
1

CSc 453
Syntax Analysis

(Parsing)

Saumya Debray
The University of Arizona
Tucson

CSc 453: Syntax Analysis 2

Overview

Main Task: Take a token sequence from the scanner
and verify that it is a syntactically correct program.

Secondary Tasks:
� Process declarations and set up symbol table information accordingly, in

preparation for semantic analysis.

� Construct a syntax tree in preparation for intermediate code generation.

lexical analyzer
(scanner)

syntax analyzer
(parser)

symbol table
manager

source
program

syntax
tree

tokens

2

CSc 453: Syntax Analysis 3

Context-free Grammars

� A context-free grammar for a language
specifies the syntactic structure of programs
in that language.

� Components of a grammar:
� a finite set of tokens (obtained from the scanner);

� a set of variables representing “related” sets of strings, e.g.,
declarations, statements, expressions.

� a set of rules that show the structure of these strings.

� an indication of the “top-level” set of strings we care about.

CSc 453: Syntax Analysis 4

Context-free Grammars: Definition

Formally, a context-free grammar G is a 4-tuple
G = (V, T, P, S), where:
� V is a finite set of variables (or nonterminals). These

describe sets of “related” strings.

� T is a finite set of terminals (i.e., tokens).

� P is a finite set of productions, each of the form

A → α

where A ∈ V is a variable, and α ∈ (V ∪ T)* is a
sequence of terminals and nonterminals.

� S ∈ V is the start symbol.

3

CSc 453: Syntax Analysis 5

Context-free Grammars: An Example

A grammar for palindromic bit-strings:
G = (V, T, P, S), where:

� V = { S, B }

� T = {0, 1}

� P = { S → B,

S → ε,

S → 0 S 0,

S → 1 S 1,

B → 0,

B → 1

}

CSc 453: Syntax Analysis 6

Context-free Grammars: Terminology

� Derivation: Suppose that
� α and β are strings of grammar symbols, and

� A → γ is a production.

Then, αAβ ⇒ αγβ (“αAβ derives αγβ”).

� ⇒ : “derives in one step”
⇒* : “derives in 0 or more steps”

α ⇒* α (0 steps)
α ⇒* β if α ⇒ γ and γ ⇒* β (≥ 1 steps)

4

CSc 453: Syntax Analysis 7

Derivations: Example

� Grammar for palindromes: G = (V, T, P, S),
� V = {S},

� T = {0, 1},

� P = { S → 0 S 0 | 1 S 1 | 0 | 1 | ε }.

� A derivation of the string 10101:
S

⇒ 1 S 1 (using S → 1S1)

⇒ 1 0S0 1 (using S → 0S0)

⇒ 10101 (using S → 1)

CSc 453: Syntax Analysis 8

Leftmost and Rightmost Derivations

� A leftmost derivation is one where, at each
step, the leftmost nonterminal is replaced.
(analogous for rightmost derivation)

� Example: a grammar for arithmetic expressions:
E → E + E | E * E | id

� Leftmost derivation:

E ⇒ E * E ⇒ E + E * E ⇒ id + E * E ⇒ id + id * E ⇒ id + id * id

� Rightmost derivation:

E ⇒ E + E ⇒ E + E * E ⇒ E + E * id ⇒ E + id * id ⇒ id + id * id

5

CSc 453: Syntax Analysis 9

Context-free Grammars: Terminology

� The language of a grammar G = (V,T,P,S) is

L(G) = { w | w ∈ T* and S ⇒* w }.
The language of a grammar contains only strings of terminal

symbols.

� Two grammars G1 and G2 are equivalent if
L(G1) = L(G2).

CSc 453: Syntax Analysis 10

Parse Trees

� A parse tree is a tree representation of a derivation.

� Constructing a parse tree:
� The root is the start symbol S of the grammar.

