
Overview of Approach

PA2
– Syntax-directed code generation

PA3
– Syntax-directed AST creation
– Function for creating the dot file for visualization (TOMORROW)
– Function for checking types (TODAY)
– Function for generating code (TODAY)

Later assignments
– Function for building a symbol table
– Function for allocating memory for variables
– Function for doing register allocation

CS453 Lecture Functions over ASTs 1

Type Checking: valid operand types, result types

Signature of an operation (or function)

inType1 x inType2 … x inTypen à outType

How to determine valid inTypes and resulting outType?

Use given reference compiler MJ.jar and javac.

Create example test programs.

Let’s look at an example …

CS453 Lecture Functions over ASTs 2

CS453 Lecture Functions over ASTs 3

Type checking on an AST (A Correct Input)
import meggy.Meggy;

class SetPixelType {
public static void main(String[] whatever){
Meggy.setPixel((byte)2, (byte)3, Meggy.Color.WHITE);

}
}

Program

MainClass

BlockStatement

MeggySetPixel

ByteCast ByteCast ColorLiteral
Meggy.Color.WHITE

IntLiteral
2

IntLiteral
3

CS453 Lecture Functions over ASTs 4

Type checking on an AST (An Incorrect Input)
import meggy.Meggy;

class SetPixelTypeError {
public static void main(String[] whatever){
Meggy.setPixel((byte)2, 3, Meggy.Color.WHITE);

}
}

Program

MainClass

BlockStatement

MeggySetPixel

ByteCast IntLiteral
3

ColorLiteral
Meggy.Color.WHITE

IntLiteral
2

Traversing a Tree in Haskell

<TreeTraversal.hs code>
– Draw two example trees.
– Add code in preOrder for ThreeKids.
– Write a postOrder function.
– Write an inOrder function.

CS453 Lecture Functions over ASTs 5

Implementing Type Checking in Haskell

Will need a user-defined datatype for representing MeggyJava types
– <What are the MeggyJava types for the PA2 grammar?>

Typing function
– Will call typing function on children nodes.
– Will determine if children types are appropriate.
– If there is an error will somehow communicate that error.
– Needs to return type of node if node is an expression node.

Ways to communicate errors in Haskell
– http://www.randomhacks.net/2007/03/10/haskell-8-ways-to-report-errors/
– error “ERROR: what happened”

– Will stop execution and print an error message.
– Most decidedly not purely functional.

CS453 Lecture Functions over ASTs 6

Strategy: Implement One Language Feature at a Time
General Strategy: <If Statements will be example we do in class>

– Language features it depends on?
– Go implement them first.
– LEXER: New tokens introduced? How is lexer modified?
– PARSER

– What new grammar rules are involved?
– FIRST, FOLLOW, and Nullable?

– AST
– What new node types will be added to the AST data structure?
– How do we generate those AST nodes while parsing?

– TYPE CHECKING
– What are the expected input and output types for the new AST nodes?
– What are some possible type errors at those nodes?

– CODE GENERATION
– Assuming operands are on stack, generate code to implement feature.

CS453 Lecture Functions over ASTs 7

If Statement code generation

When the visitor encounters ifStmt, simple pre or post order code generation
does not suffice. WHY?
-We need more complex control:

if
/ | \

B S1 S2

We need to control the order that code is generated for its children, using
branches, jumps and labels.

First, code needs to be generated for the condition (the result of the condition
evaluation has been pushed on the RTS) followed by branching instructions, the
then block, control to jump over else block, then the else block, and then the end
label.

CS453 Lecture Functions over ASTs 8

Branches and jumps

An AVR detail: as you know from PA1, conditional branches can only go so
far in the code, and code generated, e.g for then or else block is not bounded
and thus can exceed that limit. Therefore we have to use jmp sometimes.
Notice: breq is replaced with with a brne followed by a jmp to handle this

cp r24, r25
#WANT breq MJ_L6
brne MJ_L7
jmp MJ_L6
MJ_L7:
... inbounded stretch of code …
MJ_L6:

CS453 Lecture Functions over ASTs 9

Not Expression: there is no not in AVR, but there is xor

truth table for not and xor
x y !x x xor y
0 0 1 0
0 1 1 1
1 0 0 1
1 1 0 0

We can implement NOT x with x XOR 1 :
outNotExp

pop r24
ldi r22, 1
eor r24,r22
push r24

CS453 Lecture Functions over ASTs 10

While statement

while
/ \

B S

What is the wiring logic?

SLbl:
eval B on stack
if false jump to endLbL
gen Code for S
jump to Slbl

endLbL:

CS453 Lecture Functions over ASTs 11

Short circuited (wired) AND, equals

Similar to the If Statement and While Statement, code generation will
need to be implemented in the visitAndExp()

&&
/ \

B1 B2

can be implemented as: if (B1) return B2 else return false

equalExp, the equality operator ==
Just like in plus and minus, we need to take the mixed type semantics of
Java into account, by promoting a byte (1 register) to an int (register
pair)

CS453 Lecture Functions over ASTs 12

