
Lex and Yacc: A Brisk Tutorial

Saumya K. Debray
Department of Computer Science

The University of Arizona
Tucson, AZ 85721

Lex: A Scanner Generator

• Helps write programs whose control flow is directed by in-
stances of regular expressions in the input stream.

yylex()

(in file lex.yy.c

Lex

)

Table of regular expressions
+ associated actions

• yylex() :

– matches the input stream against the table of regular
expressions supplied

– carries out the associated action when a match is found.

2

Structure of Lex Specification File







Definitions

%%






Rules
red : required
blue : optional

%%






User subroutines

Rules : line oriented:

〈reg . exp〉 〈whitespace〉 〈action〉

〈reg . exp〉 : starts at beginning of line, continues upto first un-
escaped whitespace

〈action〉 : a single C statement
(multiple statements: enclose in braces { }).

unmatched input characters : copied to stdout.

3

Lex Regular Expressions

Similar to egrep :

• operators : " \ [] ˆ - ? . * | () $ / { } % < >

• letters and digits match themselves

• period ‘.’ matches any character (except newline)

• brackets [] enclose a sequence of characters, termed a
character class. This matches:

– any character in the sequence

– a ‘-’ in a character class denotes an inclusive range,
e.g.: [0-9] matches any digit.

– a ˆ at the beginning denotes negation: [ˆ0-9]matches
any character that is not a digit.

• a quoted character " " matches that character.

operators can be escaped via \.

• \n, \t match newline, tab.

•











parentheses () grouping
bar | alternatives
star * zero or more occurrences

+ one or more occurrence
? zero or one occurrence

4

Examples of Lex Rules

• int printf("keyword: INTEGER\n");

• [0-9]+ printf("number\n");

• "-"?[0-9]+("."[0-9]+)? printf("number\n");

Choosing between different possible matches:
When more than one pattern can match the input, lex chooses
as follows:

1. The longest match is preferred.

2. Among rules that match the same number of characters,
the rule that occurs earliest in the list is preferred.

Example : the pattern

"/""*"(.|\n)*"*""/"

(intended to match multi-line comments) may consume all the
input!

5

Communicating with the user program

yytext : a character array that contains the actual string that
matched a pattern.

yyleng : the no. of characters matched.

Example :

• [a-z][a-z0-9_]* printf("ident: %s\n", yytext);

• Counting the number of words in a file and their total size:

[a-zA-Z]+ {nwords += 1; size += yyleng;}

6

Lex source definitions

• Any source not intercepted by lex is copied into the gener-
ated program:

– a line that is not part of a lex rule or action, which begins
with a blank or tab, is copied out as above (useful for,
e.g., global declarations)

– anything included between lines containing only %{ and
%} is copied out as above (useful, e.g., for preprocessor
statements that must start in col.1)

– anything after the second %% delimiter is copied out af-
ter the lex output (useful for local function definitions).

• Definitions intended for lex are given before the first %%. Any
line in this section that does not begin with a blank or tab,
or is not enclosed by %{...%}, is assumed to be defining
a lex substitution string of the form

name translation

E.g.:

letter [a-zA-Z]

7

An Example

%{
#include "tokdefs.h"
#include <strings.h>
static int id_or_keywd(char *s);
%}

letter [a-zA-Z]
digit [0-9]
alfa [a-zA-Z0-9_]
whitesp [\t\n]
%%
{whitesp}* ;
{comment} ;
{letter}{alfa} REPORT(id_or_keywd(yytext), yytext);

...
%%
static struct {

char *name;
int val;

} keywd_entry,
keywd_table[] = {

"char", CHAR,
"int", INT,
"while", WHILE,

...
};

static int id_or_keywd(s)
char *s;
{

...
}

8

Left Context Sensitivity: Start Conditions

Start conditions are a mechanism for conditionally activating pat-
terns. This is useful for handling

– conceptually different components of an input; or

– situations where the lex defaults (e.g., “longest possible
match”) don’t work well, e.g., comments or quoted strings.

Basic Idea:

– Declare a set of start condition names using

%Start name1 name2 . . .

– If scn is a start condition name, then a pattern prefixed with
<scn> will only be active when the scanner is in start con-
dition scn.

– The scanner begins in start condition INITIAL, of which all
non-<scn>-prefixed rules are members.

– Start conditions such as these are inclusive: i.e., being in
that start condition adds appropriately prefixed rules to the
active rule set.

flex also allows exclusive start conditions (declared using
%x), which are sometimes more convenient.