� Given a parse tree for α X β, if the next derivation step is

α X β ⇒ α γ1…γn β then the parse tree is obtained as:

6

CSc 453: Syntax Analysis 11

Approaches to Parsing

� Top-down parsing:
� attempts to figure out the derivation for the input string,

starting from the start symbol.

� Bottom-up parsing:
� starting with the input string, attempts to “derive in reverse”

and end up with the start symbol;

� forms the basis for parsers obtained from parser-generator
tools such as yacc, bison.

CSc 453: Syntax Analysis 12

Top-down Parsing

� “top-down:” starting with the start symbol of
the grammar, try to derive the input string.

� Parsing process: use the current state of the
parser, and the next input token, to guide the
derivation process.

� Implementation: use a finite state automaton
augmented with a runtime stack
(“pushdown automaton”).

7

CSc 453: Syntax Analysis 13

Bottom-up Parsing

� “bottom-up:” work backwards from the input
string to obtain a derivation for it.

� Parsing process: use the parser state to keep
track of:
� what has been seen so far, and

� given this, what the rest of the input might look like.

� Implementation: use a finite state automaton
augmented with a runtime stack (“pushdown
automaton”).

CSc 453: Syntax Analysis 14

Parsing: Top-down vs. Bottom-up

8

CSc 453: Syntax Analysis 15

Parsing Problems: Ambiguity

� A grammar G is ambiguous if some string in L(G)
has more than one parse tree.

� Equivalently: if some string in L(G) has more than
one leftmost (rightmost) derivation.

� Example: The grammar
E → E + E | E * E | id

is ambiguous, since “id+id*id” has multiple parses:

CSc 453: Syntax Analysis 16

Dealing with Ambiguity

1. Transform the grammar to an equivalent
unambiguous grammar.

2. Use disambiguating rules along with the
ambiguous grammar to specify which parse
to use.

Comment: It is not possible to determine
algorithmically whether:

� Two given CFGs are equivalent;

� A given CFG is ambiguous.

9

CSc 453: Syntax Analysis 17

Removing Ambiguity: Operators

� Basic idea: use additional nonterminals to
enforce associativity and precedence:
� Use one nonterminal for each precedence level:

� E → E * E | E + E | id

needs 2 nonterminals (2 levels of precedence).
� Modify productions so that “lower precedence”

nonterminal is in direction of precedence:

E → E + E ⇒ E → E + T (+ is left-associative)

CSc 453: Syntax Analysis 18

Example

� Original grammar:
E → E * E | E / E | E + E | E – E | (E) | id

precedence levels: { *, / } > { +, – }

associativity: *, /, +, – are all left-associative.

� Transformed grammar:
E → E + T | E – T | T (precedence level for: +, -)

T → T * F | T / F | F (precedence level for: *, /)

F → (E) | id

10

CSc 453: Syntax Analysis 19

Bottom-up parsing: Approach

1. Preprocess the grammar to compute some
info about it.
(FIRST and FOLLOW sets)

2. Use this info to construct a pushdown
automaton for the grammar:

� the automaton uses a table (“parsing table”) to guide its
actions;

� constructing a parser amounts to constructing this table.

CSc 453: Syntax Analysis 20

FIRST Sets

Defn: For any string of grammar symbols α,
� FIRST(α) = { a | a is a terminal and α ⇒* aβ}.

� if α ⇒* ε then ε is also in FIRST(α).

� Example: E → T E′

E′→ + T E′ | ε
T → F T′

T′→ * F T′ | ε
F → (E) | id

FIRST(E) = FIRST(T) = FIRST(F) = { (, id }

FIRST(E′) = { +, ε }

FIRST(T′) = { *, ε }

11

CSc 453: Syntax Analysis 21

Computing FIRST Sets

Given a sequence of grammar symbols A:
� if A is a terminal or A = ε then FIRST(A) = {A}.

� if A is a nonterminal with productions A → α1 | … | αn
then:

� FIRST(A) = FIRST(α1) ∪ … ∪ FIRST(αn).

