
1

CScCScCScCSc 453453453453

Linking and LoadingLinking and LoadingLinking and LoadingLinking and Loading

Saumya Debray
The University of Arizona
Tucson

CSc 453: Linking and Loading 2

Tasks in Executing a ProgramTasks in Executing a ProgramTasks in Executing a ProgramTasks in Executing a Program

1. Compilation and assembly.
� Translate source program to machine language.

The result may still not be suitable for execution, because of

unresolved references to external and library routines.

2. Linking.
� Bring together the binaries of separately compiled modules.

� Search libraries and resolve external references.

3. Loading.
� Bring an object program into memory for execution.

Allocate memory, initialize environment, maybe fix up addresses.

2

CSc 453: Linking and Loading 3

Contents of an Object File Contents of an Object File Contents of an Object File Contents of an Object File

� Header information
Overall information about the file and its contents.

� Object code and data
� Relocations (may be omitted in executables)

Information to help fix up the object code during linking.

� Symbol table (optional)
Information about symbols defined in this module and symbols

to be imported from other modules.

� Debugging information (optional)

CSc 453: Linking and Loading 4

Example: ELF Files (x86/Linux)Example: ELF Files (x86/Linux)Example: ELF Files (x86/Linux)Example: ELF Files (x86/Linux)

Executable segmentsLinkable sections

(optional, ignored)
Section Header
Table

describes sections

segmentssections

describes sections
Program Header
Table

(optional, ignored)

ELF Header

3

CSc 453: Linking and Loading 5

ELF Files: contELF Files: contELF Files: contELF Files: cont’’’’dddd

index of section name string table in in the section header table2 bytes

no. of entries in section header table2 bytes

size of section header table (in bytes)2 bytes

no. of entries in program header table2 bytes

size of each entry in program header table2 bytes

ELF header size (in bytes)2 bytes

processor-specific flags4 bytes

offset of section header table4 bytes

offset of program header table4 bytes

entry point (address where execution begins)4 bytes

object file version4 bytes

machine info2 bytes

object file type (relocatable, executable, shared object, etc.)2 bytes

ELF file identifying information (magic no., addr size, byte order)16 bytes

ELF Header structure

CSc 453: Linking and Loading 6

Elf Files: contElf Files: contElf Files: contElf Files: cont’’’’dddd

size of each entry in the section, for sections with fixed-size entries (e.g., symbol
table)

4 bytes

address alignment constraints for the section, if any4 bytes

special information, depending on section type4 bytes

index link (special information, depending on section type)4 bytes

section size (in bytes)4 bytes

byte offset from the beginning of the file to the first byte of the section4 bytes

the address within a process where the section should begin (if the section actually
appears in the executing process)

4 bytes

assorted section flags4 bytes

section type (specifies section contents and semantics)4 bytes

section name (“.text”, “.data”, “.rodata”, etc.), given as an index into the section
header string table section

4 bytes

Section Header structure

4

CSc 453: Linking and Loading 7

Linker Functions 1: Fixing AddressesLinker Functions 1: Fixing AddressesLinker Functions 1: Fixing AddressesLinker Functions 1: Fixing Addresses

� Addresses in an object file are usually
relative to the start of the code or data
segment in that file.

� When different object files are combined:
� The same kind of segments (text, data, read-only data, etc.)

from the different object files get merged.

� Addresses have to be “fixed up” to account for this merging.

� The fixing up is done by the linker, using information

embedded in the executable for this purpose (“relocations”).

CSc 453: Linking and Loading 8

Relocation: ExampleRelocation: ExampleRelocation: ExampleRelocation: Example

5

CSc 453: Linking and Loading 9

Linker Function 2: Symbol ResolutionLinker Function 2: Symbol ResolutionLinker Function 2: Symbol ResolutionLinker Function 2: Symbol Resolution

Suppose:
� module B defines a symbol x;

� module A refers to x.

The linker must:
1. determine the location of x in the

object module obtained from

merging A and B; and

2. modify references to x (in both A

and B) to refer to this location.

CSc 453: Linking and Loading 10

Information for Symbol ResolutionInformation for Symbol ResolutionInformation for Symbol ResolutionInformation for Symbol Resolution

Each linkable module contains a symbol table,
whose contents include:

� Global symbols defined (maybe referenced) in the module.

� Global symbols referenced but not defined in the module

(these are generally called externals).

� Segment names (e.g., text, data, rodata).

These are usually considered to be global symbols defined to be at

the beginning of the segment.

