
CS453 Lecture Lexical Analysis and Parsing 1

Plan for Today and Thursday
Important Logistics

– PA1 peer reviews, due Thursday! Need github repository ID for permissions.
– HW3, due Sunday night. NO LATE period.
– Midterm, Tuesday in class. Examples online. HW3. 1-side 8.5x11” note

sheet.
Lexical Analysis
Regular Expressions to NFAs
NFAs to DFAs
Context Free Grammars

– models for specifying programming languages
– example grammars
– Derivations and parse trees. ß GOAL FOR TODAY

Recursive Descent Parsing / Predictive Parsing
Syntax-directed translation

– Used syntax-directed translation to generate code

CSc 453: Lexical Analysis 2

Structure of a Scanner Automaton

CSc 453: Lexical Analysis 3

Implementing finite state machines

Table-driven FSMs (e.g., lex, flex):
– Use a table to encode transitions:

next_state = T(curr_state, next_char);
– Use one bit in state no. to indicate whether it’s a final (or error) state. If

so, consult a separate table for what action to take.

T next input character

Current
state

CSc 453: Lexical Analysis 4

Table-driven FSMs: Example

int acceptString()
{ char ch;

int currState = 1; ch = nextChar();

while (ch!=EOF) {
currState= T [currState, ch];

} /* while */
if (IsFinal(currState)) {

return 1; /* success */
}

}

T
input

a b

state
1 2 3
2 2 3

3(final) 2

CSc 453: Lexical Analysis 5

Table-driven FSMs: Determines if full string is in language

Token scanner()
{ char ch;

int currState = 1; ch = nextChar();

while (not IsFinal(currState)) {
nextState = T [currState, ch];
if (consume(currState,ch)) {

ch = NextChar();
}
if (ch == EOF) { return 0; } /* fail */
currState = nextState;

} /* while */
if (IsFinal(currState)) {

return finalToken(currState); /* success */
}

}

T
input

a b

state
1 2 3
2 2 3
3 2 [other]

4(final)

1

2

3

4
b

ba

a

[other]

TokenAB

Table-Driven FSM for Numbers

-- Produce tokens until the input string

-- has been completely consumed.

lexer :: String -> [Token]

lexer [] = []

lexer input =

let (tok,remaining) = driveTable 0 “” input
in if tok==WhiteSpace then lexer remaining

else tok : lexer remaining

-- From given state consume characters

-- from the string until token is found.

driveTable :: Int->String->String-
>(Token,String)

driveTable curr [] = (UnexpectedEOF, "")
driveTable curr (c:rest) =

let (next,consume) = nextState curr c

(nextTokStr,remaining)= nextStrings ...

(done,tok) = final next nextTokStr

in if done then (tok,remaining)

else driveTable next nextTokStrnremaining

Draw FSM on board
– State 0

– Digit goto state 1
– State 1

– Digit goto state 1
– Other goto state 2

– State 2 is a final state for
TokenNUM

How should we define
nextState and final
functions?

CSc 453: Lexical Analysis 6

Go see http://www.cs.arizona.edu/classes/cs453/fall16/Recit/LexerStart-take2.hs

From regular expressions to NFAs

regexp
simple letter “a”
empty string

AB concat the NFAs

A|B split merge them

A* build a loop

CS453 Lecture Regular Languages and Lexical Analysis 7

a ε

A B

A

Bε

ε

ε

A ε

ε

accept state of the NFA for A
ε

ε

The Problem

DFAs are easy to execute (table driven interpretation)
NFAs

– are easy to build from reg. exps,
– but hard to execute
– we would need some form of guessing, implemented by back tracking

To build a DFA from an NFA
– we avoid the back track by taking all choices in the NFA at once,
– a move with a character or ε gets us to a set of states in the NFA,
– which will become one state in the DFA.

We keep doing this until we have exhausted all possibilities.

– This mechanism is called transitive closure
– (This ends because there is only a finite set of subsets of NFA states.

