
Meggy Jr RGB
 - Programming Guide -

Making the World a Better Place,One Evil Mad Scientist at a Time
Evil Mad Scientist Laboratories

PRoject Home: http://www.evilmadscientist.com/go/MeggyJr

Library version 1.31
Manual v. 1.34

An open-source hardware+software project designed by

Technical Support: http://www.evilmadscientist.com/forum/

Mailing List: http://groups.google.com/group/meggydev

2. USB-TTL Cable

 FTDI model TTL-232R or equivalent. A “smart” converter cable
with a USB interface chip inside. One end hooks up to your USB
port, the other to Meggy Jr. This allows you to program Meggy Jr
directly through the Arduino development environment.

3. Computer, Internet access, USB port....
 All of the software that you’ll need is available online for free. You’ll need a
reasonably recent vintage computer (Mac, Windows, or Linux) and internet
access.

You can find the software links here: http://www.evilmadscientist.com/go/meggyjr

If your programmer is one of the two above, you’ll need a USB port too.

1. Meggy Jr RGB

 (Well, obviously, right?)

Meggy Jr is available at the
Evil Mad Science Shop,
http://evilmadscience.com/

What is required for programming Meggy Jr RGB?

Preliminaries

USB-TTL Cable USBtinyISP

 Alternately, Meggy Jr can be programmed through an AVR ISP programmer,
such as the USBtinyISP. To use the Arduino environment with the USBtinyISP,
follow these instructions: http://www.arduino.cc/en/Hacking/Programmer

This guide is an introduction to getting started with programming
on the Meggy Jr RGB, an open-source LED matrix game
development kit designed by Evil Mad Scientist Laboratories.

 While this guide is not meant to be a comprehensive reference
for programming in general, it should be a useful starting point as
you dig in to programming Meggy Jr RGB. Our principal focus
will be on programming Meggy Jr through the Arduino
development environment (www.arduino.cc), using easy high-
level commands to get Meggy to do cool stuff.

If you’re already comfortable working with AVR microcontrollers
in a different environment, you may want to start out in a
different direction. It is possible to program Meggy Jr RGB
through lower-level library functions and in different development
other environments such as AVR-GCC, or even to start with the
circuit diagram and build up your own code from scratch.

Just to be clear: Meggy Jr kits come preprogrammed.
Reprogramming is not required, but can be fun. Even if
you aren’t (yet) interested in programming, you might
want to follow along so that you can install
applications that other users have contributed.

[Meggy Jr Programming Guide] [2]

http://evilmadscience.com
http://evilmadscience.com
http://evilmadscience.com
http://evilmadscience.com

	

 1.	

 Download Arduino 0018 or newer (from http://arduino.cc/en/Main/Software) and install.

	

 2.	

 Download and install the latest Meggy Jr RGB Arduino Library from
 http://code.google.com/p/meggy-jr-rgb/downloads

 To install, first unzip the library. You should end up with a folder called “MeggyJr.”
 Place this folder in the “libraries” subfolder inside your Arduino sketchbook folder.

 If you aren’t sure where your sketchbook folder is located, open Arduino and go to
 File>Preferences. The sketchbook location is listed there; it’s usually a folder named “Arduino.”
 Open that folder and– if there isn’t one already –make a folder inside of it called libraries.

 Place the MeggyJr folder inside your libraries folder.
 Restart Arduino. If the library is in the right place, you’ll see a set of example

 programs listed in the menu under File>Examples>MeggyJr

	

3.	

 Select board type from the Tools>Board> menu.
 - If you have the ATmega168 chip, select “Duemilanove w/ ATmega168”
 - If you have the ATmega328 chip, select “Duemilanove w/ ATmega328”

 Note: This chip is the big one in the upper right hand corner of the board.

	

 4.	

 Load an example program from your menu. A good one to start with is:
 File>Sketchbook>Examples>Library-MeggyJr>MeggyJr_MeggyBrite

	

 5.	

 Verify (compile) the program by pressing the Verify button in the upper-left
 of the Arduino window; it has the "play" symbol, a right facing triangle.

