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Each phase transforms a representation of  the source code
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Passes information from a declaration to uses of  the name
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The Role of  the Symbol Table
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For example, type information collected incrementally during the 
analysis phases is used during the generation phases for storage layout. 
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Symbols


A symbol table associates information with names.
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“It has been remarked to me …�
that once a person has understood the 
way in which variables are used in 
programming, [he or she]  has 
understood the quintessence of 
programming.”


— Edsger Dijkstra
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Dijkstra [1972]
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• Class names


• Variable names


• Method names


• Parameter names


Reserve the term “identifier” for the grammar symbol
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Some Uses of  Names
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class Cloud {

    public void rain(byte x, byte y) {

        if (this.inBounds(x, y)) {

            Meggy.setPixel(x, y, Meggy.Color.BLUE);

            if (this.inBounds(x,(byte)(y+(byte)1))) {

                    Meggy.setPixel(x, (byte)(y+(byte)1), Meggy.Color.DARK);

            } else {}

            Meggy.delay(100);

            this.rain(x, (byte)(y-(byte)1));

        } else {}

    }

    public boolean inBounds(byte x, byte y) {

        return ((byte)(0-1) < y) && (y < (byte)8);

    }

}


How is x used in the following (from PA4raindrop.java)?
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Symbols
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class C {

    int x;

    public int f(int x) { return x; }

    public int g(int y) { return x; }

}

We’ll use pseudo-code to focus on the use of  names like x
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Symbols
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class D {

    int x;

    public int f(int y) {

        C x = new C();

        return x.f(1);

    }

}

What about x in the following?
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Symbols
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class D {

    int x;

    public int f(int y) {

        C x = new C();

        return x.f(1);

    }

}

What about x in the following?
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Symbols


How does this pseudo-code use f?
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class E {

    C x;

    public int f(int y) {

        x = new C()

        return x.x;

    }

}

What do the occurrences of  x denote?
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Symbols


Q.  Why would anyone write such a program?


A.  To test a compiler.
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Scope Rules


12




Ravi Sethi, CSC 453, Fall 2016


•   A declaration associates information with a name


• The scope rules of  a language determine which 
declaration applies to an occurrence of  a name


• The scope of  a declaration is the portion of  the 
program to which the declaration applies


Definitions
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Scope of  a Declaration
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• Shorthand: scope of  a name x

–  Short for “scope of  a the declaration of  the name x”


• Scope by itself

– A portion of  a program that is the scope of  one or more declarations


Popular usage of  the term scope


14 

Scope




Ravi Sethi, CSC 453, Fall 2016


• Static scope rules are based on the program text

– The scope of  a declaration can be determined at compile time

– Otherwise, the language is said to have dynamic scope rules

– Macro-expansion results in dynamic scope


• A block consists of  declarations and statements

–  Blocks are delimited by braces, {}, in C, Java, …

–  Blocks can be nested

– Does MeggyJava have blocks?


Most languages have static scope rules
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Static Scope Rules
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class C

{

    int x;

    public int f(int x)

    {

        return x;

    }

    public int g(int y)

    {

        return x;

    }

}

How many declarations of  x?
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Scope of  a Declaration
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Subscripts distinguish between roles of  x
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Scope of  a Declaration


class C

{

    int x1;

    public int f(int x2)

    {

        return x2;

    }

    public int g(int y)

    {

        return x1;

    }

}

Block B1


Block B2


Block B3
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Block B2 is a hole in the scope of  the declaration of  x1
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Hole in the Scope of  a Declaration


Block B1


Block B2


Block B3


class C

{

    int x1;

    public int f(int x2)

    {

        return x2;

    }

    public int g(int y)

    {

        return x1;

    }

}
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Find the declaration of  x by examining blocks inside out
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Most Closely Nested Rule


Block B1


Block B2


Block B3


class C

{

    int x1;

    public int f(int x2)

    {

        return x2;

    }

    public int g(int y)

    {

        return x1;

    }

}
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• Global scope

– Top level declarations in C


• Named scopes

–  For variable and method names in a class


• Package scopes

–  Import a package in Java


• Unnamed scopes

–  Blocks


In languages like C and Java
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Examples of  Scopes




Ravi Sethi, CSC 453, Fall 2016


• Example:

– Class C introduces a new scope for x, f, and g:


class C {

    int x;

    public int f(...) { ... }

    public int g(...) { ... }

}

–   Now suppose y denotes an object of  class C:

y = new C() 

– Then, y.x refers to variable x in the source text of  class C


Classes introduce a new scope for their variables and methods
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Explicit Access Control
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• public

– The scope rules just discussed for classes apply without restrictions


• private

– Access to the declared variable is restricted to methods of  the class


• protected

– Access to the declared variable is restricted to methods of  the class 

and to the methods of  any subclasses


The keywords public, private, protected control access
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Explicit Access Control
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Symbol Table Per Scope
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Symbol Tables


• Kinds of  information in a symbol table

– Type information for static checking

–  For named scopes, the identifiers in that named scope

–  Layout information for storage at run time; e.g., for storage allocation

– …


• Operations on symbol tables

– Create a new table

–  Put information in the current table

– Get information from a chain of  tables


24
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• Creating a new table object of  class Env 


public class Env {

    private hashtable table;

    protected Env previous;

    public Env(Env p) {

        table = new Hashtable() }

        previous = p;

    }

    ...