� Non-global symbols and line number information (optional),

for debuggers.

6

CSc 453: Linking and Loading 11

Actions Performed by a LinkerActions Performed by a LinkerActions Performed by a LinkerActions Performed by a Linker

Usually, linkers make two passes:
� Pass 1:

� Collect information about each of the object modules being

linked.

� Pass 2:
� Construct the output, carrying out address relocation and

symbol resolution using the information collected in Pass 1.

CSc 453: Linking and Loading 12

Linker Actions: Pass 1Linker Actions: Pass 1Linker Actions: Pass 1Linker Actions: Pass 1

1. Construct a table of all the object modules
and their lengths.

2. Based on this table, assign a load address
to each module.

3. For each module:
� Read in its symbol table into a global symbol table in the

linker.

� Determine the address of each symbol defined in the

module in the output:

Use the symbol value together with the module load address.

7

CSc 453: Linking and Loading 13

Linker Actions: Pass 2Linker Actions: Pass 2Linker Actions: Pass 2Linker Actions: Pass 2

Copy the object modules in the order of their
load addresses:

1. Address relocation:
� find each instruction that contains a memory address;

� to each such address, add a relocation constant equal to

the load address for its module.

2. External symbol resolution:
� For each instruction that references an external object,

insert the actual address for that object.

CSc 453: Linking and Loading 14

Relocation Example: ELF (x86/Linux)Relocation Example: ELF (x86/Linux)Relocation Example: ELF (x86/Linux)Relocation Example: ELF (x86/Linux)

� ELF relocation entries take one of two forms:
typedef struct { typedef struct {

Addr32 offset; Addr32 offset;

Word32 info; Word32 info;

} SignedWord32 addend;

}

� offset : specifies the location where to apply the relocation action.

� info : gives the symbol table entry w.r.t. which the relocation should

be made, and the type of relocation to apply.

E.g.: for a call instruction, the info field gives the index of the callee.

� addend : a value to be added explicitly during relocation.

� Depending on the architecture, one form or the
other may be more convenient.

8

CSc 453: Linking and Loading 15

LoadingLoadingLoadingLoading

Programs are usually loaded at a fixed address in a fresh
address space (so can be linked for that address).

In such systems, loading involves the following actions:
1. determine how much address space is needed from the object file

header;

2. allocate that address space;

3. read the program into the segments in the address space;

4. zero out any uninitialized data (“.bss” segment) if not done automatically
by the virtual memory system.

5. create a stack segment;

6. set up any runtime information, e.g., program arguments or environment
variables.

7. start the program executing.

CSc 453: Linking and Loading 16

PositionPositionPositionPosition----Independent Code (PIC)Independent Code (PIC)Independent Code (PIC)Independent Code (PIC)

� If the load address for a program is not fixed
(e.g., shared libraries), we use position
independent code.

� Basic idea: separate code from data;
generate code that doesn’t depend on where
it is loaded.

� PC-relative addressing can give position-
independent code references.
This may not be enough, e.g.: data references, instruction

peculiarities (e.g., call instruction in Intel x86) may not permit
the use of PC-relative addressing.

9

CSc 453: Linking and Loading 17

PIC (contPIC (contPIC (contPIC (cont’’’’d): ELF Filesd): ELF Filesd): ELF Filesd): ELF Files

� ELF executable file characteristics:
� data pages follow code pages;

� the offset from the code to the data does not depend on

where the program is loaded.

� The linker creates a global offset table (GOT)
that contains offsets to all global data used.

� If a program can load its own address into a
register, it can then use a fixed offset to
access the GOT, and thence the data.

CSc 453: Linking and Loading 18

PIC code on ELF: contPIC code on ELF: contPIC code on ELF: contPIC code on ELF: cont’’’’dddd

Code to figure out its own address (x86):
call L /* push address of next instruction on stack */

L: pop %ebx /* pop address of this instruction into %ebx */

Accessing a global variable x in PIC:
1. GOT has an entry, say at position k, for x. The dynamic

linker fills in the address of x into this entry at load time.

2. Compute “my address” into a register, say %ebx (above);

3. %ebx += offset_to_GOT; /* fixed for a given program */

4. %eax = contents of location k(%ebx) /* %eax = addr. of x */

5. access memory location pointed at by %eax;

10

CSc 453: Linking and Loading 19

PIC on ELF: ExamplePIC on ELF: ExamplePIC on ELF: ExamplePIC on ELF: Example

(Based on Linkers and Loaders, by J. R. Levine (Morgan Kaufman, 2000))

CSc 453: Linking and Loading 20

PIC: Advantages and DisadvantagesPIC: Advantages and DisadvantagesPIC: Advantages and DisadvantagesPIC: Advantages and Disadvantages

Advantages:
� Code does not have to be relocated when loaded.