9

Example of use of start conditions

%Start comment0 comment1
%{
#include "tokens.h"
%}
whitespace [\t\n]
digit [0-9]
intcon {digit}+
floatcon {digit}+"."{digit}+
start_comment "/""*"

%%
<INITIAL>{start_comment} BEGIN(comment0);
<comment0>"*" BEGIN(comment1);
<comment0>[ˆ*] ;
<comment1>"*" ;
<comment1>"/" BEGIN(INITIAL);
<comment1>[ˆ*/] BEGIN(comment0);

{intcon} return(INTCON);
{floatcon} return(FLOATCON);
...

%%
...

10

Yacc: A Parser Generator

• Takes a specification for a CFG, produces an LALR parser.

grammar rules

yyparse()yylex()

YaccLex

input
tokens

parsed input

lexical rules

• Form of a yacc specification file:






Declarations

%%






Grammar rules
red : required
blue : optional

%%






Programs

11

Yacc: Grammar Rules

Terminals (tokens) : Names must be declared:

%token name1 name2 ...

Any name not declared as a token in the declarations sec-
tion is assumed to be a nonterminal.

Start symbol :

– may be declared, via: %start name

– if not declared explicitly, defaults to the nonterminal on
the LHS of the first grammar rule listed.

Productions : A grammar production A → B1B2 · · ·Bn is writ-
ten as

A : B1B2 · · ·Bn ;

Note: Left-recursion is preferred to right-recursion for effi-
ciency reasons.

Example:

stmt : KEYWD_IF ’(’ expr ’)’ stmt ;

12

Communication between Scanner and Parser

• The user must supply an integer-valued function yylex()
that implements the lexical analyzer (scanner).

• If there is a value associated with the token, it should be
assigned to the external variable yylval.

• The token error is reserved for error handling.

• Token numbers : These may be chosen by the user if de-
sired. The default is:

– chosen by yacc [in a file y.tab.h]

– the token no. for a literal is its ASCII value

– other tokens are assigned numbers starting at 257

– the endmarker must have a number zero or negative.

• Generate y.tab.h using ‘yacc -d’

13

Using Yacc

• Suppose the grammar spec is in a file foo.y. Then:

– The command ‘yacc foo.y’ yields a file y.tab.c con-
taining the parser constructed by yacc.

– The command ‘yacc -d foo.y’ constructs a file y.tab.h
that can be #include’d into the scanner generated by
lex.

– The command ‘yacc -v foo.y’ additionally constructs
a file y.output containing a description of the parser
(useful for debugging).

• The user needs to supply a function main() to driver, and
a function yyerror() that will be called by the parser if
there is an error in the input.

14

Conflicts and Ambiguities

• Conflicts may be either shift/reduce or reduce/reduce:

– In a shift/reduce conflict, the default is to shift.

– In a reduce/reduce conflict, the default is to reduce us-
ing the first applicable grammar rule.

• Arithmetic Operators : associativity and precedence can be
specified:

Associativity: use %left, %right, %nonassoc

Precedence (Binary Operators):

– Specify associativity using %left etc.

– Operators within a group have same precedence. Be-
tween groups, precedence increases going down.

Precedence (Unary Operators): use %prec keyword. This
changes the precedence of a rule to be that of the following
token.

Example:

%left ’+’ ’-’
%left ’*’ ’/’

...
expr : expr ’+’ expr

| expr ’*’ expr
| ’-’ expr %prec ’*’
| ID

15

Yacc: Error Handling

• The token error is reserved for error handling. This can be
used in grammar rules, to indicate where error might occur
and recovery take place.

• When an error is detected :

– If an error token is specified, the parser pops its stack
until it finds a state where the error token is legal.
It then behaves as if error is the current lookahead
token, and performs the action encountered.

– If there is no rule using the error token, processing
halts when an error is encountered.

• To prevent cascading error messages, the parser remains
in an error state after detecting an error until 3 tokens have
been successfully read and shifted.

If an error is encountered when in the error state, no error
message is given, and the input token is discarded.

16

Yacc Error Handling: (cont’d)

• A rule of the form

stmt : error

means that on syntax error, the parser would attempt to skip
over the offending statement, looking for 3 tokens that can
legally follow stmt.

• A rule of the form

stmt : error ’;’

causes the parser to skip to the next ’;’ after stmt: all
intervening tokens are deleted.