	

 6.	

 Connect your USB-TTL cable to your computer and Meggy Jr.
 The black and green ends of the Meggy side connector are
 labeled on the circuit board.

	

 7.	

 To program Meggy Jr, press the "Upload to I/O Board" button at the
 top of the Arduino program window (the other "right arrow").
 It typically takes about 15 seconds. Note that the Meggy Jr needs to be

 powered on for programming.

 Using Windows? Avoid tearing your hair out by setting:
 Device Manager > Comm Ports > USB Serial Port >

 Port Settings > Advanced button > Set RTS On Close.

[Meggy Jr Programming Guide] [3]

Programming Meggy Jr: Installation & Quick Start

“VERIFY”

“Upload to I/O Board”

http://arduino.cc/en/Main/Software
http://arduino.cc/en/Main/Software
http://arduino.cc/en/Main/Software
http://arduino.cc/en/Main/Software
http://code.google.com/p/meggy-jr-rgb/downloads/list
http://code.google.com/p/meggy-jr-rgb/downloads/list

The Meggy Jr Library

 The purpose of the Meggy Jr Library is to provide a software interface to the
Meggy Jr RGB hardware. One of the things that it does is to allocate a chunk of
the AVR microcontroller's RAM to act as Display Memory, analogous to the video
memory in a desktop computer system. The Display Memory is a fairly large array
of data that fully describes the state of all 200 LEDs on the Meggy Jr RGB. The
LED display is constantly redrawn at a rate of 120 times per second, fully reading
out the contents of that Display Memory and using it to control the LEDs.

 The Meggy Jr Library provides interface calls to directly set and read values in
the Display Memory. While this can give you great control over the LEDs, it can
also involve unwieldy data manipulation.

 To ease this process, we can use a higher-level interface, the Meggy Jr Simplified
Library, which allows the use of pre-defined colors, and greatly simplifies the
process of filling the display memory. The Simplified Library is a much better
place for us to start, so we will save the details of the Display Memory for later.

Meggy Jr Library
“Low level API”:

User creates instance of Meggy Jr
class and and writes R,G,B values

directly to Display Memory

BGR

120 Hz Refresh
(Automatic)

(+ Auxiliary LED settings)

– Display Memory –

Meggy Jr RGB LED Display

[Meggy Jr Programming Guide] [4]

The Meggy Jr Library: Introduction

Meggy Jr Simplified Library (“High level API”):

The Meggy Jr Simplified Library

 The Meggy Jr Simplified Library (MJSL) is a set of macros and functions on top
of the main Meggy Jr Library that let you get started quickly without deep
knowledge of the Display Memory or how the hardware works. It also removes
the excess complexity that is normally associated with libraries in the Arduino
environment, so you can just use the darned thing. And it works.

 Under the hood, the Meggy Jr Simplified Library uses pre-defined calls to the
(full) Meggy Jr Library, with its Display Memory and internal functions, to
constantly refresh the screen at 120 Hz.

 The Simplified Library also adds an additional memory array that makes
drawing to the LED display more intuitive. Besides the Display Memory already
mentioned, the MJSL uses a second off-screen drawing space called the Game
Slate, where we actually perform the drawing.

 In what follows, we’ll walk through the process of using the MJSL.

BGR

120 Hz Refresh
(Automatic)

(+ Auxiliary LED settings)

– Display Memory –

Meggy Jr RGB LED Display

Game Slate

0000

0

0 000

0 0 0 0 0 0 1

00000300

0

0

0

0

0

00

0 0

0

0 0

0

0

0

0

7

0

0

0

0

0

0

00000

0

000

0

0

0

0

0 0

00

User employs simple
drawing commands

to write to Game Slate (Game Slate data
 is used to fill the
 Display Memory)

[Meggy Jr Programming Guide] [5]

The Meggy Jr Simplified Library (MJSL)

[Meggy Jr Programming Guide] [6]

Programming in the Arduino Environment

Let’s get started with a very brief intro to programming in the Arduino development environment.

void setup()
{

 Statements that run once, when the sketch starts

}

void loop()
{

 Statements that run over and over again

}

An Arduino document-- a program written in the Arduino environment-- is called a sketch.