How many are there?)
CS453 Lecture Regular Languages and Lexical Analysis 8

Example IF and ID

let : [a-z]
dig : [0-9]

tok : if | id

if : “i” “f”

id : let (let | dig)*

CS453 Lecture Regular Languages and Lexical Analysis 9

Notes to read through later, Definitions: edge(s,c) and closure

edge(s,c): the set of all NFA states reachable from state s following
an edge with character c

closure(S): the set of all states reachable from S with no chars or ε

T=S
repeat T’=T;

forall s in T’ { T’=T; }
until T’==T

This transitive closure algorithm terminates because there is a finite
number of states in the NFA

CS453 Lecture Regular Languages and Lexical Analysis 10

closure(S) = T = S∪ (edge(s,ε))
s∈T


T = T '∪(edge(s,ε))
s∈T '


Notes to read through later, DFAedge and NFA Simulation

Suppose we are in state DFA d = {si, sk,sl}
By moving with character c from d we reach a set of new
NFA states, call these DFAedge(d,c), a new or already
existing DFA state

NFA simulation:
let the input string be c1…ck

d=closure({s1}) // s1 the start state of the NFA
for i from 1 to k

d = DFAedge(d,ci)

CS453 Lecture Regular Languages and Lexical Analysis 11

DFAedge(d,c) = closure(edge(s,c))
s∈d


Notes to read through later ,
Constructing a DFA with closure and DFAEdge

state d1 = closure(s1) the closure of the start state of the NFA

make new states by moving from existing states with a character c, using
DFAEdge(d,c); record these in the transition table

make accepts in the transition table, if there is an accepting state in d,
decide priority if more than one accept state.

Instead of characters we use non-overlapping (DFA)
character classes to keep the table manageable.

CS453 Lecture Regular Languages and Lexical Analysis 12

Suggested Exercise

Build an NFA and a DFA for integer and float literals

dot: “.”

dig: [0-9]

int-lit: dig+

float-lit: dig* dot dig+

CS453 Lecture Regular Languages and Lexical Analysis 13

Regular Expressions: repetition and choice

let : “a” | “b” | “c”
word : let+

What regular expressions cannot express:
nesting, e.g. matching parentheses: () | (()) | ((())) | …

to any depth

Why? A DFA has only a finite # states and thus cannot
encode that it has seen N “(“-s and thus now must
see N “)”-s for the parentheses to match (for any N).

For that we need a recursive definition mechanism:
S : “(“ S “)” | ε

CS453 Lecture Lexical Analysis and Parsing 14

Context Free Grammars

CFG: set of productions of the form

Non-terminal à phrase | phrase | phrase …
phrase: string of terminals and non-terminals

terminals: tokens of the language
non-terminals: represent sets of strings of tokens of the language

Example:
stmt à ifStmt | whileStmt
ifStmt à IF OPEN boolExpr CLOSE Stmt
whileStmt à WHILE OPEN boolExpr CLOSE Stmt

CS453 Lecture Lexical Analysis and Parsing 15

Syntax and Semantics

Regular Expressions define what correct tokens are

Context Free Grammars define what correctly formed programs are

But… are all correctly formed programs meaningful?

CS453 Lecture Lexical Analysis and Parsing 16

Syntax and Semantics

Regular Expressions define what correct tokens are

Context Free Grammars define what correctly formed programs are

But… are all correctly formed programs meaningful?

NO: the program can have semantic errors
some can be detected by the compiler: type errors, undefined errors
some cannot: run-time errors,

program does not compute what it is supposed to

The semantics of a program defines its meaning.
Here, we do syntax directed translation / interpretation

CS453 Lecture Lexical Analysis and Parsing 17

Our Next Class of Languages

Regular Languages

}{ nnba }{ Rww

Context-Free Languages

**ba (a | b)*

CS453 Lecture Lexical Analysis and Parsing 18

Context-Free Languages

Pushdown
Automata

Context-Free
Grammars
Recursive definitions

stack

FSA +

We will start here

CS453 Lecture Lexical Analysis and Parsing 19

Example

A context-free grammar :

€

S→aSb
S→ε

aabbaaSbbaSbS ⇒⇒⇒

G

A derivation:

aaabbbaaaSbbbaaSbbaSbS ⇒⇒⇒⇒
Another derivation:

CS453 Lecture Lexical Analysis and Parsing 20

S→ aSb
S→ε

=)(GL

(((())))

}0:{ ≥nba nn

Describes parentheses:

An Application of this Language

CS453 Lecture Lexical Analysis and Parsing 21

Deriving another grammar

Regular Languages

}{ nnba }{ Rww

Context-Free Languages
Can we derive a
Grammar for:

Gave a
grammar
for:

CS453 Lecture Lexical Analysis and Parsing 22

