CSc 453
Interpreters & Interpretation

000
Saumya Debray o000
. . . 0000
The University of Arizona ::o
Tucson °
Interpreters

An interpreter is a program that executes
another program.
o An interpreter implements a virtual machine, which may be
different from the underlying hardware platform.

Examples: Java Virtual Machine; VMs for high-level languages such
as Scheme, Prolog, Icon, Smalltalk, Perl, Tcl.

e The virtual machine is often at a higher level of semantic
abstraction than the native hardware.

This can help portability, but affects performance.

CSc 453: Interpreters & Interpretation 2

eooe
: . T E
Interpretation vs. Compilation 33
source program
front end
I(I;Eeerftlgiczgf rept?sentation htgh level| ex: Java Virtual Machine
stack machine code, etc.) T 7| interpreter
back en
asm/machine Code ex: SPIM (MIPS emulator)
mterpreter
CSc 453: Interpreters & Interpretation 3
eooeo
: 3
Interpreter Operation s32

ip = start of program;

while (= done) {
op = current operation at ip;
execute code for op on current operands;
advance ip to next operation;

CSc 453: Interpreters & Interpretation 4

Interpreter Design Issues

e Encoding the operation
|.e., getting from the opcode to the code for that operation
(“dispatch”):
o byte code (e.g., JVM)
e indirect threaded code
e direct threaded code.

e Representing operands

o register machines: operations are performed on a fixed finite
set of global locations (“registers”) (e.g.: SPIM);

o stack machines: operations are performed on the top of a
stack of operands (e.g.: JVM).

CSc 453: Interpreters & Interpretation 5

Byte Code

Operations encoded as small integers (~1 byte).

e The interpreter uses the opcode to index into a table
of code addresses:
while (TRUE) {
byte op = Op;
switch (op) {
case ADD: ... perform additi on; break;
case SUB: ... perform subtracti on; break;
}
}
e Advantages: simple, portable.
e Disadvantages: inefficient.

CSc 453: Interpreters & Interpretation 6

Direct Threaded Code

e Indexing through a jump table (as with byte code) is
expensive.

e |dea: Use the address of the code for an operation
as the opcode for that operation.
> The opcode may no longer fit in a byte.

while (TRUE) {
addr op = *ip;
goto *op; /* jump to code for the operation */

}

» More efficient, but the interpreted code is less portable.
[James R. Bell. Threaded Code. Communications of the ACM, vol. 16 no. 6, June 1973, pp. 370-372]

CSc 453: Interpreters & Interpretation 7

Byte Code vs. Threaded Code

Control flow behavior:

[based on: James R. Bell. Threaded Code. Communications of the ACM, vol.
16 no. 6, June 1973, pp. 370-372]

byte code: threaded code:
data L
- (e ————
fetches
interpreter \
byte code program code for interpreter threaded code program code for interpreter
operations operations

CSc 453: Interpreters & Interpretation 8

Indirect Threaded Code

e Intermediate in portability, efficiency between byte
code and direct threaded code.

e Each opcode is the address of a word that contains
the address of the code for the operation.

o Avoids some of the costs associated with translating a jump table index
into a code address.

while (TRUE) {
addr op = *ip;
goto **op; /* jump to code for the operation */

}

[R. B. K. Dewar. Indirect Threaded Code. Communications of the ACM, vol. 18 no. 6, June 1975, pp.
330-331]

CSc 453: Interpreters & Interpretation 9

([X X J
[X X X
[X X X]
Example s:c
[J
program operations memory address operation
add 10000 add: ...
mul 11000 sub: ...
sub 12000 mul: ...
mul 13000 div : ...
add
direct "
byte _— indirect
code Op Table threaded threaded Op Table
17 index contents 10000 6000 addr contents
23 17 10000 12000 6008 6000 10000
18 18 11000 11000 6004 6004 11000
23 23 12000 12000 6008 6008 12000
17 27 13000 10000 6000 6012 13000

CSc 453: Interpreters & Interpretation 10

Handling Operands 1: Stack Machines

Used by Pascal interpreters ('70s and '80s);

resurrected in the Java Virtual Machine.

Basic idea:

e operands and results are maintained on a stack;

e operations pop operands off this stack, push the result back on the
stack.

Advantages:

o simplicity

e compact code.

Disadvantages:

» code optimization (e.g., utilizing hardware registers effectively) not easy.

