
CS453 Lecture Haskell Intro 1

Writing a Compiler in Haskell

Today
– Some Haskell History
– Haskell main for keeping side-effects contained
– Writing functions in Haskell
– Debugging Haskell
– User-defined datatypes
– Lexicographical analysis for punctuation and keywords in Haskell

This week
– PA1: Start PA3whiledots.java.s. It is due in 11 days along with demo!
– HW2: Due Tuesday September 6th

– Reading assignment posted on class schedule for today
– Friday will be using Haskell in discussion section

Some Haskell History

1990 Haskell 1.0
– Designed by committee starting with 1987 meeting at a conference.
– See “A History of Haskell Being Lazy with Class”, by Hudak, Hughes,

Jones and Wadler.
1999 The Haskell 98 Report
2013 Sabbatical in Australia

– Philip Wadler
– Gabriele Keller
– Manuel Chakravarty

2016 Haskell has momentum
– https://wiki.haskell.org/Haskell_in_industry

September 2016, CS 453
– Focus is on a small subset of Haskell that enables writing a compiler.

CS453 Lecture Haskell Intro 2

Some Haskell Features

Purely functional
– Any function with same input returns same output.
– Wait isn’t that true in C, Java, ... everything?
– No side effects and no state, just values.

Strongly typed
– It will infer all of the types based on how values are used.
– You can also declare some of the types to make code more readable.

Lazy
– Expressions are not evaluated unless they are needed.
– More on this later in the semester.

Functions are first class objects
– Functions are values too!
– An expression can evaluate to a function.

CS453 Lecture Haskell Intro 3

Haskell keeps side-effects contained

Pure means no side effects
– I/O is a side effect
– Storing state is a side effect
– How on earth is this a useful language?

Main module and main function
– We will be recommending using it in the main function only
– main function essentially builds the AST for a program that does I/O
– The AST returned by main is always the same, referential transparency
– Then the Haskell system interprets that AST.

The do block syntax
– Results in code that looks imperative.
– Is syntactic sugar for stuff we will cover in more depth in November.

CS453 Lecture Haskell Intro 4

Interacting with a user
module Main where

main :: IO ()
main = do

putStrLn "Pick a number: "
n1 <- getLine
putStrLn ("Number is " ++ (show n1))

putStrLn ("Another number: ")
n2 <- getLine
let n3 = (read n1) + (read n2)
putStrLn ("Sum of numbers = " ++ (show n3))

CS453 Lecture Haskell Intro 5

Writing Functions with Pattern Matching

f :: a -> b
f x = case x of

... -> blah

... -> foo

...

... -> dah

-- Equivalent
f :: a -> b
f ... = blah

f ... = foo
...

f ... = dah
CS453 Lecture Haskell Intro 6

-- Examples

-- Duplicating a string list

f :: [String]->[String]

f (x:xs) = x:(f xs)

f [] = []

-- Sum values in a list.

-- Concat list of strings.

-- Second Int in a 3-tuple.

CS453 Lecture Haskell Intro 7

Writing a Compiler in Haskell

Today
– Some Haskell History
– Haskell main for keeping side-effects contained
– Writing functions in Haskell
– Debugging Haskell
– User-defined datatypes
– Lexicographical analysis for punctuation and keywords in Haskell

This week
– PA1: Start PA3whiledots.java.s. It is due in 11 days along with demo!
– HW2: Due Tuesday September 6th

– Reading assignment posted on class schedule for today
– Friday will be using Haskell in discussion section

Debugging Haskell

Try evaluating the expressions one step at a time

Examples
– <Step through this with some example functions we just wrote as class>

CS453 Lecture Haskell Intro 8

User-defined Datatypes in Haskell

Kindof like enumerate types but can have fields
data Bool = False | True

data Shape = Point | Rect Int Int Int Int | Circle Int

Can derive handy properties
data Color = Blue | Red | Yellow deriving (Show)

main = print Yellow

data Color = Blue | Red | Yellow deriving (Show,Eq)

if (Yellow==Blue) then ... else ...

Constructors can be used in pattern matching
foo :: Shape -> String
foo Point = “Point”
foo Rect p1 p2 p3 p4 = “Rect “ ++ (show p1) ++ ...

CS453 Lecture Haskell Intro 9

Some Lexical Analysis with Haskell

module Lexer where

import Data.Char -- needed for isSpace function

data Token
= TokenIfKW
| TokenComma
-- TODO: constructors for all other tokens
deriving (Show,Eq)

lexer :: String -> [Token]
lexer [] = []
lexer (‘i’:’f’:rest) = TokenIfKW : lexer rest
-- TODO: patterns for other keyword and punctuation tokens
lexer (c:rest) = if (isSpace c) then lexer rest

CS453 Lecture Haskell Intro 10

Before Next Time

PA1: Start PA3whiledots.java.s. It is due in 11 days along with demo!

HW2: Due Tuesday September 6th

– Reading assignment posted on class schedule for today
– Friday will be Haskell in discussion section

CS453 Lecture Haskell Intro 11

