Plan for Today

Logistics
— Midterm, TUESDAY 1n class. Examples online. HW3. 1-side 8.5x11”
note sheet. Will be placing people in seats randomly.

— PAI peer review due tonight

— HW3, due SUNDAY night. NO LATE period.

— PA2 partners policy
Haskell Guards

— Useful in the context of the lexer and parser.

— See Mr. Mitchell’s slides on Resources page, slide 96 through 99
Context Free Grammars

— Derivations

— Parse trees

Top-down Predictive Parsing

CS453 Lecture Predictive Parsing

Deriving another grammar

Context-Free Languages

Gave a Can we derive a
srammar Grammar for:
- nin
o {a"b") -3
Regular Languages

CS453 Lecture LexicatAmalystsandParsing

Example

A context-free grammar G : S —>ada
S —=bSb

S —¢
A derivation:

S = aSa = abSba = abba

Another derivation:
S = aSa = abSha = abaSaba = abaaba

CS453 Lecture Lexical Analysis and Parsing 3

Representing All Properly Nested

Parentheses

S —aSb

S—¢

L(G)={a"b" :n=0}

Describes parentheses: (((())))

Can we build a grammar to include any valid

combination of ()? For example (() (()))
CS453 Lecture Lexical Analysis and Parsing

A Possible Grammar

A context-free grammar G : O —(S)
S —=385

S —¢
A derivation:

5=35=08)5=05=0

Another derivation:
S=355=3S=05=005)= ()

CS453 Lecture Lexical Analysis and Parsing

Context-Free Grammars

.
.
o® .,
.
.
.
.
.
.
.
.
.
.
.
®e
.

o®
o®
.
.®
.
o
.®
.
o*
. .
[.
. .
o® .
o® .,
® .
.
o®
.
o®
.
.®
o®
.
.®
.
.
.o

Nonterminals Term/nals 5 Tam‘
symbol

Productions of the form: *
A—x
Nonterminal String of symbols,
Nonterminals and Termmals

(CS453 Lecture Lexical Analysis and Parsing

Derivation, Language

Grammar: G=(V,T,S,P)

Derivation:
Start with start symbol S
Keep replacing non-terminals A by their RHS x,
until no non-terminals are left

The resulting string (sentence) is part of the language L(G)

The Language L(G) defined by the CFG G:
L(G) = the set of all strings of terminals that can be derived this way

CS453 Lecture Lexical Analysis and Parsing 7

Derivation Order

Given a grammar with rules:

1. S— AB 2. A—aaA 4. B —Bb
3. A —¢ 5. B —¢

Always expand the leftmost non-terminal

Leftmost derivation:

1 2 3 4 5
S=AB=aaAB= aaB = aaBb=>aab

CS453 Lecture Lexical Analysis and Parsing 8

Derivation Order

Given a grammar with rules.:

1. S— AB 2. A—aaA 4. B —Bb
3. A —¢ 5. B —¢

Always expand the rightmost non-terminal

Rightmost derivation:

1 4 5 2 3
S=>AB=>ABb=>Ab=>aaAb=>aab

CS453 Lecture Lexical Analysis and Parsing

Grammar String

Stm -->1d := Exp a=(b=(c:=3,2),1)
Exp -->num
Exp --> (Stm, Exp)

Leftmost derivation:

Stm ==>a ;= Exp ==>a :=(Stm, Exp)==> a:=(b :=Exp, Exp)

==> a:=(b:=(Stm,Exp),Exp)==> a:=(b:=(c:=Exp, Exp), Exp)
==> a:=(b:=(c=3,Exp),Exp)=> a=(b:=(c:=3,2), Exp)
==> a:=(b:=(c:=3,2), 1)