CSc 453: Interpreters & Interpretation 11

Stack Machine Code

e The code for an operation ‘op x, ..., x, IS:
push x,

blt'lsh Xq
op
e Example: JVM code for ‘x = 2y — 1"

iconst 1 * push the integer constant 1 */

iload y * push the value of the integer variable y */
iconst 2

imul [* after this, stack contains: {(2*y), 1) */
isub

istore x * pop stack top, store to integer variable x */

CSc 453: Interpreters & Interpretation 12

Generating Stack Machine Code

Essentially just a post-order traversal of the syntax
tree:

void gencode(struct syntaxTreeNode [tnode)
{
if (IsLeaf(tnode)) { ...}
else {
n = tnode - n_operands;
for(i=n;i>0;i-){
gencode(tnode — operand]i]); [* traverse children first */
} [*for*/
gen_instr(opcode_table[tnode — op]); /* then generate code for the node */
} [*if[else] */

}

CSc 453: Interpreters & Interpretation 13

Handling Operands 2: Register Machines

e Basic idea:

o Have a fixed set of “virtual machine registers;”

e Some of these get mapped to hardware registers.
e Advantages:

o potentially better optimization opportunities.
e Disadvantages:

e code is less compact;

e interpreter becomes more complex (e.g., to decode VM
register names).

CSc 453: Interpreters & Interpretation 14

Just-in-Time Compilers (JITs)

e Basic idea: compile byte code to native code
during execution.
e Advantages:
o original (interpreted) program remains portable, compact;
o the executing program runs faster.
e Disadvantages:
e more complex runtime system;

o performance may degrade if runtime compilation cost
exceeds savings.

CSc 453: Interpreters & Interpretation 15

Improving JIT Effectiveness

e Reducing Costs:
e incur compilation cost only when justifiable;

o invoke JIT compiler on a per-method basis, at the point when
a method is invoked.

e Improving benefits:
e some systems monitor the executing code;
o methods that are executed repeatedly get optimized further.

CSc 453: Interpreters & Interpretation 16

Method Dispatch: vtables

e vtables (“virtual tables”) are a common
implementation mechanism for virtual
methods in OO languages.

e The implementation of each class contains a
vtable for its methods:

o each virtual method f in the class has an entry in the vtable
that gives f ’s address.

o each instance of an object gets a pointer to the
corresponding vtable.

o toinvoke a (virtual) method, get its address from the vtable.

CSc 453: Interpreters & Interpretation 17

VMs with JITs

e Each method has vtable entries for:
e byte code address;
e native code address.

¢ Initially, the native code address field points to the
JIT compiler.

e When a method is first invoked, this automatically
calls the JIT compiler.

e The JIT compiler:
e generates native code from the byte code for the method;

e patches the native code address of the method to point to the newly
generated native code (so subsequent calls go directly to native code);

e jumps to the native code.

CSc 453: Interpreters & Interpretation 18

JITs: Deciding what to Compile

e For a JIT to improve performance, the benefit
of compiling to native code must offset the
cost of doing so.

E.g., JIT compiling infrequently called straight-line code
methods can lead to a slowdown!

e We want to JIT-compile only those methods
that contain frequently executed (“hot”) code:
o methods that are called a large number of times; or
o methods containing loops with large iteration counts.

CSc 453: Interpreters & Interpretation 19

JITs: Deciding what to Compile

e Identifying frequently called methods:
e count the number of times each method is invoked:;
o if the count exceeds a threshold, invoke JIT compiler.
o (In practice, start the count at the threshold value and count
down to 0: this is slightly more efficient.)
e Identifying hot loops:

o modify the interpreter to “snoop” the loop iteration count
when it finds a loop, using simple bytecode pattern matching.

o use the iteration count to adjust the amount by which the
invocation count for the method is decremented on each call.

CSc 453: Interpreters & Interpretation 20

10

Typical JIT Optimizations

Choose optimizations that are cheap to perform
and likely to improve performance, e.g.:
e inlining frequently called methods:
consider both code size and call frequency in inlining decision.
e exception check elimination:
eliminate redundant null pointer checks, array bounds checks.

e common subexpression elimination:

avoid address recomputation, reduce the overhead of array and
instance variable access.

e simple, fast register allocation.

CSc 453: Interpreters & Interpretation 21

11