� if A is a sequence of symbols Y1 … Yk then:
� for i = 1 to k do:

� add each a ∈ FIRST(Yi), such that a ≠ ε, to FIRST(A).

� if ε ∉ FIRST(Yi) then break;

� if ε is in each of FIRST(Y1), …, FIRST(Yk) then add ε to
FIRST(A).

CSc 453: Syntax Analysis 22

Computing FIRST sets: cont’d

� For each nonterminal A in the grammar, initialize
FIRST(A) = ∅.

� repeat {
for each nonterminal A in the grammar {

compute FIRST(A); /* as described previously */

}
} until there is no change to any FIRST set.

12

CSc 453: Syntax Analysis 23

Example (FIRST Sets)

X → YZ | a

Y → b | ε
Z → c | ε

� X → a, so add a to FIRST(X).

� X → YZ, b ∈ FIRST(Y), so add b to FIRST(X).

� Y → ε, i.e. ε ∈ FIRST(Y), so add non-ε symbols from FIRST(Z)
to FIRST(X).

► add c to FIRST(X).

� ε ∈ FIRST(Y) and ε ∈ FIRST(Z), so add ε to FIRST(X).

Final: FIRST(X) = { a, b, c, ε }.

CSc 453: Syntax Analysis 24

FOLLOW Sets

Definition: Given a grammar G = (V, T, P, S),
for any nonterminal A ∈ V:

� FOLLOW(A) = { a ∈ T | S ⇒* αAaβ for some α, β}.
i.e., FOLLOW(A) contains those terminals that can appear after A in something

derivable from the start symbol S.

� if S ⇒* αA then $ is also in FOLLOW(A).
($ ≡ EOF, “end of input.”)

Example:
E → E + E | id

FOLLOW(E) = { +, $ }.

13

CSc 453: Syntax Analysis 25

Computing FOLLOW Sets

Given a grammar G = (V, T, P, S):
1. add $ to FOLLOW(S);

2. repeat {
� for each production A → αBβ in P, add every non-ε symbol

in FIRST(β) to FOLLOW(B).

� for each production A → αBβ in P, where ε ∈ FIRST(β),
add everything in FOLLOW(A) to FOLLOW(B).

� for each production A → αB in P, add everything in
FOLLOW(A) to FOLLOW(B).

} until no change to any FOLLOW set.

CSc 453: Syntax Analysis 26

Example (FOLLOW Sets)

X → YZ | a
Y → b | ε
Z → c | ε

� X is start symbol: add $ to FOLLOW(X);
� X → YZ, so add everything in FOLLOW(X) to FOLLOW(Z).
►add $ to FOLLOW(Z).

� X → YZ, so add every non-ε symbol in FIRST(Z) to
FOLLOW(Y).
►add c to FOLLOW(Y).

� X → YZ and ε ∈ FIRST(Z), so add everything in FOLLOW(X)
to FOLLOW(Y).
►add $ to FOLLOW(Y).

14

CSc 453: Syntax Analysis 27

Shift-reduce Parsing

� An instance of bottom-up parsing
� Basic idea: repeat

1. in the string being processed, find a substring α such that
A→α is a production;

2. replace the substring α by A (i.e., reverse a derivation step).

until we get the start symbol.
� Technical issues: Figuring out

1. which substring to replace; and

2. which production to reduce with.

CSc 453: Syntax Analysis 28

Shift-reduce Parsing: Example

aABe (using S → aABe)⇒

S⇒

aAde (using B → d)⇒

aAbcde (using A → Abc)⇒

abbcde (using A → b)Input:

B → d

A → Abc | b

S → aABeGrammar:

15

CSc 453: Syntax Analysis 29

Shift-Reduce Parsing: cont’d

� Need to choose reductions carefully:
abbcde ⇒ aAbcde ⇒ aAbcBe ⇒ …

doesn’t work.

� A handle of a string s is a substring α s.t.:
� α matches the RHS of a rule A→ α; and

� replacing α by A (the LHS of the rule) represents a step in
the reverse of a rightmost derivation of s.