Rightmost derivation:
Stm ==>a ;= Exp ==>a = (Stm, Exp) ==> a :=(Stm, 1)
==

CS453 Lecture Lexical Analysis and Parsing 10

Parse Trees

S — AB A —adA le B —Bbl¢

S = AB

/@

@ B

CS453 Lecture Lexical Analysis and Parsing 11

Parse Trees

S — AB A —adA le B —Bbl¢
S = AB = qaAB

/@ B
@/\@

CS453 Lecture Lexical Analysis and Parsing 12

Parse Trees

S — AB A —adA le B —Bbl¢
S = AB = aaAB = aaABb

CS453 Lecture Lexical Analysis and Parsing

Parse Trees

S — AB A —adA le B —Bbl¢
S = AB = qaaAB = aaABb = aaBb

Parse Trees

S — AB A —adA le B —Bbl¢
S = AB = aaAB = aaABb = aaBb = aab

Sentential forms

S — AB A —adA le B —Bbl¢

S = AB
Partial parse tree @

& e

CS453 Lecture Lexical Analysis and Parsing 16

S = AB = aaAB sentential

form
Partial parse tree @

/

\ B

@ @ 4

CS453 Lecture Lexical Analysis and Parsing 17

Sometimes, derivation order doesn’ t matter

Leftmost:
S = AB = aaAB = aaB = aaBb = aab

Rightmost:
S:AB=>ABI9=>Abz>aaAb=>aab

Same parse free

CS453 Lecture

How about here?

Grammar

(1) exp -->exp * exp
(2) exp --> exp + exp
(3) exp --> NUM

String
42 +7*6

Will be handling this ambiguity later in the semester.

CS453 Lecture Lexical Analysis and Parsing 19

CS453 Lecture

Parser

grammar

Predictive Parsing

derivation

20

Example:

Parser

input

S —=S55
S —aSh
S —=bSa

S —¢

CS453 Lecture

Predictive Parsing

derivation

21

Exhaustive Search

S —=S5S51aSblbSale

Phase I: S =SS Find derivation of
S — qSh aabb

S = bSa

S=¢
All possible derivations of length 1

CS453 Lecture Predictive Parsing 22

CS453 Lecture

S= 385
S = aSh

S =bSa
S=r

Predictive Parsing

aabb

23

Phase 2 § —SS aSb|bSale
S =5 = dDNS
S= 55 = aShS aabb

Phase 1 / S —=55=5SaS

S=2359 S=58=-9§

S=aSb §—= q4Sh= aSSh
\ S = aSb = aaSbb
S = Sab

CS453 Lecture S m— 24

Final result of exhaustive search

(top-down parsing)
Parser
S= 385
input
S = aSh
“a S = bSa
S=¢

\ derivation
S = aSb = aaShb = aab
CS453 Lecture Predictive : 25

For general context-free grammars:

The exhaustive search approach is extremely
costly: O(IP[W])

There exists a parsing algorithm
that parses a string w in time ||
for any CFG (Earley parser)

For LL(1) grammars, a simple type of

CFGs that we will meet soon, we can
use Predictive parsing and parse in ||

time

CS453 Lecture Predictive Parsing 26

Context-Free Grammars

.
.
o .
.
®e

®e
.
.
.
.
.
.
.
.
%o
.

o®
o®
.
.®
.
o
.®
.
o*
o .
o’ . .,
. o . .
. .
o® .
.
o®
.
o®
.
.®
o®
.
.®
.
o*
o

Nonterminals Term/nals 5 Tam‘
symbol

Productions of the form: *

A—x
Nonterminal String of symbols,
Nonterminals and terminals

Predictive Parsing

Predictive parsing, such as recursive descent parsing, creates the parse
tree TOP DOWN, starting at the start symbol, and doing a LEFT-MOST
derivation.

For each non-terminal N there is a function recognizing the strings that
can be produced by N, with one (case) clause for each production.

Consider:

start -> stmts EOF

stmts -> €| stmt stmts

stmt -> 1fStmt | whileStmt | ID = NUM
1fStmt -> IF id { stmts }

whileStmt -> WHILE id { stmts }

can each production clause be uniquely identified by looking ahead
one token? Let s predictively build the parse tree for
if t {whileb {x=61}}$

CS453 Lecture Top-Down Predictive Parsers 28

Example Predictive Parser: Recursive Descent

start -> stmts EOF

stmts -> €| stmt stmts

stmt -> 1fStmt | whileStmt
1fStmt -> IF id { stmts }
whileStmt -> WHILE id { stmts }

void start() { switch(m_lookahead) {
case IF, WHILE, EOF: stmts(); match(Token.Tag.EOF); break;
default: throw new ParseException(..);

I3

void stmts() { switch(m_lookahead) {
case IF,WHILE: stmt(); stmts(); break;

case EOF: break;

default: throw new ParseException(..);
1}
void stmt() { switch(m_lookahead) {

case IF: 1fStmt();break;

case WHILE: whileStmt(); break;

default: throw new ParseException(..);
1}

void ifStmt() {switch(m_lookahead) {
case IF: match(id); match(OPENBRACE);
stmts(); match(CLOSEBRACE); break;
default: throw new ParseException(..);

1}

CS453 Lecture Predictive Parsing

Recursive Descent Parsing

Each non-terminal becomes a function
that mimics the RHSs of the productions associated with it
and choses a particular RHS:
an alternative based on a look-ahead symbol
and throws an exception if no alternative applies

CS453 Lecture Predictive Parsing

30

First

Given a phrase y of non-terminals and terminals (a rhs of a production),
FIRST(y) is the set of all terminals that can begin a string derived from vy.