(However, data still need to be relocated.)

� Different processes can share the memory pages of code,
even if they don’t have the same address space allocated.

Disadvantages:
� GOT needs to be relocated at load time.

In big libraries, GOT can be very large, so this may be slow.

� PIC code is bigger and slower than non-PIC code.
The slowdown is architecture dependent (in an architecture with
few registers, using one to hold GOT address can affect code
quality significantly.)

11

CSc 453: Linking and Loading 21

Shared LibrariesShared LibrariesShared LibrariesShared Libraries

� Have a single copy of the library that is used
by all running programs.

� Saves (disk and memory) space by avoiding
replication of library code.

� Virtual memory management in the OS
allows different processes to share “read-
only” pages, e.g., text and read-only data.
� This lets us get by with a single physical-memory copy of

shared library code.

CSc 453: Linking and Loading 22

Shared Libraries: contShared Libraries: contShared Libraries: contShared Libraries: cont’’’’dddd

� At link time, the linker:
� Searches a (specified) set of libraries, in some fixed order, to

find modules that resolve any undefined external symbols.

� puts a list of libraries containing such modules into the
executable.

� At load time, the startup code:
� finds these libraries;

� maps them into the program’s address space;

� carries out library-specific initialization.

� Startup code may be in the OS, in the
executable, or in a special dynamic linker.

12

CSc 453: Linking and Loading 23

Statically Linked Shared LibrariesStatically Linked Shared LibrariesStatically Linked Shared LibrariesStatically Linked Shared Libraries

� Program and data are bound to executables
at link time.

� Each library is pre-allocated an appropriate
amount of address space.

� The system has a master table of shared-
library address space:
� libraries start somewhere far away from application code,

e.g., at 0x60000000 on Linux;

� read-only portions of the libraries can be shared between

processes.

CSc 453: Linking and Loading 24

Dynamic LinkingDynamic LinkingDynamic LinkingDynamic Linking

� Defers much of the linking process until the
program starts running.

� Easier to create, update than statically linked
shared libraries.

� Has higher runtime performance cost than
statically linked libraries:
� Much of the linking process has to be redone each time a

program runs.

� Every dynamically linked symbol has to be looked up in the

symbol table and resolved at runtime.

13

CSc 453: Linking and Loading 25

Dynamic Linking: Basic MechanismDynamic Linking: Basic MechanismDynamic Linking: Basic MechanismDynamic Linking: Basic Mechanism

� A reference to a dynamically linked
procedure p is mapped to code that invokes a
handler.

� At runtime, when p is called, the handler gets
executed:
� The handler checks to see whether p has been loaded

already (due to some other reference);

� if so, the current reference is linked in, and execution

continues normally.

� otherwise, the code for p is loaded and linked in.

CSc 453: Linking and Loading 26

Dynamic Linking: ELF FilesDynamic Linking: ELF FilesDynamic Linking: ELF FilesDynamic Linking: ELF Files

� ELF shared libraries use PIC (position
independent code), so text sections do not need
relocation.

� Data references use a GOT:
� each global symbol has a relocatable pointer to it in the GOT;

� the dynamic linker relocates these pointers.

� We still need to invoke the dynamic linker on the
first reference to a dynamically linked procedure.
� Done using a procedure linkage table (PLT);

� PLT adds a level of indirection for function calls (analogous to the
GOT for data references).

14

CSc 453: Linking and Loading 27

ELF Dynamic Linking: PLT and GOTELF Dynamic Linking: PLT and GOTELF Dynamic Linking: PLT and GOTELF Dynamic Linking: PLT and GOT

CSc 453: Linking and Loading 28

ELF Dynamic Linking: Lazy LinkageELF Dynamic Linking: Lazy LinkageELF Dynamic Linking: Lazy LinkageELF Dynamic Linking: Lazy Linkage

� Initially, GOT entry points to
PLT code that invokes the
dynamic linker.
offset identifies both the symbol being

resolved and the corresponding GOT

entry.

� The dynamic linker looks up the
symbol value and updates the
GOT entry.

� Subsequent calls bypass
dynamic linker, go directly to
callee.

� This reduces program startup
time. Also, routines that are
never called are not resolved.

Before:

After:

