
CS453 Lecture Code gen: syntax directed and from AST 1

Plan for Today

PA1 Peer Review
– Constructive feedback
– Examples of good code
– Highly rated demos
– Suggested evaluation criteria for PA2, will be due Thursday

One pass compilation
– Syntax-Directed, Recursive-Descent, Predictive Parsing and Code

Generation
Multi-pass Compilation

– Abstract Syntax Trees (AST)
– Generating code from an abstract syntax tree

Creating an AST in a recursive descent parser
4:30 Review of class so far

– Looking for constructive feedback.

CS453 Lecture Code gen: syntax directed and from AST 2

Doing Syntax-Directed Interpretation

42 + 7 * 6

(1) exp --> exp * exp
(2) exp --> exp + exp
(3) exp --> NUM

Grammar

String

CS453 Lecture Code gen: syntax directed and from AST 3

Semantic Rules for Expression Example (Parse Tree w/Actions)

Code Generation versus Interpretation

When interpreting an expression . . .
– Each production matched will result in a computation that generates a

value for the expression. Value should be returned.
– Each non terminal on the right hand side of a production has a value

associated with it.
– This approach will also be useful when we are building the Abstract

Syntax Tree (AST) in PA3, where the value will be the AST we are
building.

When did one pass compilation in PA2 . . .
– Each production matched results in a string of target code (in this case

AVR assembly)

CS453 Lecture Code gen: syntax directed and from AST 4

Example Source and Target Language

Source Language
Slist ::= epsilon | S Slist

S ::= “print” COLOR_LITERAL

Target Language
–Each print should result in a call to Meggy.setPixel((byte)1,(byte)1, integer
for COLOR_LITERAL);
–Essentially the target is a toy subset of the PA2 MeggyJava grammar.

Haskell for …
–Lexer for source language
–Recursive descent predictive parser
–Syntax-directed code generation of the target language

CS453 Lecture Code gen: syntax directed and from AST 5

CS453 Lecture Introduction 6

Structure of the MeggyJava Compiler, Multi-pass Compilation

“sentences”

SynthesisAnalysis

character stream

lexical analysis

“words”tokens

semantic analysis

syntactic analysis

AST

AST and symbol table

code gen

Atmel assembly code

PA1: Write test cases in MeggyJava,
and AVR warmup

PA2: MeggyJava lexer and setPixel
PA3: add exps and control flow (AST)
PA4: add methods (symbol table)
PA5: add variables and objects
PA6: add arrays and register allocation

Example program

CS453 Lecture Code gen: syntax directed and from AST 7

class Byte {
public static void main(String[] whatever){

Meggy.setPixel
(// Byte multiplication: Byte x Byte -> Int

(byte)((byte)1*(byte)2),
// Mixed type expression: Byte x Int -> Int
(byte)((byte)3 + 4),
Meggy.Color.WHITE

);
}

}

CS453 Lecture Code gen: syntax directed and from AST 8

Program

MainClass

BlockStatement

MeggySetPixel

ByteCast ByteCast
ColorLiteral

Meggy.Color.WHITE

MulExp

ByteCast ByteCast

IntLiteral
1

IntLiteral
2

PlusExp

ByteCast
IntLiteral

4

IntLiteral
3

AST of Example Program

How does the AST differ
from the parse tree?

Parentheses have been removed
their role -to shape the AST is finished

Some terminals have been pulled out
which?

Some have been pulled up
which?

Code Generation Given an AST

Haskell data type for the AST for example source language

Function that generates code based on that AST

CS453 Lecture Code gen: syntax directed and from AST 9

CS453 Lecture Code gen: syntax directed and from AST 10

Syntax-directed Construction of AST
Can edit predictive parser to generate ASTs instead of strings.

See example code.

Add in a new statement type

