
1

CSc 453
Lexical Analysis

(Scanning)

Saumya Debray
The University of Arizona
Tucson

CSc 453: Lexical Analysis 2

Overview

� Main task: to read input characters and group them into
“tokens.”

� Secondary tasks:
� Skip comments and whitespace;

� Correlate error messages with source program (e.g., line number of error).

lexical analyzer
(scanner)

syntax analyzer
(parser)

symbol table
manager

source
program

tokens

2

CSc 453: Lexical Analysis 3

Overview (cont’d)

CSc 453: Lexical Analysis 4

Implementing Lexical Analyzers

Different approaches:
� Using a scanner generator, e.g., lex or flex. This automatically

generates a lexical analyzer from a high-level description of the tokens.

(easiest to implement; least efficient)

� Programming it in a language such as C, using the I/O facilities of the

language.

(intermediate in ease, efficiency)

� Writing it in assembly language and explicitly managing the input.

(hardest to implement, but most efficient)

3

CSc 453: Lexical Analysis 5

Lexical Analysis: Terminology

� token: a name for a set of input strings with related
structure.
Example: “identifier,” “integer constant”

� pattern: a rule describing the set of strings
associated with a token.
Example: “a letter followed by zero or more letters, digits, or
underscores.”

� lexeme: the actual input string that matches a
pattern.
Example: count

CSc 453: Lexical Analysis 6

Examples

Input: count = 123

Tokens:
identifier : Rule: “letter followed by …”

Lexeme: count

assg_op : Rule: =

Lexeme: =

integer_const : Rule: “digit followed by …”
Lexeme: 123

4

CSc 453: Lexical Analysis 7

Attributes for Tokens

� If more than one lexeme can match the pattern for a
token, the scanner must indicate the actual lexeme
that matched.

� This information is given using an attribute
associated with the token.
Example: The program statement

count = 123

yields the following token-attribute pairs:

〈identifier, pointer to the string “count” 〉

〈assg_op, 〉
〈integer_const, the integer value 123〉

CSc 453: Lexical Analysis 8

Specifying Tokens: regular expressions

� Terminology:
alphabet : a finite set of symbols

string : a finite sequence of alphabet symbols

language : a (finite or infinite) set of strings.

� Regular Operations on languages:
Union: R ∪ S = { x | x ∈ R or x ∈ S}

Concatenation: RS = { xy | x ∈ R and y ∈ S}

Kleene closure: R* = R concatenated with itself 0 or more times

= {ε} ∪ R ∪ RR ∪ RRR ∪
= strings obtained by concatenating a finite

number of strings from the set R.

5

CSc 453: Lexical Analysis 9

Regular Expressions

A pattern notation for describing certain kinds
of sets over strings:

Given an alphabet Σ:
� ε is a regular exp. (denotes the language {ε})
� for each a ∈ Σ, a is a regular exp. (denotes the language {a})

� if r and s are regular exps. denoting L(r) and L(s)
respectively, then so are:

� (r) | (s) (denotes the language L(r) ∪ L(s))

� (r)(s) (denotes the language L(r)L(s))

� (r)* (denotes the language L(r)*)

CSc 453: Lexical Analysis 10

Common Extensions to r.e. Notation

� One or more repetitions of r : r+
� A range of characters : [a-zA-Z], [0-9]
� An optional expression: r?
� Any single character: .
� Giving names to regular expressions, e.g.:

� letter = [a-zA-Z_]

� digit = 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

� ident = letter (letter | digit)*

� Integer_const = digit+

6

CSc 453: Lexical Analysis 11

Recognizing Tokens: Finite Automata

A finite automaton is a 5-tuple
(Q, Σ, T, q0, F), where:
� Σ is a finite alphabet;
� Q is a finite set of states;

� T: Q × Σ → Q is the
transition function;

� q0 ∈ Q is the initial state;
and

� F ⊆ Q is a set of final
states.

CSc 453: Lexical Analysis 12

Finite Automata: An Example

A (deterministic) finite automaton (DFA) to match C-
style comments:

7

CSc 453: Lexical Analysis 13

Formalizing Automata Behavior

To formalize automata behavior, we extend the
transition function to deal with strings:
Ŧ : Q × Σ* → Q

Ŧ(q, ε) = q
Ŧ(q, aw) = Ŧ(r, w) where r = T(q, a)

The language accepted by an automaton M is
L(M) = { w | Ŧ(q0, w) ∈ F }.

A language L is regular if it is accepted by
some finite automaton.

CSc 453: Lexical Analysis 14

Finite Automata and Lexical Analysis

� The tokens of a language are specified using
regular expressions.

� A scanner is a big DFA, essentially the
“aggregate” of the automata for the individual
tokens.