A basic sketch has two sections: Setup and Loop.

 The Setup section contains programming statements
 that are executed once, when the program first runs. {

{ The Loop section contains statements that are executed
 over and over again, so long as the program runs.

Within these sections, we can enter programming
statements: commands that address the Meggy Jr
hardware as well as general-purpose programming with
things like variables, loops, and conditional statements.

Please see http://arduino.cc/en/Reference/ for complete
documentation about the Arduino programming environment
and language.

While much of the Arduino language reference consists of
useful and relevant syntax and functions, note that the “I/O”
functions may interfere with the Meggy Jr library functions.

Three things you should know right way about the syntax:

1. Most statements end with a semicolon ‘;’
2. Single line comments start with two slashes: ‘//’
3. Multi-line comments go between ‘/*’ and ‘*/’

http://arduino.cc/en/Reference/
http://arduino.cc/en/Reference/

[Meggy Jr Programming Guide] [7]

Programming Meggy Jr: A first program

Next, let’s walk through a complete sketch for the Meggy Jr RGB that blinks a single LED pixel:

 The Setup section. Runs once.

#include <MeggyJrSimple.h>

void setup()
{
 MeggyJrSimpleSetup();
}

void loop()
{
 DrawPx(3,4,Yellow);
 DisplaySlate();
 delay(1000);

 ClearSlate();
 DisplaySlate();

 delay(1000);
}

#include <MeggyJrSimple.h>

This “#include” line invokes the Meggy Jr Simplified
Library (MJSL). It’s the first of two required lines of
code to set up and use the MJSL.

Note that library calls like this go at the head of the
program, before setup() or loop().

 MeggyJrSimpleSetup();

The second of two required lines of code to set up and
use the MJSL. This line sets up the Meggy Jr Display
Memory and performs various hardware initializations.

No need to re-type this example! It’s one of the demo programs:
 File>Sketchbook>Examples>Library-MeggyJr>MeggyJr_Blink

[To Be Continued...]

[Meggy Jr Programming Guide] [8]

Programming Meggy Jr: A first program (Continued)

#include <MeggyJrSimple.h>

void setup()
{
 MeggyJrSimpleSetup();
}

void loop()
{
 DrawPx(3,4,Yellow);
 DisplaySlate();
 delay(1000);

 ClearSlate();
 DisplaySlate();

 delay(1000);
}

 DrawPx(3,4,Yellow);

The DrawPx function is part of the MJSL. As used here, it will
draw a pixel at x=3, y=4, in color Yellow. The origin (0,0) is at
the lower-left corner of the LED display, and Yellow is a pre-
defined color. DrawPx does not on its own write directly to
the LED display, but instead writes to the Game Slate. Nothing
will show up on the LED display until you call DisplaySlate.

(Yes, there’s a list of defined colors-- we’ll get there soon.)

 DisplaySlate();

The DisplaySlate function is part of the MJSL. It copies
the Game Slate into the Display Memory, where the
contents will be shown on the LED display.
By calling it right here, it makes the LED display actually
show that one yellow pixel.

 Delay(1000);

A standard Arduino function:
Wait idly for a given number
of milliseconds. Here it delays
1000 ms, or one second.

 ClearSlate();

Also part of the MJSL. This function empties the Game
Slate. Again, no change will show up on the LED display
until you call DisplaySlate.

So, after that we call DisplaySlate() again to actually show
the screen full of dark pixels, and then wait another 1000
ms before starting the loop again.

 The Loop section. Repeats.