� For shift-reduce parsing, reduce only
handles.

CSc 453: Syntax Analysis 30

Shift -reduce Parsing:
Implementation

� Data Structures:
� a stack, its bottom marked by ‘$’. Initially empty.

� the input string, its right end marked by ‘$’. Initially w.

� Actions:
repeat

1. Shift some (≥ 0) symbols from the input string onto the stack,
until a handle β appears on top of the stack.

2. Reduce β to the LHS of the appropriate production.

until ready to accept.

� Acceptance: when input is empty and stack contains only
the start symbol.

16

CSc 453: Syntax Analysis 31

Example

B → d

A → Abc | b

S → aABe

Grammar :

accept$$S

reduce: S → aABe$$aABe

shifte$$aAB

reduce: B → de$$aAd

shiftde$$aA

reduce: A → Abcde$$aAbc

shiftcde$$aAb

shiftbcde$$aA

reduce: A → bbcde$$ab

shiftbbcde$$a

shiftabbcde$$

ActionInputStack (→)

CSc 453: Syntax Analysis 32

Conflicts

� Can’t decide whether to shift or to reduce ―
both seem OK (“shift-reduce conflict”).

Example: S → if E then S | if E then S else S | …

� Can’t decide which production to reduce with
― several may fit (“reduce-reduce conflict”).

Example: Stmt → id (args) | Expr

Expr→ id (args)

17

CSc 453: Syntax Analysis 33

LR Parsing

� A kind of shift-reduce parsing. An LR(k) parser:
� scans the input L-to-R;

� produces a Rightmost derivation (in reverse); and

� uses k tokens of lookahead.

� Advantages:
� very general and flexible, and handles a wide class of grammars;

� efficiently implementable.

� Disadvantages:
� difficult to implement by hand (use tools such as yacc or bison).

CSc 453: Syntax Analysis 34

LR Parsing: Schematic

� The driver program is the same for all LR parsers
(SLR(1), LALR(1), LR(1), …). Only the parse table
changes.

� Different LR parsing algorithms involve different
tradeoffs between parsing power, parse table size.

18

CSc 453: Syntax Analysis 35

LR Parsing: the parser stack

� The parser stack holds strings of the form
s0 X1s1 X2s2 … Xmsm (sm is on top)

where si are parser states and Xi are grammar
symbols.

(Note : the Xi and si always come in pairs, with the state
component si on top.)

� A parser configuration is a pair
〈stack contents, unexpended input〉

CSc 453: Syntax Analysis 36

LR Parsing: Roadmap

� LR parsing algorithm:
� parse table structure

� parsing actions

� Parse table construction:
� viable prefix automaton

� parse table construction from this automaton

� improving parsing power: different LR parsing algorithms

19

CSc 453: Syntax Analysis 37

LR Parse Tables

� The parse table has two parts: the action
function and the goto function.

� At each point, the parser’s next move is given
by action [sm, ai], where:
� sm is the state on top of the parser stack, and

� ai the next input token.

� The goto function is used only during reduce
moves.

CSc 453: Syntax Analysis 38

LR Parser Actions: shift

� Suppose:
� the parser configuration is 〈s0 X1s1 … Xmsm, ai … an〉, and

� action[sm, ai] = ‘shift sn’ .

� Effects of shift move:
1. push the next input symbol ai; and

2. push the state sn

� New configuration: 〈s0 X1s1 … Xmsmai sn, ai+1 … an〉

20

CSc 453: Syntax Analysis 39

LR Parser Actions: reduce

� Suppose:
� the parser configuration is 〈s0 X1s1 … Xmsm, ai … an〉, and

� action[sm, ai] = ‘reduce A→ β’.

� Effects of reduce move:
1. pop n states and n grammar symbols off the stack (2n symbols total),

where n = |β|.

2. suppose the (newly uncovered) state on top of the stack is t, and
goto[t, A] = u.

3. push A, then u.

