
1

CSc 453
Semantic Analysis

Saumya Debray
The University of Arizona
Tucson

CSc 453: Semantic Analysis 2

Need for Semantic Analysis

� Not all program properties can be
represented using context-free grammars.
E.g.: “variables must be declared before use” is not a
context-free property.

� Parsing context-sensitive grammars is
expensive.

� As a pragmatic measure, compilers combine
context-free and context-sensitive checking:
� Context-free parsing used to check “code shape;”

� Additional rules used to check context-sensitive aspects.

2

CSc 453: Semantic Analysis 3

Syntax-Directed Translation

� Basic Idea:
� Associate information with grammar symbols using attributes.

An attribute can represent any reasonable aspect of a program, e.g., character

string, numerical value, type, memory location, etc.

� Use semantic rules associated with grammar productions to

compute attribute values.

� A parse tree showing attribute values at each
node is called an annotated parse tree.

� Implementation: Add code to parser to
compute and propagate attribute values.

CSc 453: Semantic Analysis 4

Example: Attributes for an Identifier
� name: character string (from scanner)
� scope: global, local, …

� if local: whether or not a formal parameter

� type:
� integer

� array:
� no. of dimensions

� upper and lower bound for each dimension

� type of elements

� struct:
� name and type of each field

� function:
� number and type of arguments (in order)

� type of returned value

� entry point in memory

� size of stack frame

� …

3

CSc 453: Semantic Analysis 5

Types of Attributes

� Inherited attributes: An
attribute is inherited at a
parse tree node if its
value is computed at a
parent or sibling node.

� Synthesized attributes:
An attribute is
synthesized at a parse
tree node if its value is
computed at that node
or one of its children.

CSc 453: Semantic Analysis 6

Example: A Simple Calculator

E.val = intcon.valE → intcon

E.val = E1.valE → (E1)

E.val = E1.val ⊗ E2.valE → E1 * E2

E.val = E1.val ⊕E2.valE → E1 + E2

Semantic RuleProduction

4

CSc 453: Semantic Analysis 7

Symbol Tables

� Purpose: To hold information (i.e., attribute
values) about identifiers that get computed at
one point and used later.
E.g.: type information:

� computed during parsing;

� used during type checking, code generation.

� Operations:
� create, delete a symbol table;

� insert, lookup an identifier

� Typical implementations: linked list, hash table.

CSc 453: Semantic Analysis 8

Semantic Actions in Yacc

� Semantic actions are embedded in RHS of
rules.
An action consists of one or more C statements, enclosed in

braces { … }.

� Examples:
ident_decl : ID { symtbl_install(id_name); }

type_decl : type { tval = … } id_list;

5

CSc 453: Semantic Analysis 9

Semantic Actions in Yacc: cont’d

Each nonterminal can return a value.
� The value returned by the ith symbol on the RHS is denoted

by $i.

� An action that occurs in the middle of a rule counts as a

“symbol” for this.

� To set the value to be returned by a rule, assign to $$.

By default, the value returned by a rule is the value of the first RHS

symbol, i.e., $1.

CSc 453: Semantic Analysis 10

Yacc: Declaring Return Value Types

Declare the various kinds of values
that may be returned:

%union {

symtab_ptr st_ptr;

idlist_ptr idents;

tree_node tn_ptr;

int val;

}

� Default return value for symbols is int.
� We may want other types of return values, e.g.,

symbol table pointers, syntax tree nodes.

Specify return type for each grammar
symbol:

/* tokens: */

%token <val> INTCON;

/* nonterminals: */

%type <st_ptr> ident;

%type <tn_ptr> expr;

6

CSc 453: Semantic Analysis 11

Semantic Actions in Yacc: Example 1

14 { scope = GLOBAL; }13 ′}′

12 { this_fn→body = $11; }11 stmt

10 decls

9 ′{′

8 ′)′

7 formals

6 { scope = LOCAL; }5 ′(′

4 { this_fn = symtbl_install(id_name); }3 ID

2 { ret_type = $1; }1 typefunc :

CSc 453: Semantic Analysis 12

Semantic Actions in Yacc: Example 2

A simple calculator in Yacc:

{ $$ = $1.val; }intconE :

{ $$ = $2; }‘(‘ E ‘)’E :

{ $$ = $1 * $3; }E ‘*’ EE :

{ $$ = $1 + $3; }E ‘+’ EE :

7

CSc 453: Semantic Analysis 13

Managing Scope Information

� When looking up a name in a symbol table,
we need to find the “appropriate” declaration.
The scope rules of the language determine what is “appropriate.”

� Often, we want the most deeply nested
declaration for a name.

� Implementation: for each new scope: push a
new symbol table on entry; pop on exit (stack).
� implement symbol table stack as a linked list of symbol tables;

newly declared identifiers go into the topmost symbol table.

� lookup: search the symbol table stack from the top downwards.

CSc 453: Semantic Analysis 14

Processing Declarations

var.type = varlist.type;

varlist1.type = varlist.type;
varlist → var ‘,’ varlist1

varlist.tval = type.tval;decl → type varlist ‘;’

Semantic RuleProduction

xxx : inherited
yyy : synthesized

8

CSc 453: Semantic Analysis 15

Processing Declarations: cont’d

decl : type { tval = $1; } varlist ;

varlist : var varlist
| var ;

var : ID opt_subscript { symtbl_insert($1, $2); } ;

CSc 453: Semantic Analysis 16

Static Checking

Static checking aims to ensure, at compile time, that
syntactic and semantic constraints of the source
language are obeyed. E.g.:
� Type checks: operators and operands must have compatible

types.

