Plan for Today

Logistics

- Midterm
 - Handing it out, extra credit has not been added yet.
 - Discussing stats, but not recording that.
 - If you think you might request a grade change, then leave midterm here.
- PA2 due Monday

"15 minute" compiler example

- Lexer: regular expressions, NFA, DFA, and then modified DFA
- Nullable, FIRST, and FOLLOW

Top-down Predictive Parsing with Code Generation

- Predictive parsing table for "15 minute" example
- Nullable, FIRST, and FOLLOW

"15 Minute" Compiler Example

Tomorrow's Recitation for Tomorrow

- Show example of using it.
- Show Context Free Grammar in Main15min.hs.

Lexical Analysis

- Regular expressions for tokens
- NFA for all tokens
- NFA to DFA, or check that it is a DFA
- Modify DFA for lexer

Predictive Parsing and Code Gen for "15 minute" Compiler

Building the Predictive Parse Table

- Compute Nullable, FIRST, and FOLLOW
- For this grammar, need an EOF token
- Draw the predictive parsing table
- Show correspondence between predictive parsing table and code.

Code generation

- Every time a production in the grammar matches, a string is created.
- The parsing function for each non-terminal returns a string.
- The matchAndGrab... functions for tokens return information about particular tokens.

Compute nullable, FIRST and FOLLOW for

 $Z \rightarrow d | X Y Z$ $X \rightarrow a | Y$ $Y \rightarrow c | \varepsilon$

Constructing the Predictive Parser Table

A predictive parse table has a row for each non-terminal X, and a column for each input token t. Entries table[X,t] contain productions:

for each X -> gamma				
for each t in FIRST(gamma)				
table[X,t] = X->gamma				
if gamma is nullable				
for each t in FOLL	CX)WC			
<pre>table[X,t] = X-</pre>	>gamma	а	С	d
	X	$X \rightarrow a$	$X \rightarrow Y$	$X \rightarrow Y$
Compute the predictive		$X \rightarrow Y$		
parse table for	Y	$Y \rightarrow \varepsilon$	$Y \rightarrow \varepsilon$	$Y \rightarrow \varepsilon$
$Z \rightarrow d \mid X Y Z$			$Y \rightarrow c$	
$X \rightarrow a \mid Y$	Ζ	$Z \rightarrow XYZ$	$Z \rightarrow XYZ$	$Z \rightarrow XYZ$
$Y \rightarrow c \mid \varepsilon$				$Z \rightarrow d$

Top-Down Predictive Parsers

One more time

Balanced parentheses grammar 1:

- $S \rightarrow (S) | SS | \varepsilon$
- 1. Augment the grammar with EOF/\$
- 2. Construct Nullable, First and Follow
 - 3. Build the predictive parse table, what happens?

One more time, but this time with feeling ...

Balanced parentheses grammar 2:

- $S \rightarrow (S)S \mid \varepsilon$
- 1. Augment the grammar with EOF/\$
- 2. Construct Nullable, First and Follow
 - 3. Build the predictive parse table
- 4. Using the predictive parse table, construct the parse tree for

 ()(()) \$
 and
 ()()() \$

CS453 Lecture