Assume T, F, X, Y, and Z are non-terminals. * 1s a terminal.
FIRST(T*F)=?
FIRST(F)="?

FIRST(XYZ) = FIRST(X) ?

NO! X could produce & and then FIRST(Y) comes into play

we must keep track of which non terminals are NULLABLE

CS453 Lecture Top-Down Predictive Parsers 31

FIRST and Nullable example

start
stmts
stmt
1fStmt
whileStmt

->
->
->
>
>

stmts EOF

el stmt stmts

1fStmt | whileStmt | ID = NUM
IF id { stmts }

WHILE id { stmts }

CS453 Lecture

Top-Down Predictive Parsers

32

Follow

It also turns out to be useful to determine which terminals can directly
follow a non terminal X (to decide parsing X is finished).

terminal t is in FOLLOW(X) if there is any derivation containing Xt.

This can occur if the derivation contains XYZt and Y and Z are
nullable

CS453 Lecture Top-Down Predictive Parsers 33

FIRST and FOLLOW sets

NULLABLE

— X 1s a nonterminal

— nullable(X) 1s true if X can derive the empty string

FIRST
- FIRST(z) = {z}, where z is a terminal
- FIRST(X) = union of all FIRST(rhs;), where X is a nonterminal and
X -> rhs; is a production

- FIRST(rhs;) = union all of FIRST(sym) on rhs up to and including first
nonnullable

FOLLOWC(Y), only relevant when Y is a nonterminal

- look for Y in rhs of rules (lhs —> rhs) and union all FIRST sets for
symbols after Y up to and including first nonnullable

- if all symbols after Y are nullable then also union in FOLLOW(lhs)

CS453 Lecture Top-Down Predictive Parsers 34

Constructive Definition of nullable, first and follow

for each terminal t, FIRST(t)={t}

Another Transitive Closure algorithm:
keep doing STEP until nothing changes

Y is a terminal, non-terminal, or epsilon

STEP:
for each production X 2 Y; Y, ... Y}
0: 1f Y to Y| nullable, then nullable(X) = true
for each i1 from 1 to k, each j from i+1 to k
1: if Y,...Y; | nullable (ori=1) FIRST(X) += FIRST(Y;) //+: union
2: if Yi;,... Y nullable (ori=k) FOLLOW(Y;) += FOLLOW(X)
3: if Yiiy...Y; nullable (orit+1=j) FOLLOW(Y;) += FIRST(Y))

e can compute nullablq,ot_lben EI%ST and then FOLLOW

CS453 Lecture p-Down Predictive Parsers

35

Class Exercise

Compute nullable, FIRST and FOLLOW for
Z->d |XYZ

X=2>al|Y
Y2>cle

CS453 Lecture Top-Down Predictive Parsers

36

Constructing the Predictive Parser Table

A predictive parse table has a row for each non-terminal X, and a column

for each input token t. Entries table[X,t] contain productions:

for each X -> gamma
for each t in FIRST(gamma)
table[X,t] = X->gamma
1f gamma is nullable
for each t 1n FOLLOW(X)
table[X,t] = X->gamma

a c d
X X2a XY XY
Compute the predictive YY
parse table for Y iy Y e Y e
Z2d|XYZ Y¢
XDalY Z Z2XYZ | Z2XYZ| Z2XYZ
Y2cle 734

CS453 Lecture Top-Down Predictive Parsers

37

One more time

Balanced parentheses grammar 1:

S>(S)|SS|=

1. Augment the grammar with EOF/$
2. Construct Nullable, First and Follow

3. Build the predictive parse table, what happens?

CS453 Lecture Top-Down Predictive Parsers

38

One more time, but this time with feeling ...

Balanced parentheses grammar 2:

S (S)S ¢

1. Augment the grammar with EOF/$
2. Construct Nullable, First and Follow
3. Build the predictive parse table

4. Using the predictive parse table, construct the parse tree for

()(O) S
and
OO0 $

CS453 Lecture Top-Down Predictive Parsers 39

