
1

CSc 453
Final Code Generation

Saumya Debray
The University of Arizona
Tucson

CSc 453: Final Code Generation 2

Overview

� Input:
� intermediate code program, symbol table

� Output:
� target program (asm or machine code).

2

CSc 453: Final Code Generation 3

Issues

� Memory management:
� map symbol table entries to machine locations (registers, memory

addresses);

� map labels to instruction addresses.

� Instruction selection:
Peculiarities of the target machine have to be taken into account, e.g.:

� different kinds of registers, e.g., address, data registers on M68k;

� implicit register operands in some instructions, e.g., MUL, DIV;

� branches: addressing modes (PC-relative vs. absolute); span
(short vs. long).

� Performance considerations:
Machine-level decisions (register allocation, instruction scheduling) can

affect performance.

CSc 453: Final Code Generation 4

Translating 3-address code to final code

Almost a macro expansion process. The resulting code can be
improved via various code optimizations.

bge reg1, reg2, L

load y into reg2

load x into reg1if x ≥≥≥≥ y goto L

sw reg3, x

add reg3, reg1, reg2

load z into reg2

load y into reg1x = y + z

sw reg2, x

lw reg2, (reg2)

add reg2, reg2, reg1

la reg2, A

load i into reg1x = A[i]

MIPS assembly code3-address code

3

CSc 453: Final Code Generation 5

Storage Allocation

Delay decisions about storage allocation until final
code generation phase:
� initialize location field of each identifier/temp to UNDEF;

� during code generation, first check each operand of each instruction:

� if location == UNDEF, allocate appropriate-sized space for it (width

obtained from type info);

� update location field in its symbol table entry;

� update information about next unallocated location.

Advantages:
� machine dependencies (width for each type) pushed to back end;

� variables that are optimized away, or which live entirely in registers,

don’t take up space in memory.

CSc 453: Final Code Generation 6

Improving Code Quality 1

Peephole Optimization: traverse the code looking for
sequences that can be improved. E.g.:

y = x+x⇒y = 2∗x

x = x∗1
eliminate}x = x+0

algebraic simplifications, e.g.:

L1: goto L2L1: goto L2

……

goto L2⇒goto L1

control flow optimizations:

L: …L: …

⇒goto L /* L is next instruction */

redundant instruction elimination:

4

CSc 453: Final Code Generation 7

Improving Code Quality 2

Register Allocation: place frequently accessed
values in registers.
� Local register allocation: simple algorithms that consider only

small segments of code (“basic blocks”).

� Global register allocation: algorithms that consider the entire

body of a function.

These are more complex, but are able to keep variables in registers

over larger code fragments, e.g., over an entire loop.

Good global register allocation can reduce
runtime by ~20–40% (Chow & Hennessy 1990).

CSc 453: Final Code Generation 8

Improving Code Quality 3

Code Optimization:
� Examine the program to identify specific

program properties (“dataflow analysis”).

� Use this information to change the code so
as to improve its performance. E.g.:
� invariant code motion out of loops

� common subexpression elimination

� dead code elimination

5

CSc 453: Final Code Generation 9

Improving Code Quality 4

Instruction Scheduling: Some instructions take
many cycles to execute.
On modern architectures, this can cause the instruction pipeline

to be blocked (“stalled”) for several cycles.

Instruction scheduling refers to choosing an execution order on

the instructions that allows useful work to be done by the

CPU while it is waiting for an expensive operation to

complete.

CSc 453: Final Code Generation 10

Improving Code Quality 5

Memory Hierarchy Optimizations:
� Modern processors typically use a multi-level

memory hierarchy (cache, main memory).
Accessing main memory can be very expensive.

� Careful code layout can improve instruction
cache utilization:
� uses execution frequency information;

� reduces cache conflicts between frequently executed code.

6

CSc 453: Final Code Generation 11

Basic Blocks and Flow Graphs

Example:
L1: if x > y goto L0

t1 = x+1

x = t1

L0: y = 0

goto L1

� For program analysis and optimization, we need to
know the program’s control flow behavior.

� For this, we:
� group three-address instructions into basic blocks;

� represent control flow behavior using control flow graphs.

CSc 453: Final Code Generation 12

Basic Blocks

� Definition: A basic block B is a sequence of
consecutive instructions such that:

1. control enters B only at its beginning;

2. control leaves B at its end (under normal execution); and

3. control cannot halt or branch out of B except at its end.

� This implies that if any instruction in a basic
block B is executed, then all instructions in
B are executed.
⇒ for program analysis purposes, we can treat a basic block as a

single entity.

7

CSc 453: Final Code Generation 13

Identifying Basic Blocks

1. Determine the set of leaders, i.e., the first
instruction of each basic block:

� the entry point of the function is a leader;

� any instruction that is the target of a branch is a leader;

� any instruction following a (conditional or unconditional)

branch is a leader.

2. For each leader, its basic block consists of:
� the leader itself;

� all subsequent instructions upto, but not including, the next

leader.

CSc 453: Final Code Generation 14

Control Flow Graphs

� Definition: A control flow graph for a function is a
directed graph G = (V, E) such that:

� each v ∈ V is a basic block; and

� there is an edge a → b ∈ E iff control can go directly from a to b.

� Construction:
1. identify the basic blocks of the function;

2. there is an edge from block a to block b if:

i. there is a (conditional or unconditional) branch from the last

instruction of a to the first instruction of b; or

ii. b immediately follows a in the textual order of the program, and

a does not end in an unconditional branch.

8

CSc 453: Final Code Generation 15

Example

int dotprod(int a[], int b[], int N)
{

int i, prod = 0;
for (i = 1; i ≤ N; i++) {

prod += a[i]∗b[i];
}
return prod;

}

3Yretval prod14

2if i ≤ N goto 413

3leave dotprod15

1Yenter dotprod1

3return16

2i = t712

2t7 = i+i11

2prod = t610

2t6 = prod+t59

2t5 = t2*t48

2t4 = b[t3]7

2t3 = 4*i6

2t2 = a[t1]5

2Yt1 = 4*i4

1i = 13

1prod = 02

Block No.leader?InstructionNo.

CSc 453: Final Code Generation 16

Program Analysis Example: Liveness

Definition: A variable is live at a program point if it may be used at a
later point before being redefined.

Example:

Example application of liveness information:
if x is in a register r at a program point, and x is not live, then r can be

freed up for some other variable without storing x back into memory.

9

CSc 453: Final Code Generation 17

Liveness Analysis: Overview

� For each basic block, identify those variables
that are:
� (possibly) used before being redefined;

� (definitely) redefined before being used.

� Propagate this information along control flow
graph edges.
� propagate iteratively until no change;

� amounts to iterative solution of a set of equations;

� solution gives, at each point, the set of variables that could

be used before being redefined.

