
1

CSc 453
Runtime Environments

Saumya Debray
The University of Arizona
Tucson

CSc 453: Runtime Environments 2

Issues

� Managing the relationship between source
program names and runtime data objects.

� Managing allocation/deallocation of, and
access to, data objects at runtime

� Managing different activations of a
procedure.
In general, several different activations of a procedure may be

“alive” at the same time.

2

CSc 453: Runtime Environments 3

Flow of Control Assumptions

� Sequential control flow:
At each step during execution, control is at some specific point

in the program.

no program level parallelism.

� Procedure execution:
� Each execution of a procedure starts at the beginning of the

procedure body.

� After the procedure has executed, control returns to the point

immediately after the call site.

no coroutining (Icon) or backtracking (Icon, Prolog).

CSc 453: Runtime Environments 4

Procedure Activation Characteristics

� Our procedure execution assumptions imply
that the lifetimes of any two procedure
activations are either nested or disjoint.

� This implies that procedure activations can
be managed using a control stack:
� push a node for an activation at entry to the procedure;

� pop the node when returning from the procedure.

3

CSc 453: Runtime Environments 5

Bindings of Names

CSc 453: Runtime Environments 6

Runtime Memory Organization

Runtime memory is organized to hold the components
of an executing program, e.g.:

4

CSc 453: Runtime Environments 7

Organization of Code Area

� Usually, code is generated a function at a time.

� Within a function, the compiler has freedom to
organize the code in any way.
Careful code layout can improve cache performance and increase speed.

CSc 453: Runtime Environments 8

Activation Records

� An activation record contains information
needed to manage a single activation of a
procedure, e.g.:
� saved machine state (PC, registers, return address);

� actual parameter values;

� local and temporary variables.

� The contents of an activation record may be
spread across the stack frame and registers.

5

CSc 453: Runtime Environments 9

Activation Records: Layout

� Some aspects of activation record layout,
e.g., location of actual parameters and some
machine state info, are specified by the
calling convention.

� The compiler decides the layout for local
variables and temporaries:
� the amount of storage needed for an object is determined by

its type;

� storage layout must conform to any alignment restrictions of

the underlying architecture.

CSc 453: Runtime Environments 10

Example: Stack Frame for an x86

6

CSc 453: Runtime Environments 11

Activation Records: Allocation Strategies

� Static Allocation (Fortran 77):
� all storage allocated by the compiler;

� no recursion, dynamic memory allocation;

� Stack Allocation (C, C++, Java):
� activation records organized as a stack;

� cannot be used if values of locals must be retained when an activation

ends, or if a called invocation outlives the caller.

� Heap Allocation (Lisp, Scheme):
� activation records allocated, deallocated in any order;

� some form of garbage collection or compaction needed to reclaim

space.

CSc 453: Runtime Environments 12

Procedure Calls and Returns

� Calling sequence: handles a call to a procedure:
� loads actual parameters where callee can find them;

� saves machine state (return address, …);

� branches to callee;

� allocates an activation record.

� Return sequence: handles the return from a
procedure call:
� loads the return value where the caller can find it;

� deallocates the activation record;

� restores machine state (saved registers, PC, etc.);

� branches back to caller.

7

CSc 453: Runtime Environments 13

Procedure Calls and Returns: cont’d

Structure of code executed for a procedure call:

CSc 453: Runtime Environments 14

Calling Conventions

� A calling convention for an architecture
and/or language specifies how values are
communicated between procedures:
� register usage (caller vs. callee saved registers, …);

� argument and return value placement.
E.g.: on the x86 [C calling convention]: an integer return value is placed in register

eax.

� We can have multiple calling conventions, e.g.:
__cdecl, __stdcall, __fastcall in MS Windows.

8

CSc 453: Runtime Environments 15

Caller vs. Callee Saved Registers

� A calling convention typically divides registers
into two classes:
� caller-saved: registers whose values will be overwritten by a

function call;
E.g.: On the x86 [C calling convention]: ebx, ecx, edx are caller-saved.

� callee-saved: registers whose values will survive across a

function call.
E.g.: On the x86 [C calling convention]: edi, esi, esp, ebp are callee-saved.

� A function using a callee-saved register must
save it on entry and restore it on exit.

CSc 453: Runtime Environments 16

Nested Functions

� Some languages allow function definitions to
be nested.
E.g.: GNU C allows definitions of the form

int foo(int x, int y)

{

int bar(int x) { return x* y; }

return bar(x) + bar(y);

}

� Nested functions are typically able to access
variables in enclosing scopes.
E.g.: the variable y above.

9

CSc 453: Runtime Environments 17

Accessing Non-Local Variables

Problem: In general, we may not know how far deep in
the stack a variable in an enclosing scope may be.
E.g:

int p(int m)

{

int x; /* x is local to p, hence in p’s activation record */

int q(int n)

{

if (n > 0) return 2*q(n-1);

else return x+1;

}

printf(“%d\n”, q(m+2));

}

CSc 453: Runtime Environments 18

Accessing Non-Local Variables

� Basic Idea: pass an access link at each call.
A procedure p’s access link is a pointer to the (most recent)

activation record of the procedure q that encloses p’s definition.

� The code to set up access links can be
generated at compile time.

� Using access links, at runtime the program
can “walk up” the static nesting structure to
access non-local variables.

10

CSc 453: Runtime Environments 19

Accessing Non-Local Variables

� The nesting depth of a procedure:
� The outermost scope (globals) has nesting depth 0.

� Nesting depth increases by 1 when we enter a new scope, and

decreases by 1 when we leave the scope.

� Nesting depths are known at compile time.

� Suppose a procedure p at nesting depth np refers to
a variable x at nesting depth nx (nx ≤ np).
The code generated is as follows:
� follow access links np – nx times; (both np, nx known at compile time);

� access x within the stack frame reached. (x’s offset known at compile time).

