
1

CScCScCScCSc 453453453453

Interpreters & InterpretationInterpreters & InterpretationInterpreters & InterpretationInterpreters & Interpretation

Saumya Debray
The University of Arizona
Tucson

CSc 453: Interpreters & Interpretation 2

InterpretersInterpretersInterpretersInterpreters

An interpreter is a program that executes
another program.
� An interpreter implements a virtual machine, which may be

different from the underlying hardware platform.

Examples: Java Virtual Machine; VMs for high-level languages such

as Scheme, Prolog, Icon, Smalltalk, Perl, Tcl.

� The virtual machine is often at a higher level of semantic

abstraction than the native hardware.

� This can help portability, but affects performance.

2

CSc 453: Interpreters & Interpretation 3

Interpretation vs. CompilationInterpretation vs. CompilationInterpretation vs. CompilationInterpretation vs. Compilation

CSc 453: Interpreters & Interpretation 4

Interpreter OperationInterpreter OperationInterpreter OperationInterpreter Operation

ip = start of program;

while (¬ done) {

op = current operation at ip;

execute code for op on current operands;

advance ip to next operation;

}

3

CSc 453: Interpreters & Interpretation 5

Interpreter Design IssuesInterpreter Design IssuesInterpreter Design IssuesInterpreter Design Issues

� Encoding the operation
I.e., getting from the opcode to the code for that operation

(“dispatch”):

� byte code (e.g., JVM)

� indirect threaded code

� direct threaded code.

� Representing operands
� register machines: operations are performed on a fixed finite

set of global locations (“registers”) (e.g.: SPIM);

� stack machines: operations are performed on the top of a
stack of operands (e.g.: JVM).

CSc 453: Interpreters & Interpretation 6

Byte CodeByte CodeByte CodeByte Code

� Operations encoded as small integers (~1 byte).
� The interpreter uses the opcode to index into a table

of code addresses:

while (TRUE) {
byte op = ∗∗∗∗ip;
switch (op) {

case ADD: … perform addition; break;
case SUB: … perform subtraction; break;
…

}
}

� Advantages: simple, portable.
� Disadvantages: inefficient.

4

CSc 453: Interpreters & Interpretation 7

Direct Threaded CodeDirect Threaded CodeDirect Threaded CodeDirect Threaded Code

� Indexing through a jump table (as with byte code) is
expensive.

� Idea: Use the address of the code for an operation
as the opcode for that operation.
� The opcode may no longer fit in a byte.

while (TRUE) {

addr op = *ip;

goto *op; /* jump to code for the operation */

}

� More efficient, but the interpreted code is less portable.
[James R. Bell. Threaded Code. Communications of the ACM, vol. 16 no. 6, June 1973, pp. 370–372]

CSc 453: Interpreters & Interpretation 8

Byte Code vs. Threaded CodeByte Code vs. Threaded CodeByte Code vs. Threaded CodeByte Code vs. Threaded Code

Control flow behavior:
[based on: James R. Bell. Threaded Code. Communications of the ACM, vol.

16 no. 6, June 1973, pp. 370–372]

byte code: threaded code:

5

CSc 453: Interpreters & Interpretation 9

Indirect Threaded CodeIndirect Threaded CodeIndirect Threaded CodeIndirect Threaded Code

� Intermediate in portability, efficiency between byte
code and direct threaded code.

� Each opcode is the address of a word that contains
the address of the code for the operation.
� Avoids some of the costs associated with translating a jump table index

into a code address.

while (TRUE) {
addr op = *ip;

goto **op; /* jump to code for the operation */
}

[R. B. K. Dewar. Indirect Threaded Code. Communications of the ACM, vol. 18 no. 6, June 1975, pp.
330–331]

CSc 453: Interpreters & Interpretation 10

ExampleExampleExampleExample

…add

div : …13000mul

mul : …12000sub

sub : …11000mul

add : …10000add

operationmemory addressprogram operations

130002717

120002323

110001818

100001723

contentsindex17

Op Tablebyte
code

10000

12000

11000

12000

10000

direct
threaded

1300060126000

1200060086008

1100060046004

1000060006008

contentsaddr6000

Op Tableindirect
threaded

6

CSc 453: Interpreters & Interpretation 11

Handling Operands 1: Stack MachinesHandling Operands 1: Stack MachinesHandling Operands 1: Stack MachinesHandling Operands 1: Stack Machines

� Used by Pascal interpreters (’70s and ’80s);
resurrected in the Java Virtual Machine.

� Basic idea:
� operands and results are maintained on a stack;

� operations pop operands off this stack, push the result back on the

stack.

� Advantages:
� simplicity

� compact code.

� Disadvantages:
� code optimization (e.g., utilizing hardware registers effectively) not easy.

CSc 453: Interpreters & Interpretation 12

Stack Machine CodeStack Machine CodeStack Machine CodeStack Machine Code

� The code for an operation ‘op x1, …, xn’ is:
push xn

…
push x1

op

� Example: JVM code for ‘x = 2∗y – 1’:
iconst 1 /* push the integer constant 1 */
iload y /* push the value of the integer variable y */
iconst 2
imul /* after this, stack contains: 〈(2*y), 1〉 */
isub
istore x /* pop stack top, store to integer variable x */

7

CSc 453: Interpreters & Interpretation 13

Generating Stack Machine CodeGenerating Stack Machine CodeGenerating Stack Machine CodeGenerating Stack Machine Code

Essentially just a post-order traversal of the syntax
tree:

void gencode(struct syntaxTreeNode ∗tnode)

{

if (IsLeaf(tnode)) { … }

else {

n = tnode→n_operands;

for (i = n; i > 0; i--) {
gencode(tnode→operand[i]); /* traverse children first */

} /* for */

gen_instr(opcode_table[tnode→op]); /* then generate code for the node */

} /* if [else] */

}

CSc 453: Interpreters & Interpretation 14

Handling Operands 2: Register MachinesHandling Operands 2: Register MachinesHandling Operands 2: Register MachinesHandling Operands 2: Register Machines

� Basic idea:
� Have a fixed set of “virtual machine registers;”

� Some of these get mapped to hardware registers.

� Advantages:
� potentially better optimization opportunities.

� Disadvantages:
� code is less compact;

� interpreter becomes more complex (e.g., to decode VM

register names).

8

CSc 453: Interpreters & Interpretation 15

JustJustJustJust----inininin----Time Compilers (Time Compilers (Time Compilers (Time Compilers (JITsJITsJITsJITs))))

� Basic idea: compile byte code to native code
during execution.

� Advantages:
� original (interpreted) program remains portable, compact;

� the executing program runs faster.

� Disadvantages:
� more complex runtime system;

� performance may degrade if runtime compilation cost

exceeds savings.

CSc 453: Interpreters & Interpretation 16

Improving JIT EffectivenessImproving JIT EffectivenessImproving JIT EffectivenessImproving JIT Effectiveness

� Reducing Costs:
� incur compilation cost only when justifiable;

� invoke JIT compiler on a per-method basis, at the point when

a method is invoked.

� Improving benefits:
� some systems monitor the executing code;

� methods that are executed repeatedly get optimized further.

9

CSc 453: Interpreters & Interpretation 17

Method Dispatch: Method Dispatch: Method Dispatch: Method Dispatch: vtablesvtablesvtablesvtables

� vtables (“virtual tables”) are a common
implementation mechanism for virtual
methods in OO languages.

� The implementation of each class contains a
vtable for its methods:
� each virtual method f in the class has an entry in the vtable

that gives f ’s address.

� each instance of an object gets a pointer to the

corresponding vtable.

� to invoke a (virtual) method, get its address from the vtable.

CSc 453: Interpreters & Interpretation 18

VMsVMsVMsVMs with with with with JITsJITsJITsJITs

� Each method has vtable entries for:
� byte code address;

� native code address.

� Initially, the native code address field points to the
JIT compiler.

� When a method is first invoked, this automatically
calls the JIT compiler.

� The JIT compiler:
� generates native code from the byte code for the method;

� patches the native code address of the method to point to the newly
generated native code (so subsequent calls go directly to native code);

� jumps to the native code.

10

CSc 453: Interpreters & Interpretation 19

JITsJITsJITsJITs: Deciding what to Compile: Deciding what to Compile: Deciding what to Compile: Deciding what to Compile

� For a JIT to improve performance, the benefit
of compiling to native code must offset the
cost of doing so.
E.g., JIT compiling infrequently called straight-line code

methods can lead to a slowdown!

� We want to JIT-compile only those methods
that contain frequently executed (“hot”) code:
� methods that are called a large number of times; or

� methods containing loops with large iteration counts.

CSc 453: Interpreters & Interpretation 20

JITsJITsJITsJITs: Deciding what to Compile: Deciding what to Compile: Deciding what to Compile: Deciding what to Compile

� Identifying frequently called methods:
� count the number of times each method is invoked;

� if the count exceeds a threshold, invoke JIT compiler.

� (In practice, start the count at the threshold value and count

down to 0: this is slightly more efficient.)

� Identifying hot loops:
� modify the interpreter to “snoop” the loop iteration count

when it finds a loop, using simple bytecode pattern matching.

� use the iteration count to adjust the amount by which the

invocation count for the method is decremented on each call.

11

CSc 453: Interpreters & Interpretation 21

Typical JIT OptimizationsTypical JIT OptimizationsTypical JIT OptimizationsTypical JIT Optimizations

Choose optimizations that are cheap to perform
and likely to improve performance, e.g.:

� inlining frequently called methods:

consider both code size and call frequency in inlining decision.

� exception check elimination:

eliminate redundant null pointer checks, array bounds checks.

� common subexpression elimination:

avoid address recomputation, reduce the overhead of array and

instance variable access.

� simple, fast register allocation.