120 Hz Refresh
(Automatic)

BGR
(+ Auxiliary LED settings)

– Display Memory –
Game Slate

Meggy Jr RGB LED Display

DisplaySlate();

0000

0

0 000

0 0 0 0 0 0 1

00000300

0

0

0

0

0

00

0 0

0

0 0

0

0

0

0

7

0

0

0

0

0

0

00000

0

000

0

0

0

0

0 0

00

DrawPx(2,5,Yellow);

DrawPx(4,3,White);

DrawPx(7,6,Red);

2. When done drawing,
use DisplaySlate to

write your drawing to
the Display Memory

1. Draw to the Game Slate with DrawPx:

(Pre-defined colors are stored
in the Game Slate as numbers.)

DisplaySlate uses a color look-up
table that contains the RGB

definition of the named colors.
(0,0)

Programming Meggy Jr: The MJSL Programming Model

Let’s recap and look at what we do
to put colored dots on the screen.

There are two steps:

[9]

	

 1.	

 ClearSlate :: Erase the whole Game Slate

	

 2.	

 DrawPx :: Color in a pixel on the Game Slate.

	

 3.	

 DisplaySlate :: Copy the current contents of the Game Slate to the LED Display Memory.

	

 4.	

 SetAuxLEDs :: Write a value to the Meggy Jr Auxilary LEDs.

	

 5.	

 ReadPx :: Read the color of a pixel in the Game Slate.

	

 6.	

 EditColor :: Configure custom pixel colors.

	

 7.	

 CheckButtonsDown :: Check to see which buttons are currently pressed down.

	

 8.	

 CheckButtonsPress :: Check to see which buttons are pressed that weren't, last we checked.

	

 9. Tone_Start :: Begin sound output at a given frequency

[Meggy Jr Programming Guide] [10]

Programming Meggy Jr: Function Reference

There are ten important functions in the Meggy Jr Simplified Library, which have
to do with graphics, buttons, and sound. We’ve met a few of these already.

The graphics functions are as follows:

These two functions check the buttons:

And one function is for making simple sounds:

In the next section, we’ll go over the usage of these functions, along with a few examples.

	

 1.	

 ClearSlate :: Erase the whole Game Slate

[Meggy Jr Programming Guide] [11]

Programming Meggy Jr: Function Reference:: ClearSlate

 This routine clears the Game Slate, which is the off-screen drawing slate where
you can take your time making a new graphic before copying it to the Display
Memory, from where it is automagically drawn on the LEDs. It is equivalent to
(and functions by) filling in each pixel in the Game Slate with the number zero or
the color “Dark.”

 Because ClearSlate writes to the Game Slate, not to the Display Memory, it
does not have any effect on which LEDs are actually displayed until you next run
the DisplaySlate routine. To actually draw a blank screen, you might want to use
the following two-line code example that first clears the game slate and then
copies the blank slate to the Display memory:

ClearSlate();
DisplaySlate();

ClearSlate();Example usage:

	

 2.	

 DrawPx :: Color in a pixel on the Game Slate.

[Meggy Jr Programming Guide] [12]

Programming Meggy Jr: Function Reference:: DrawPx

The list of pre-defined colors is given on the next page. Each color has an
equivalent numerical value, and can be referred to (at your choice) either by
name or number.

Example: is equivalent to

The pixels that you write to the Game Slate with DrawPx will not actually be
displayed on the LED display until you call the function DisplaySlate.

Example usage:

DrawPx(x,y,Color);Syntax:

DrawPx(3,4,Blue); Draws a bright blue dot at position x=3, y = 4.

Where the origin x=0, y=0 is in the lower left corner
of the LED display, and Color is the name of a color.

The x and y inputs are 8-bit unsigned integers (type 'byte'), and should
each only be given numbers or variables that will be in the range 0 to 7.
(Eight possible values for eight rows and eight columns.)

DrawPx(0,7,Red); DrawPx(0,7,1);

The pre-defined color names are as follows:

[Meggy Jr Programming Guide] [13]

Programming Meggy Jr: Function Reference:: Predefined Colors

"Dark" means all LEDs off, and "FullOn" means all LEDs full on. It's not a balanced
white, but it is bright; makes a good blinking cursor or flash. The other colors in
the range 1 to 14 are various mixes of the red, green, and blue elements.

