Plan for Today

Ambiguous Grammars
Disambiguating ambiguous grammars
Left-factoring for predictive parsers
REMINDERS

— HW35 will be posted tonight and 1s due Monday.

— PA3 is due on Monday October 17t
— HW4 feedback will be provided by Saturday night
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Ambiguous Grammars

Ambiguous grammar:
>2+ parse trees for 1 sentence

+
Expression grammar parse tree 1 @/ %
. Num
E-2>E*E (42) Num Num
E-2>E+E (6)
(7)
E-2>E-E
E-2>(E)
E->1D
E 2> NUM
: @ Num
Stz;i B parse tree 2 um m (6)
42) ()

what about 42-7-6?
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Goal: disambiguate the grammar

Cause

— the grammar did not specify the precedence nor the associativity of the
operators +,-,*

Some Options

— Keep the ambiguous grammar, but add extra directives to the parser
(many LR parser generators can do this).

— Rewrite the grammar, making the precedence and associativity explicit in
the grammar.

— Use a general purpose parser and deal with O(N”3) for parsing.
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Unambiguous grammar for simple expressions

Grammar
E>E+T|E-T|T  parsetree Q
T>T*F| F
_|_

F->(E)|ID|NUM Q CE

*
String c Num

(6)
42+7%6 um
. Num (7)

How is the precedence encoded? (42)

How is the associativity encoded?
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An Example including AST Construction

Grammar

E>E+E|E~E|ID|NUM

String

2M2AN
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When Predictive Parsing works, when it does not

What about our expression grammar:

E>E+T|ET|T
T>T*F|F
F-> (E)|ID | NUM

Predictive parser

— The E method cannot decide looking one token ahead whether to predict
E+T, E-T, or T.

— Same problem for T.

Predictive parsing works for grammars where

The first terminal symbol of each sub expression provides enough
information to decide which production to use.
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Terminology Interlude

LL(K) parser
— Left-to-right parsing of input
— Leftmost derivation of the sentence 1s found while parsing
— k tokens of lookahead needed to parse
— Top down parsing

— Example parser generators: ANTLR, JavaCC,

LR(Kk) parser
— Left-to-right parsing of input
— reversed Rightmost derivation
— k tokens of lookahead needed to parse
— Example parser generators: Yacc, bison, JavaCup, and Happy

See wikipedia entry for “Comparison of parser generators”.
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Left recursion and Predictive parsing

What happens to the recursive descent parser if we have a left
recursive production rule, e.g. E =2 E+T|T
E calls E calls E forever

To eliminate left recursion we rewrite the grammar:

from: to:
E>E+T|E-T|T E 2>TE’
T>T*F| F EE2>+TE | -TE’| ¢
F-> (E)|ID|NUM T-2>FT
T"2>*FT | ¢

F 2 (E)|ID|NUM
replacing left recursion X=Xy | a (where a does not start with X)
with right recursion, X2 o X’, X’ 2vX’ | &, that can be produced right
recursively. Now we can compute nullable, FIRST and FOLLOW,
and produce an LL(1) predictive parse table.
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Left Factoring

Left recursion does not work for predictive parsing. Neither does a
grammar that has a non-terminal with two productions that start with a
common phrase, so we left factor the grammar:

S —=af} S—=al'

Left refactor
>
§ —ap, S'—=p 1P,

E.g.: if statement:
S>IFtTHENSELSES|IFtTHENS |o
becomes
S>IFtTHENS X |o
X-> ELSE S | ¢

When building the predictive parse table, there will be a multiple entries.

WHY?
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Dangling else problem: ambiguity

Given construct two parse trees for
S>IFtTHENS X |o IF t THEN IF t THEN o ELSE o
X-> ELSE S | ¢

Which is the correct parse tree? (C, Java rules)
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Dangling else disambiguation

The correct parse tree is:

We can get this parse tree by removing the X->¢ rule in the multiple entry
slot in the parse tree.
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