S}.
� I1 = closure(I0) = { S′ → •S,                      /* from I0 */

S → • 0 S 1, S → • } 
� goto (I1, 0) = closure( { S → 0 • S 1 } ) 

= {S → 0 • S 1, S → • 0 S 1, S → • } 
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Viable Prefix DFA for LR(0) Items

1. Given a grammar G with start symbol S, construct the 
augmented grammar with new start symbol S′ and new 
production S′ → S.

2. C = { closure({ S′ → •S }) };  // C  =  a set of setsof items = set of parser states

3. repeat {
for each set of items I ∈ C {

for each grammar symbol X {
if ( goto(I,X) ≠ ∅ &&   goto(I,X) ∉ C ) {      // new state

add goto(I,X) to C;
}

}
}

} until no change to C;
4. return C.
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SLR(1) Parse Table Construction I

Given a grammar G with start symbol S:
� Construct the augmented grammar G′ with start symbol S′.

� Construct the set of states {I0, I1, …, In} for the Viable Prefix 
DFA for the augmented grammar G′.

� Each DFA state I i corresponds to a parser state si.

� The initial parser state s0 coresponds to the DFA state I0

obtained from the item S′ → • S.

� The parser actions in state si are defined by the items in the 
DFA state I i.
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SLR(1) Parse Table Construction II

Parsing action for parser state si:
� action table entries:

� if DFA state I i contains an item A→ α • a β where a is a 
terminal, and goto(I i, a) = I j :  set action[i, a]  =  shift j.

� if DFA state I i contains an item A→ α •,  where A ≠ S′: for each 
b ∈ FOLLOW(A), set action[i, b]  =  reduce A→ α.

� if state I i contains the item S′→ S•: set action[i, $]  =  accept.

� goto table entries:
� for each nonterminal A, if goto(I i, A) = I j, then goto[i, A] = j.

� any entry not defined by these steps is an error state.

� if any state has multiple entries, the grammar is not SLR(1).
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SLR(1) Shortcomings

� SLR(1) parsing uses reduce actions too 
liberally.  Because of this it fails on many 
reasonable grammars.

� Example (simple pointer assignments):

S → R   |   L = R

L → *R   |  id

R → L

The SLR parse table has a state { S → L • = R, R → L • }, and 
FOLLOW(L) = { =, $ }.  

⇒ shift-reduce conflict.
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Improving LR Parsing

� SLR(1) parsing weaknesses can be 
addressed by incorporating lookahead into 
the LR items in parser states.
The lookahead makes it possible to remove some “spurious”

reduce actions in the parse table.

The LALR(1) parsers produced by bison and yacc incorporate 

such lookahead items.

� This improves parsing power, but at the cost 
of larger parse tables.
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Error Handling

Possible reactions to lexical and syntax errors:
� ignore the error.  Unacceptable!

� crash, or quit, on first error.  Unacceptable!

� continue to process the input.  No code 
generation.

� attempt to repair the error: transform an erroneous 
program into a similar but legal input.

� attempt to correct the error: try to guess what the 
programmer meant.  Not worthwhile.
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Error Reporting

� Error messages should refer to the source 
program.

prefer “line 11: X redefined” to “conflict in hash bucket 53”

� Error messages should, as far as possible, 
indicate the location and nature of the error.

avoid “syntax error” or “illegal character”

� Error messages should be specific.
prefer “x not declared in function foo” to “missing declaration”

� They should not be redundant.
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Error Recovery

� Lexical errors: pass the illegal character to 
the parser and let it deal with the error.

� Syntax errors: “panic mode error recovery”
� Essential idea: skip part of the input and pretend as though 
we saw something legal, then hope to be able to continue.

� Pop the stack until we find a state ssuch that goto[s,A] is 
defined for some nonterminal A.

� discard input tokens until we find some token a that can 
legitimately follow A (i.e., a ∈ FOLLOW(A)).

� push the state goto[s,A] and continue parsing.


