
1

CScCScCScCSc 453453453453

Compilers & Systems

Software

Saumya Debray
The University of Arizona

Tucson, AZ 85721

CSc 453: Background 2

Course ObjectivesCourse ObjectivesCourse ObjectivesCourse Objectives

� Understand the design and implementation of

compilers and related systems software.

� Understand how source language programs are

implemented at the machine level.

� Understand compilation as an instance of language

translation.

2

CSc 453: Background 3

CompilersCompilersCompilersCompilers

A compiler (more generally, translator) maps source

language strings to “equivalent” target language

strings. E.g.:

� gcc : C/C++ programs to assembly/machine code

� f2c : Fortran programs to C programs

� latex2html: Latex documents to HTML documents

� javac : Java programs to JVM byte code

� ps2pdf: PostScript files to PDF files

CSc 453: Background 4

LanguagesLanguagesLanguagesLanguages

� Syntax:

� “structural” aspects of program units.

� specified by a grammar.

� Semantics:

� the “meaning,” i.e., behavior, of program units.

� specified using actions associated with grammar rules.

3

CSc 453: Background 5

Phases of a CompilerPhases of a CompilerPhases of a CompilerPhases of a Compiler

1. Lexical analysis (“scanning”)
� Reads in program, groups characters into “tokens”

2. Syntax analysis (“parsing”)
� Structures token sequence according to grammar rules of the

language.

3. Semantic analysis
� Checks semantic constraints of the language.

4. Intermediate code generation
� Translates to “lower level” representation.

5. Program analysis and code optimization
� Improves code quality.

6. Final code generation.

CSc 453: Background 6

Grouping of PhasesGrouping of PhasesGrouping of PhasesGrouping of Phases

� Front end : machine independent phases

� Lexical analysis

� Syntax analysis

� Semantic analysis

� Intermediate code generation

� Some code optimization

� Back end : machine dependent phases

� Final code generation

� Machine-dependent optimizations

4

CSc 453: Background 7

Costs of different phasesCosts of different phasesCosts of different phasesCosts of different phases

� Typically, a compiler spends most of its time doing

I/O and lexical analysis:

� ~ 35-40% of time spent in I/O

� ~ 30% in lexical analysis

� ~ 10% in symbol table management

� ~ 7-15% in parsing and other control