}

table is a chain of  objects of  class Env 
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Java Implementation of  Symbol Tables
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• Get information from a chain of  objects 


public Symbol get(String s) {

    for( Env e = this; e != null; e = e.previous ) {

        Symbol found = (Symbol)(e.table.get(s));

        if( found != null ) return found;

    }

    return null;

}

table is a chain of  objects of  class Env 
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Java Implementation of  Symbol Tables
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• How can we handle inheritance?

– Use a symbol table per class

– The symbol table for a subclass points to the�

table for the superclass


Create a new table object for a class
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Handling Named Scopes
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Type Checking�
is a form of  consistency checking


Ensures that the type of a construct matches the 
expected type.  For example,


Meggy.setpixel


expects a triple of  type


byte × byte × color


28
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• Consider the function inBounds
    public boolean inBounds(byte x, byte y) {

        return ((byte)(0-1) < y) && (y < (byte)8);

    }

•  It expects parameters and returns a value

–  Parameter types (byte, byte)

– Return value of  type boolean

Extending type checking from variables to expressions
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Type Checking
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Function Signatures


• Consider function f
–  Its parameter has type s, where s can be a tuple

–  Its return type is t


• Then, the signature of  f is s ! t


30
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Basic Rule of  Type Checking


•  If  function f has signature s ! t and x has type s


• Then expression f(x) has type t


31
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• Basic Types

–  boolean, byte, int, color

–  void denotes the absence of  a value


• Tuples

–  If  t1, t2, …, tn are types, then  t1× t2×  …× tn is a type representing a 

tuple of  values of  types  t1, t2, …, tn.


• Functions

–  If  s and t are types, then  s ! t is a type expression

– Thus, a function signature is a type expression


Type checking associates type expressions with expressions
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Type Expressions
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Examples: constructs and their type expressions
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Type Expressions


int

int × int ! int

byte × byte ! boolean

int × int ! boolean

boolean × boolean ! boolean

int ! byte


8

-

<

<

&&

(byte)

A function with more than one signature is said to be 
overloaded.
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Expression ((byte)(0-1) < y) && (y < (byte)8)
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An Expression Tree


&&	
  

<	
   <	
  

y	
   y	
  (byte)	
   (byte)	
  

8	
  -	
  

1	
  0	
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Associate a type expression with each subexpression
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Type Checking


&& : boolean	
  

< : boolean	
   < : boolean	
  

y : byte	
   y : byte	
  (byte) : byte	
   (byte) : byte	
  

8 : int	
  - : int	
  

1 : int	
  0 : int	
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• Treat while as a function with signature

–  boolean × void ! void


• Similar treatment for other statement nodes


Allows uniform treatment of  nodes in a syntax tree


36 

Type Expressions for Statement Nodes
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Lifetime


A consecutive sequence of steps at run time
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Two-Stage Mapping of  Names to Values


• The lifetime of  a declaration

– The consecutive sequence of  steps during which the declared name 

has�
storage and a value


–  In other words, the state mapping is defined


• Lifetime does not equate to accessibility

–  Example: a nested block may have another declaration of  the name

–  In other words, the environment may change
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name
 storage
 value


environment
 state
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The value of  x1 is inaccessible during the lifetime of  x2
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Scope and Lifetime of  a Declaration


Block B1


Block B2


Block B3


class C

{

    int x1;

    public int f(int x2)

    {

        return x2;

    }

    public int g(int y)

    {

        return x1;

    }

}
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Activation Trees


Handling of local variables in recursive activations
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• To sort array elements in the range m:n

–  Pick a pivot element i

–  Partition the elements into two groups: smaller and larger than the 

pivot

– Recursively quicksort the ranges m:i–1 and i+1:n

–  Sort the whole array by calling quicksort with the lower and upper 

bounds of  the array


Function quicksort has parameters m and n and a local var i
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A recursive function


smaller
 larger


m
 n
i
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Activations


• An activation of  a function is an execution of  the 
function body


• Activations can be nested

–  If  an activation of  f initiates an activation of  g, then that activation of  

g is nested in that activation of  f


42
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enter quicksort(1,9)

    enter partition(1,9)

    leave partition(1,9)

    enter quicksort(1,3)

        ...

    leave quicksort(1,3)

    enter quicksort(5,9)

        ...

    leave quicksort(5,9)

leave quicksort(1,9)

Parameters are in parentheses
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Trace from an activation of  quicksort
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Abbreviations: q for quicksort, p for partition
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Activation Tree


p(5,9)	
   q(5,5)	
  

q(7,7)	
  p(7,9)	
   q(9,9)	
  

q(7,9)	
  

q(2,1)	
  p(2,3)	
   q(3,3)	
  

p(1,3)	
   q(1,0)	
   q(2,3)	
  

p(1,9)	
   q(1,3)	
   q(5,9)	
  

q(1,9)	
  



Ravi Sethi, CSC 453, Fall 2016


• We can use a stack to keep track of  live activations

– Called a run-time stack


• What does a local variable i in q denote?

– What is its scope?

– What is its lifetime?


Live activations when control reaches q(2,3)
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Live Activations are Nested


q(2,3)	
  

q(1,3)	
  

q(1,9)	
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• Static scope rules can be applied at compile time

– We deal with the scope of  a declaration of  a name in the source text


• Symbol table per scope

– Holds information that a declaration associates with a name

–  Information collected in one phase can be used in another


• Type Checking

– Associate a type expression with nodes in a syntax tree


• Lifetime is a run-time concept

– We deal with the lifetime of  an activation of  a local variable


Key Points
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Symbol Tables