� New configuration: 〈s0 X1s1 … Xm-nsm-n A u, ai … an〉

CSc 453: Syntax Analysis 40

LR Parsing Algorithm

1. set ip to the start of the input string w$.
2. while TRUE do :

1. let s= state on top of parser stack, a = input symbol pointed at
by ip.

2. if action[s,a] == ‘shift t’ then: (i) push the input symbol a on the
stack, then the state t; (ii) advance ip.

3. if action[s,a] == ‘reduce A→ β’ then: (i) pop 2*|β| symbols off
the stack; (ii) suppose t is the state that now gets uncovered on
the stack; (iii) push the LHS grammar symbol A and the state u
= goto[A, t].

4. if action[s,a] == ‘accept’ then accept;

5. else signal a syntax error.

21

CSc 453: Syntax Analysis 41

LR parsing: Viable Prefixes

� Goal: to be able to identify handles, and so
produce a rightmost derivation in reverse.

� Given a configuration 〈s0 X1s1 … Xmsm, ai … an〉:
� X1 X2 … Xmai … an is obtainable on a rightmost

derivation.

� X1 X2 … Xm is called a viable prefix.

� The set of viable prefixes of a grammar are
recognizable using a finite automaton.
This automaton is used to recognize handles.

CSc 453: Syntax Analysis 42

Viable Prefix Automata

� An LR(0) item of a grammar G is a production
of G with a dot “•” somewhere in the RHS.
� Example: The rule A→ a A b gives these LR(0) items:

� A→ •••• a A b
� A→ a • A b
� A→ a A • b
� A→ a A b ••••

� Intuition: ‘A→α • β’ denotes that:
� we’ve seen something derivable from α; and

� it would be legal to see something derivable from β at this
point.

22

CSc 453: Syntax Analysis 43

Overall Approach

Given a grammar G with start symbol S:
� Construct the augmented grammar by adding a new start

symbol S′ and a new production S′ → S.

� Construct a finite state automaton whose start state is
labeled by the LR(0) item S′ → • S.

� Use this automaton to construct the parsing table.

CSc 453: Syntax Analysis 44

Viable Prefix NFA for LR(0) items

� Each state is labeled by an LR(0) item. The
initial state is labeled S′ → • S.

� Transitions:
1.

where X is a terminal or nonterminal.

2.

where X is a nonterminal, and X→ γ is a production.

23

CSc 453: Syntax Analysis 45

Viable Prefix NFA: Example

Grammar :
S→ 0 S1

S → ε

CSc 453: Syntax Analysis 46

Viable Prefix NFA ⇒⇒⇒⇒ DFA

� Given a set of LR(0) items I, the set
closure(I) is constructed as follows:
repeat

1. add every item in I to closure(I);

2. if A→ α • Bβ ∈ closure(I) and B is a nonterminal, then for each
production B→ γ, add the item B→ • γ to closure(I).

until no new items can be added to closure(I).

� Intuition:
A→ α • Bβ ∈ closure(I) means something derivable from Bβ is legal at this

point. This means that something derivable from B (and thus γ) is also legal.

24

CSc 453: Syntax Analysis 47

Viable Prefix NFA ⇒⇒⇒⇒ DFA (cont’d)

� Given a set of LR(0) items I, the set goto(I,X)
is defined as

goto(I, X) = closure({ A→ α X • β | A→ α • X β ∈ I })

� Intuition:
� if A→ α • X β ∈ I then (a) we’ve seen something derivable from α; and (b)

something derivable from Xβ would be legal at this point.

� Suppose we now see something derivable from X.

The parser should “go to” a state where (a) we’ve seen something derivable
from αX; and (b) something derivable from β would be legal.

CSc 453: Syntax Analysis 48

Example

� Let I0 = {S′ → •S}.
� I1 = closure(I0) = { S′ → •S, /* from I0 */

S → • 0 S 1, S → • }
� goto (I1, 0) = closure({ S → 0 • S 1 })

= {S → 0 • S 1, S → • 0 S 1, S → • }

25

CSc 453: Syntax Analysis 49

Viable Prefix DFA for LR(0) Items

1. Given a grammar G with start symbol S, construct the
augmented grammar with new start symbol S′ and new
production S′ → S.