• Actions may be associated with these special error rules:
these might attempt to (re)initialize tables, reclaim space,
turn off code generation, etc.

17

Adding error symbols

Their placement is guided by the following (conflicting!) goals:

• as close as possible to the start symbol of the grammar

(to allow recovery without discarding the entire pro-
gram)

• as close as possible to each terminal symbol

(to allow only a small amount of input to be dis-
carded on an error)

• without introducing conflicts

(this may be difficult;
shift/reduce conflicts may be acceptable if they serve
to lengthen strings, i.e., delay reporting of errors)

18

Error Messages

The use should provide a function yyerror() that is called
when a syntax error is detected:

yyerror(s)
char *s; /* s: a string containing an error msg */
{ /* usually "syntax error" */
...

}

More informative error messages :

– line no. in source program : yylineno
– token no. causing error : yychar

Example :

extern int yylineno, yychar;
yyerror(s)
char *s;
{
fprintf(stderr,

"%s: token %d on line %d\n",
/* ˆˆ Ugh: internal token no.?!? */

s, yychar, yylineno);
}

19

Controlling error actions

Sometimes we may want to stop discarding tokens, if a certain
(synchronizing) token is seen: for this, attach an action {yyerrok;}

Example :

id list : id list ’,’ ID { yyerrok; }
| ID
| error

Special-purpose error handling:

– set a global flag to indicate the problem;

– use this flag in yyerror() to give better error messages.

Example :

compd_stmt : ’{’ stmt_list ’}’
| ’{’ stmt_list error {errno = NO RBRACE;}
| ’{’ error ’}’

...
yyerror(s)
{

if (errno == NO_RBRACE) printf("missing }\n");
else ...

}

20

Adding Semantic Actions to Yacc Specifications

Semantic actions may be associated with each rule.

An action is specified by one or more statements, enclosed in
braces { }.

Examples :

ident decl : ID {install symtab(id name);}

type decl : type { tval = ...} id list

Note: Actions may occur inside RHS of a production.

21

(Synthesized) Attributes for Nonterminals

Each nonterminal can return a value:

– To access the value returned by the ith symbol in the body
of a rule, use $i.

If an action occurs in the middle of a rule, it is counted as a
“symbol” that can return a value.

– To set the value to be returned by a rule, assign to $$.

By default, the value of a rule is the value of the first element
in it ($1).

Example :

IDfunc_defn :

’(’

formals

’)’

parm_types

’{’

body

’}’ {scope = GLOBAL; symtab_cleanup();}

{install_formals($5, $7);}

{scope = LOCAL;}

12

{install_symtab(id_name);}

8

2

4

1

3

5

6

7

9

10

11

22

Example

var_decl
: identifier opt_dimension

{ if (Seen($1) > 0) {
errmsg(MULTI_DECL, Ident($1));

}
else {

Seen($1) = DECL;
if ($2 < 0) {

BaseType($1) = tval;
}
else {

BaseType($1) = ARRAY;
ArrayEltType($1) = tval;
ArrayDim($1) = $2;

}
}

}
;

opt_dimension
: ’[’ INTCON ’]’ { $$ = Value(yylval); }
| /* epsilon */ { $$ = -1; }
;

23

Synthesized Attributes: Types

By default, values returned by actions and the lexical analyzer
are integers.

In general, actions may need to return values of other types, e.g.,
pointers to the symbol table or syntax tree nodes. For this, we
need to:

1. Declare the union of the various kinds of values that may
be returned. E.g.:

%union {
symtab_ptr st_ptr;
id_list_ptr list_of_ids;
tree_node st_node;
int value;

}

2. Specify which union member a particular nonterminal will
return:

%token <value> INTCON, CHARCON;
}

terminals

%type <st ptr> identifier;
%type <list of ids> formals;

}

nonterminals

24

Example

%union {
st rec ptr st ptr;
id list ptr list of ids;
expr node ptr expr;
stmt node ptr stmt;
int value;

}

%token ID; /* identifiers */
%token <value> INTCON CHARCON /* constants */
%token CHAR INT VOID /* types */
...
%left AND OR
%nonassoc LE GE EQ NEQ ’<’ ’>’
%left ’+’ ’-’
...
%type <value> opt dimension, type
%type <st ptr> identifier;
%type <list of ids> formals
...

%start prog

%{
st rec ptr id ptr; /* globals */
id list ptr fparms;
...
%}
%%
...

25