� Issues:
� What does the scanner automaton look like?

� How much should we match? (When do we stop?)

� What do we do when a match is found?

� Buffer management (for efficiency reasons).

8

CSc 453: Lexical Analysis 15

Structure of a Scanner Automaton

CSc 453: Lexical Analysis 16

How much should we match?

In general, find the longest match possible.
E.g., on input 123.45, match this as

num_const(123.45)

rather than
num_const(123), “.”, num_const(45).

9

CSc 453: Lexical Analysis 17

Input Buffering

� Scanner performance is crucial:
� This is the only part of the compiler that examines the entire

input program one character at a time.

� Disk input can be slow.

� The scanner accounts for ~25-30% of total compile time.

� We need lookahead to determine when a
match has been found.

� Scanners use double-buffering to minimize
the overheads associated with this.

CSc 453: Lexical Analysis 18

Buffer Pairs

� Use two N-byte buffers (N = size of a disk block;
typically, N = 1024 or 4096).

� Read N bytes into one half of the buffer each time.
If input has less than N bytes, put a special EOF
marker in the buffer.

� When one buffer has been processed, read N bytes
into the other buffer (“circular buffers”).

10

CSc 453: Lexical Analysis 19

Buffer pairs (cont’d)

Code:
if (fwd at end of first half)

reload second half;
set fwd to point to beginning of second half;

else if (fwd at end of second half)
reload first half;
set fwd to point to beginning of first half;

else
fwd++;

it takes two tests for each advance of the fwd pointer.

CSc 453: Lexical Analysis 20

Buffer pairs: Sentinels

� Objective: Optimize the common case by reducing
the number of tests to one per advance of fwd.

� Idea: Extend each buffer half to hold a sentinel at
the end.
� This is a special character that cannot occur in a

program (e.g., EOF).
� It signals the need for some special action (fill

other buffer-half, or terminate processing).

11

CSc 453: Lexical Analysis 21

Buffer pairs with sentinels (cont’d)

Code:
fwd++;
if (*fwd == EOF) { /* special processing needed */

if (fwd at end of first half)
. . .

else if (fwd at end of second half)
. . .

else /* end of input */
terminate processing.

}
common case now needs just a single test per character.

CSc 453: Lexical Analysis 22

Handling Reserved Words

1. Hard-wire them directly into the scanner
automaton:

� harder to modify;

� increases the size and complexity of the automaton;

� performance benefits unclear (fewer tests, but cache effects

due to larger code size).

2. Fold them into “identifier” case, then look up
a keyword table:

� simpler, smaller code;

� table lookup cost can be mitigated using perfect hashing.

12

CSc 453: Lexical Analysis 23

Implementing Finite Automata 1

Encoded as program code:
� each state corresponds to a (labeled code fragment)

� state transitions represented as control transfers.

E.g.:
while (TRUE) {

…

state_k: ch = NextChar(); /* buffer mgt happens here */
switch (ch) {

case … : goto ...; /* state transition */
…

}
state_m: /* final state */

copy lexeme to where parser can get at it;
return token_type;

…
}

CSc 453: Lexical Analysis 24

Direct-Coded Automaton: Example

int scanner()

{ char ch;
while (TRUE) {

ch = NextChar();

state_1: switch (ch) { /* initial state */
case ‘a’ : goto state_2;
case ‘b’ : goto state_3;

default : Error();
}

state_2: …
state_3: switch (ch) {

case ‘a’ : goto state_2;

default : return SUCCESS;
}

} /* while */

}

13

CSc 453: Lexical Analysis 25

Implementing Finite Automata 2

Table-driven automata (e.g., lex, flex):
� Use a table to encode transitions:

next_state = T(curr_state, next_char);

� Use one bit in state no. to indicate whether it’s a final (or

error) state. If so, consult a separate table for what action to

take.

Current
state

next input characterT

CSc 453: Lexical Analysis 26

Table-Driven Automaton: Example

#define isFinal(s) ((s) < 0)

int scanner()
{ char ch;

int currState = 1;

while (TRUE) {
ch = NextChar();

if (ch == EOF) return 0; /* fail */
currState = T [currState, ch];
if (IsFinal(currState)) {

return 1; /* success */
}

} /* while */

}
-123

322

321

state

ba

input
T

14

CSc 453: Lexical Analysis 27

What do we do on finding a match?

� A match is found when:
� The current automaton state is a final state; and

� No transition is enabled on the next input character.

� Actions on finding a match:
� if appropriate, copy lexeme (or other token attribute) to where

the parser can access it;

� save any necessary scanner state so that scanning can

subsequently resume at the right place;

� return a value indicating the token found.

