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Need for Semantic Analysis

� Not all program properties can be 
represented using context-free grammars.
E.g.: “variables must be declared before use” is not a 
context-free property.

� Parsing context-sensitive grammars is  
expensive.

� As a pragmatic measure, compilers combine 
context-free and context-sensitive checking:
� Context-free parsing used to check “code shape;”

� Additional rules used to check context-sensitive aspects.
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Syntax-Directed Translation

� Basic Idea: 
� Associate information with grammar symbols using attributes.

An attribute can represent any reasonable aspect of a program, e.g., character 

string, numerical value, type, memory location, etc.

� Use semantic rules associated with grammar productions to 

compute attribute values.

� A parse tree showing attribute values at each 
node is called an annotated parse tree.

� Implementation: Add code to parser to 
compute and propagate attribute values.
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Example: Attributes for an Identifier
� name: character string (from scanner)
� scope: global, local, …

� if local: whether or not a formal parameter

� type:
� integer

� array:
� no. of dimensions

� upper and lower bound for each dimension

� type of elements

� struct:
� name and type of each field

� function:
� number and type of arguments (in order)

� type of returned value

� entry point in memory

� size of stack frame

� …
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Types of Attributes

� Inherited attributes: An 
attribute is inherited at a 
parse tree node if its 
value is computed at a 
parent or sibling node.

� Synthesized attributes: 
An attribute is 
synthesized at a parse 
tree node if its value is 
computed at that node 
or one of its children.
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Example: A Simple Calculator

E.val =  intcon.valE → intcon

E.val = E1.valE → (E1)

E.val =  E1.val ⊗ E2.valE → E1 * E2

E.val =  E1.val ⊕E2.valE → E1 + E2

Semantic RuleProduction
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Symbol Tables

� Purpose: To hold information (i.e., attribute 
values) about identifiers that get computed at 
one point and used later.
E.g.: type information:

� computed during parsing;

� used during type checking, code generation.

� Operations: 
� create, delete a symbol table;

� insert, lookup an identifier

� Typical implementations: linked list, hash table.
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Semantic Actions in Yacc

� Semantic actions are embedded in RHS of 
rules.
An action consists of one or more C statements, enclosed in 

braces { … }.

� Examples:
ident_decl : ID     { symtbl_install( id_name ); }

type_decl : type  { tval = … } id_list;
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Semantic Actions in Yacc: cont’d

Each nonterminal can return a value.
� The value returned by the ith symbol on the RHS is denoted 

by $i.

� An action that occurs in the middle of a rule counts as a 

“symbol” for this.

� To set the value to be returned by a rule, assign to $$.

By default, the value returned by a rule is the value of the first RHS 

symbol, i.e., $1.
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Yacc: Declaring Return Value Types

Declare the various kinds of values 
that may be returned:

%union {

symtab_ptr st_ptr;

idlist_ptr idents;

tree_node tn_ptr;

int val;

}

� Default return value for symbols is int.
� We may want other types of return values, e.g., 

symbol table pointers, syntax tree nodes.

Specify return type for each grammar 
symbol:

/* tokens: */

%token <val> INTCON;

/* nonterminals: */

%type <st_ptr> ident;

%type <tn_ptr> expr;
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Semantic Actions in Yacc: Example 1

14 { scope = GLOBAL; }13 ′}′

12 { this_fn→body = $11; }11 stmt

10 decls

9 ′{′

8 ′)′

7 formals

6 { scope = LOCAL; }5 ′(′

4 { this_fn = symtbl_install(id_name); }3 ID

2 { ret_type = $1; }1 typefunc :
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Semantic Actions in Yacc: Example 2

A simple calculator in Yacc:

{ $$ = $1.val; }intconE :

{ $$ = $2; }‘(‘ E ‘)’E :

{ $$ = $1 * $3; }E ‘*’ EE :

{ $$ = $1 + $3; }E ‘+’ EE :
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Managing Scope Information

� When looking up a name in a symbol table, 
we need to find the “appropriate” declaration.
The scope rules of the language determine what is “appropriate.”

� Often, we want the most deeply nested
declaration for a name.

� Implementation: for each new scope: push a 
new symbol table on entry; pop on exit (stack).
� implement symbol table stack as a linked list of symbol tables;

newly declared identifiers go into the topmost symbol table.

� lookup: search the symbol table stack from the top downwards.
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Processing Declarations

var.type = varlist.type;

varlist1.type = varlist.type;
varlist → var ‘,’ varlist1

varlist.tval = type.tval;decl → type varlist ‘;’

Semantic RuleProduction

xxx : inherited
yyy : synthesized
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Processing Declarations: cont’d

decl : type { tval = $1; } varlist ;

varlist : var varlist
| var ;

var : ID opt_subscript { symtbl_insert($1, $2); } ;
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Static Checking

Static checking aims to ensure, at compile time, that 
syntactic and semantic constraints of the source 
language are obeyed.  E.g.:
� Type checks: operators and operands must have compatible 

types.

