

Context-free Grammars

- A *context-free grammar* for a language specifies the syntactic structure of programs in that language.
- Components of a grammar:
 - a finite set of tokens (obtained from the scanner);
 - a set of variables representing "related" sets of strings, e.g., *declarations, statements*, expressions.
 - a set of rules that show the structure of these strings.
 - an indication of the "top-level" set of strings we care about.

CSc 453: Syntax Analysis

3

<section-header><section-header><section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

Given a grammar G = (V, T, P, S):

- 1. add \$ to FOLLOW(S);
- 2. repeat {
 - for each production $A \rightarrow \alpha B\beta$ in P, add every non- ε symbol in FIRST(β) to FOLLOW(B).
 - for each production $A \rightarrow \alpha B\beta$ in P, where $\varepsilon \in FIRST(\beta)$, add everything in FOLLOW(A) to FOLLOW(B).
 - for each production $A \rightarrow \alpha B$ in P, add everything in FOLLOW(A) to FOLLOW(B).

} until no change to any FOLLOW set.

25

Shift-redu	ce Pars	ing: Example				
Gramm	. S→ a	ABe				
$A \rightarrow A b c \mid b$						
	$B \rightarrow c$	I				
<u>Input</u> .	abbcde	(using $A \rightarrow \mathbf{b}$)				
\Rightarrow	a Abc de	(using $A \rightarrow A\mathbf{bc}$)				
\Rightarrow	aA <mark>d</mark> e	(using $B \rightarrow \mathbf{d}$)				
\Rightarrow	aABe	(using $S \rightarrow \mathbf{a}AB\mathbf{e}$)				
\Rightarrow	S					
	CSc 453	: Syntax Analysis	28			

Shift-reduce Parsing: Implementation

- Data Structures:
 - a stack, its bottom marked by '\$'. Initially empty.
 - the input string, its right end marked by '\$'. Initially w.
- Actions:

repeat

- 1. <u>Shift</u> some (≥ 0) symbols from the input string onto the stack, until a handle β appears on top of the stack.
- 2. Reduce β to the LHS of the appropriate production. **until** ready to accept.
- <u>Acceptance</u>: when input is empty and stack contains only the start symbol.

CSc 453: Syntax Analysis

30

			1
<u>Stack</u> (→)	<u>Input</u>	<u>Action</u>	
\$	abbcde\$	shift	
\$a	bbcde\$	shift	
\$ab	bcde\$	reduce: $A \rightarrow \mathbf{b}$	<u>Grammar</u> :
\$a A	bcde\$	shift	$S \rightarrow \mathbf{a}AB\mathbf{e}$
\$aAb	cde\$	shift	$A ightarrow A {f bc} \mid {f b}$
\$aAbc	de\$	reduce: $A \rightarrow Abc$	$B \rightarrow d$
\$a A	de\$	shift	
\$aAd	e\$	reduce: $B \rightarrow d$	
\$aAB	e\$	shift	
\$aABe	\$	reduce: $S \rightarrow aABe$	
\$ S	\$	accept	

