Plan for Today

Ambiguous Grammars
Disambiguating ambiguous grammars
Left-factoring for predictive parsers
REMINDERS

— HW35 will be posted tonight and 1s due Monday.

— PA3 is due on Monday October 17t
— HW4 feedback will be provided by Saturday night

CS453 Lecture Predictive Parsing Ambiguous Grammars

Ambiguous Grammars

Ambiguous grammar:
>2+ parse trees for 1 sentence

+
Expression grammar parse tree 1 @/ %
. Num
E-2>E*E (42) Num Num
E-2>E+E (6)
(7)
E-2>E-E
E-2>(E)
E->1D
E 2> NUM
: @ Num
Stz;i B parse tree 2 um m (6)
42) ()

what about 42-7-6?

CS453 Lecture Predictive Parsing Ambiguous Grammars 2

Goal: disambiguate the grammar

Cause

— the grammar did not specify the precedence nor the associativity of the
operators +,-,*

Some Options

— Keep the ambiguous grammar, but add extra directives to the parser
(many LR parser generators can do this).

— Rewrite the grammar, making the precedence and associativity explicit in
the grammar.

— Use a general purpose parser and deal with O(N”3) for parsing.

CS453 Lecture Predictive Parsing Ambiguous Grammars

Unambiguous grammar for simple expressions

Grammar
E>E+T|E-T|T parsetree Q
T>T*F| F
|

F->(E)|ID|NUM Q CE

*
String c Num

(6)
42+7%6 um
. Num (7)

How is the precedence encoded? (42)

How is the associativity encoded?

CS453 Lecture Predictive Parsing Ambiguous Grammars

An Example including AST Construction

Grammar

E>E+E|E~E|ID|NUM

String

2M2AN

CS453 Lecture Predictive Parsing Ambiguous Grammars

When Predictive Parsing works, when it does not

What about our expression grammar:

E>E+T|ET|T
T>T*F|F
F-> (E)|ID | NUM

Predictive parser

— The E method cannot decide looking one token ahead whether to predict
E+T, E-T, or T.

— Same problem for T.

Predictive parsing works for grammars where

The first terminal symbol of each sub expression provides enough
information to decide which production to use.

CS453 Lecture Predictive Parsing Ambiguous Grammars

Terminology Interlude

LL(K) parser
— Left-to-right parsing of input
— Leftmost derivation of the sentence 1s found while parsing
— k tokens of lookahead needed to parse
— Top down parsing

— Example parser generators: ANTLR, JavaCC,

LR(Kk) parser
— Left-to-right parsing of input
— reversed Rightmost derivation
— k tokens of lookahead needed to parse
— Example parser generators: Yacc, bison, JavaCup, and Happy

See wikipedia entry for “Comparison of parser generators”.

CS453 Lecture Predictive Parsing Ambiguous Grammars

Left recursion and Predictive parsing

What happens to the recursive descent parser if we have a left
recursive production rule, e.g. E =2 E+T|T
E calls E calls E forever

To eliminate left recursion we rewrite the grammar:

from: to:
E>E+T|E-T|T E 2>TE’
T>T*F| F EE2>+TE | -TE’| ¢
F-> (E)|ID|NUM T-2>FT
T"2>*FT | ¢

F 2 (E)|ID|NUM
replacing left recursion X=Xy | a (where a does not start with X)
with right recursion, X2 o X’, X’ 2vX’ | &, that can be produced right
recursively. Now we can compute nullable, FIRST and FOLLOW,
and produce an LL(1) predictive parse table.

CS453 Lecture Predictive Parsing Ambiguous Grammars

Left Factoring

Left recursion does not work for predictive parsing. Neither does a
grammar that has a non-terminal with two productions that start with a
common phrase, so we left factor the grammar:

S —=af} S—=al'

Left refactor
>
§ —ap, S'—=p 1P,

E.g.: if statement:
S>IFtTHENSELSES|IFtTHENS |o
becomes
S>IFtTHENS X |o
X-> ELSE S | ¢

When building the predictive parse table, there will be a multiple entries.

WHY?

CS453 Lecture Predictive Parsing Ambiguous Grammars

Dangling else problem: ambiguity

Given construct two parse trees for
S>IFtTHENS X |o IF t THEN IF t THEN o ELSE o
X-> ELSE S | ¢

Which is the correct parse tree? (C, Java rules)

(CS453 Lecture Predictive Parsing Ambiguous Grammars 10

Dangling else disambiguation

The correct parse tree is:

We can get this parse tree by removing the X->¢ rule in the multiple entry
slot in the parse tree.

CS453 Lecture Predictive Parsing Ambiguous Grammars

11