� Flow-of-control checks: control transfer statements must 

have legitimate targets (e.g., break/continue statements).

� Uniqueness checks: a language may dictate unique 

occurrences in some situations, e.g., variable declarations, 

case labels in switch statements.

These checks can often be integrated with parsing.
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Data Types and Type Checking

� A data type is a set of values together with a 
set of operations that can be performed on 
them.

� Type checking aims to verify that operations 
in a program code are, in fact, permissible on 
their operand values.

� Reasoning about types: 
� The language provides a set of base types and a set of type 
constructors;

� The compiler uses type expressions to represent types 
definable by the language.
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Type Constructors and Type 
Expressions

A type expression denotes (i.e., is a syntactic 
representation of) the type of a program entity:

� A base type is a type expression (e.g., boolean, char, int, float);

� A type name is a type expression;

� A type constructor applied to type expressions is a type expression, 

e.g.:

� arrays: if T is a type expression then so is array(T);

� records: if T1, …, Tn are type expressions and f1, …, fn is a list of 

(unique) identifiers, then record(f1:T1, …, fn:Tn) is a type expression;

� pointers: if T is a type expression then so is ptr(T);

� functions: if T, T1, …, Tn are type expressions, then so is                   

(T1, …, Tn) → T.
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Why use Type Expressions?

main()

{

printf(“%c\n”, (*f())[2] );

/* legal??? */

}

char *X;

char **f()

{

X = “GOTCHA!”

return &X;

}

Program Code Type Expression Rule
f            ()→→→→ptr(ptr(char))  symbol table lookup

f()          ptr(ptr(char)) if e : T1→T2 and e1 : T1 then e(e1) : T2
*f()         ptr(char)            if e : ptr(T) then *e : T

*f()         array(char)          if e : ptr(T) then e : array(T)

(*f())       array(char)          if e : T then (e) : T

2                               int base type

(*f())[2]    char                 if e1 : array(T) and e2 : int then e1[e2] : T

What about: 
qsort((void **)lptr,0,k,(int (*)(void*,void*))(num ? ncmp : strcmp));
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Notions of Type Equivalence

1. Name equivalence:
In some languages (e.g., Pascal), types can be given names.  

Name equivalence views distinct type names as distinct types: two types 
are name equivalent if and only if they have the same type name.

2. Structural equivalence:
Two type expressions are structurally equivalent if they have the same 

structure, i.e., if both apply the same type constructor to structurally 
equivalent type expressions.

E.g.: in the Pascal fragment
type p = ↑node;

q = ↑node;
var x : p; 

y : q;
x and y are structurally equivalent, but not name-equivalent.
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Representing Type Expressions

Type graphs: A graph-structured representation of type 
expressions:
� Basic types are given predefined “internal values”;

� Named types can be represented via pointers into a hash table.

� A composite type expression f (T1,…,Tn) is represented as a node 

identifying the constructor f and with pointers to the nodes for     
T1, …, Tn.  

E.g.:   int x[10][20]:
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Type Checking Expressions 

{ $$ = result_type($1, $3); }E.type = result_type(E1.type, E2.type)E → E1 + E2

{ $$ = INTEGER; }E.type = INTEGERE → intcon

{ $$ = symtab_lookup(id_name); }E.type = id.typeE → id

Yacc CodeSemantic RuleProduction

Return types:
� currently: the type of the expression

� down the road:

� type

� location

� code to evaluate the expression

/*  arithmetic type conversions */

Type result_type(Type t1, Type t2)

{

if (t1 == error || t2 == error) return error; 

if (t1 == t2) return t1;

if (t1 == double || t2 == double) return double;

if (t1 == float || t2 == float) return float;

…

}
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Type Checking Expressions: cont’d

Arrays:

E → id[ E1 ]  { t1 = id.type;

if (t1 == ARRAY ∧ E1.type == INTEGER) 

E.type = id.element_type;

else

E.type = error;

}
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Type Checking Expressions: cont’d

Function calls:

E → id ‘(‘ expr_list ‘)’

{ if (id.return_type == VOID) 

E.type = error;

else if ( chk_arg_types(id, expr_list) )  /* actuals match formals in number, type */

E.type = id.return_type;

else

E.type = error;

}
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Type Checking Statements

Different kinds of statements have different 
type requirements.  E.g.:
� if, while statements may require boolean conditiona;

� LHS of an assignment must be an “l-value”, i.e., something 

that can be assigned.

� LHS and RHS of an assignment must have “compatible”

types.  If they are of different types, conversion will be 

necessary.
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Operator Overloading

� Overloading refers to the use of the same 
syntax to refer to different operations, 
depending on the operand types.
E.g.: in Java, ‘+’ can refer to integer addition, floating point addition, 

or string concatenation.

� The compiler uses operand type information 
to resolve the overloading, i.e., figure out 
which operation is actually referred to. 
If there is insufficient information to resolve overloading, the compiler 

may give an error.