2. C = { closure({ S′ → •S }) }; // C = a set of setsof items = set of parser states

3. repeat {
for each set of items I ∈ C {

for each grammar symbol X {
if (goto(I,X) ≠ ∅ && goto(I,X) ∉ C) { // new state

add goto(I,X) to C;
}

}
}

} until no change to C;
4. return C.

CSc 453: Syntax Analysis 50

SLR(1) Parse Table Construction I

Given a grammar G with start symbol S:
� Construct the augmented grammar G′ with start symbol S′.

� Construct the set of states {I0, I1, …, In} for the Viable Prefix
DFA for the augmented grammar G′.

� Each DFA state I i corresponds to a parser state si.

� The initial parser state s0 coresponds to the DFA state I0

obtained from the item S′ → • S.

� The parser actions in state si are defined by the items in the
DFA state I i.

26

CSc 453: Syntax Analysis 51

SLR(1) Parse Table Construction II

Parsing action for parser state si:
� action table entries:

� if DFA state I i contains an item A→ α • a β where a is a
terminal, and goto(I i, a) = I j : set action[i, a] = shift j.

� if DFA state I i contains an item A→ α •, where A ≠ S′: for each
b ∈ FOLLOW(A), set action[i, b] = reduce A→ α.

� if state I i contains the item S′→ S•: set action[i, $] = accept.

� goto table entries:
� for each nonterminal A, if goto(I i, A) = I j, then goto[i, A] = j.

� any entry not defined by these steps is an error state.

� if any state has multiple entries, the grammar is not SLR(1).

CSc 453: Syntax Analysis 52

SLR(1) Shortcomings

� SLR(1) parsing uses reduce actions too
liberally. Because of this it fails on many
reasonable grammars.

� Example (simple pointer assignments):

S → R | L = R

L → *R | id

R → L

The SLR parse table has a state { S → L • = R, R → L • }, and
FOLLOW(L) = { =, $ }.

⇒ shift-reduce conflict.

27

CSc 453: Syntax Analysis 53

Improving LR Parsing

� SLR(1) parsing weaknesses can be
addressed by incorporating lookahead into
the LR items in parser states.
The lookahead makes it possible to remove some “spurious”

reduce actions in the parse table.

The LALR(1) parsers produced by bison and yacc incorporate

such lookahead items.

� This improves parsing power, but at the cost
of larger parse tables.

CSc 453: Syntax Analysis 54

Error Handling

Possible reactions to lexical and syntax errors:
� ignore the error. Unacceptable!

� crash, or quit, on first error. Unacceptable!

� continue to process the input. No code
generation.

� attempt to repair the error: transform an erroneous
program into a similar but legal input.

� attempt to correct the error: try to guess what the
programmer meant. Not worthwhile.

28

CSc 453: Syntax Analysis 55

Error Reporting

� Error messages should refer to the source
program.

prefer “line 11: X redefined” to “conflict in hash bucket 53”

� Error messages should, as far as possible,
indicate the location and nature of the error.

avoid “syntax error” or “illegal character”

� Error messages should be specific.
prefer “x not declared in function foo” to “missing declaration”

� They should not be redundant.

CSc 453: Syntax Analysis 56

Error Recovery

� Lexical errors: pass the illegal character to
the parser and let it deal with the error.

� Syntax errors: “panic mode error recovery”
� Essential idea: skip part of the input and pretend as though
we saw something legal, then hope to be able to continue.

� Pop the stack until we find a state ssuch that goto[s,A] is
defined for some nonterminal A.

� discard input tokens until we find some token a that can
legitimately follow A (i.e., a ∈ FOLLOW(A)).

� push the state goto[s,A] and continue parsing.