� Flow-of-control checks: control transfer statements must

have legitimate targets (e.g., break/continue statements).

� Uniqueness checks: a language may dictate unique

occurrences in some situations, e.g., variable declarations,

case labels in switch statements.

These checks can often be integrated with parsing.

9

CSc 453: Semantic Analysis 17

Data Types and Type Checking

� A data type is a set of values together with a
set of operations that can be performed on
them.

� Type checking aims to verify that operations
in a program code are, in fact, permissible on
their operand values.

� Reasoning about types:
� The language provides a set of base types and a set of type
constructors;

� The compiler uses type expressions to represent types
definable by the language.

CSc 453: Semantic Analysis 18

Type Constructors and Type
Expressions

A type expression denotes (i.e., is a syntactic
representation of) the type of a program entity:

� A base type is a type expression (e.g., boolean, char, int, float);

� A type name is a type expression;

� A type constructor applied to type expressions is a type expression,

e.g.:

� arrays: if T is a type expression then so is array(T);

� records: if T1, …, Tn are type expressions and f1, …, fn is a list of

(unique) identifiers, then record(f1:T1, …, fn:Tn) is a type expression;

� pointers: if T is a type expression then so is ptr(T);

� functions: if T, T1, …, Tn are type expressions, then so is

(T1, …, Tn) → T.

10

CSc 453: Semantic Analysis 19

Why use Type Expressions?

main()

{

printf(“%c\n”, (*f())[2]);

/* legal??? */

}

char *X;

char **f()

{

X = “GOTCHA!”

return &X;

}

Program Code Type Expression Rule
f ()→→→→ptr(ptr(char)) symbol table lookup

f() ptr(ptr(char)) if e : T1→T2 and e1 : T1 then e(e1) : T2
*f() ptr(char) if e : ptr(T) then *e : T

*f() array(char) if e : ptr(T) then e : array(T)

(*f()) array(char) if e : T then (e) : T

2 int base type

(*f())[2] char if e1 : array(T) and e2 : int then e1[e2] : T

What about:
qsort((void **)lptr,0,k,(int (*)(void*,void*))(num ? ncmp : strcmp));

CSc 453: Semantic Analysis 20

Notions of Type Equivalence

1. Name equivalence:
In some languages (e.g., Pascal), types can be given names.

Name equivalence views distinct type names as distinct types: two types
are name equivalent if and only if they have the same type name.

2. Structural equivalence:
Two type expressions are structurally equivalent if they have the same

structure, i.e., if both apply the same type constructor to structurally
equivalent type expressions.

E.g.: in the Pascal fragment
type p = ↑node;

q = ↑node;
var x : p;

y : q;
x and y are structurally equivalent, but not name-equivalent.

11

CSc 453: Semantic Analysis 21

Representing Type Expressions

Type graphs: A graph-structured representation of type
expressions:
� Basic types are given predefined “internal values”;

� Named types can be represented via pointers into a hash table.

� A composite type expression f (T1,…,Tn) is represented as a node

identifying the constructor f and with pointers to the nodes for
T1, …, Tn.

E.g.: int x[10][20]:

CSc 453: Semantic Analysis 22

Type Checking Expressions

{ $$ = result_type($1, $3); }E.type = result_type(E1.type, E2.type)E → E1 + E2

{ $$ = INTEGER; }E.type = INTEGERE → intcon

{ $$ = symtab_lookup(id_name); }E.type = id.typeE → id

Yacc CodeSemantic RuleProduction

Return types:
� currently: the type of the expression

� down the road:

� type

� location

� code to evaluate the expression

/* arithmetic type conversions */

Type result_type(Type t1, Type t2)

{

if (t1 == error || t2 == error) return error;

if (t1 == t2) return t1;

if (t1 == double || t2 == double) return double;

if (t1 == float || t2 == float) return float;

…

}

12

CSc 453: Semantic Analysis 23

Type Checking Expressions: cont’d

Arrays:

E → id[E1] { t1 = id.type;

if (t1 == ARRAY ∧ E1.type == INTEGER)

E.type = id.element_type;

else

E.type = error;

}

CSc 453: Semantic Analysis 24

Type Checking Expressions: cont’d

Function calls:

E → id ‘(‘ expr_list ‘)’

{ if (id.return_type == VOID)

E.type = error;

else if (chk_arg_types(id, expr_list)) /* actuals match formals in number, type */

E.type = id.return_type;

else

E.type = error;

}

13

CSc 453: Semantic Analysis 25

Type Checking Statements

Different kinds of statements have different
type requirements. E.g.:
� if, while statements may require boolean conditiona;

� LHS of an assignment must be an “l-value”, i.e., something

that can be assigned.

� LHS and RHS of an assignment must have “compatible”

types. If they are of different types, conversion will be

necessary.

CSc 453: Semantic Analysis 26

Operator Overloading

� Overloading refers to the use of the same
syntax to refer to different operations,
depending on the operand types.
E.g.: in Java, ‘+’ can refer to integer addition, floating point addition,

or string concatenation.

� The compiler uses operand type information
to resolve the overloading, i.e., figure out
which operation is actually referred to.
If there is insufficient information to resolve overloading, the compiler

may give an error.