The RGB color mix of each of the pre-defined colors can be changed by using the
EditColor routine. Besides the standard colors, there are also ten user-
configurable colors, CustomColor0 through CustomColor9. These are each
equivalent to Dark until you configure them with EditColor.

The color names are enumerated, which means that you can use the numbers
from the left-hand column interchangeably with the color names- and so colors
can be referred to (at your choice) by number.

Dark
Red
Orange
Yellow
Green
Blue
Violet
White
DimRed
DimOrange
DimYellow
DimGreen
DimAqua
DimBlue
DimViolet
FullOn
CustomColor0
CustomColor1
CustomColor2
CustomColor3
CustomColor4
CustomColor5
CustomColor6
CustomColor7
CustomColor8
CustomColor9

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

Example: is equivalent to DrawPx(0,7,Red); DrawPx(0,7,1);

(So... use whichever is convenient.)

	

 3.	

 DisplaySlate :: Copy the current contents of the Game Slate to the LED Display Memory.

[Meggy Jr Programming Guide] [14]

Programming Meggy Jr: Function Reference:: DisplaySlate

 This routine takes the current contents of the Game Slate, and uses it to fill the
Display Memory, from where it is automagically drawn on the LEDs. Running
DisplaySlate does not affect the contents of the Game Slate.

 In the process of filling the main Display Memory, DisplaySlate translates
between the color names that are stored (as numbers) in the Game Slate and the
RGB values that must go in the Display Memory. This is accomplished by looking
up the RGB definition of each color in a color lookup table at the time that
DisplaySlate is called.

 This means that if you have used the EditColor routine to change or define
custom colors, the colors written to the LED display will be the definitions in
effect at the moment that DisplaySlate is executed, not the definitions in place at
the time that DrawPx or any other function was called. (See also examples on
Page 17).

DisplaySlate();Example usage:

	

 4.	

 SetAuxLEDs :: Write a value to the Meggy Jr Auxilary LEDs.

[Meggy Jr Programming Guide] [15]

Programming Meggy Jr: Function Reference:: SetAuxLEDs

The Auxiliary LEDs are the 8 small LEDs above the top of the LED matrix display.
They can display the binary equivalent of any number in the range 0 - 255.

Note that this function writes immediately to the Auxiliary LED portion of the
Display Memory-- it does not wait for DisplaySlate, since Auxiliary LED data is
not stored in the Game Slate.

SetAuxLEDs(31);Example usage:

2 4 8 16 32 64 1281Value

2 4 8 16 32 64 1281Value

To find the right binary number to turn on (say) LEDs
1,3,5, and 6 (from the left) look at the binary values:
1+4+16+32=53, so use SetAuxLEDs(53);

SetAuxLEDs(value)Syntax: ‘value’ is an 8-bit unsigned integer (type 'byte')
in the range 0 to 255.

Each LED represents a binary bit, the corresponding
decimal values are shown here. The rightmost LED is
the most significant bit, with value 128.

 SetAuxLEDs(0); All aux LEDs off

 SetAuxLEDs(255); All aux LEDs on

 SetAuxLEDs(1); Leftmost aux LED on

 SetAuxLEDs(128); Rightmost aux LED on

Additional Examples: There is also a separate function SetAuxLEDsBinary(value),
which reverses the bit order so that you can set the auxiliary LED
state with a binary constant:

 SetAuxLEDsBinary(B00001111);

 SetAuxLEDsBinary(B10101100);

	

 5.	

 ReadPx :: Read the color of a pixel in the Game Slate.

[Meggy Jr Programming Guide] [16]

Programming Meggy Jr: Function Reference:: ReadPx

Example 1:

byte ReadPx(x,y)Syntax:

byte i;

i = ReadPx(3,5);

First declare a variable called ‘i’

The ReadPx function returns the value-- of type ‘byte’ -- of
the color name stored at position (x,y) in the Game Slate.

(The list of pre-defined colors is described earlier on page 13.)

This function can be very handy for game mechanics-- if you draw all of the
pixels for your environment first, then the color where your player pixel(s)
will be drawn can give a quick way to tell if you’ve run into something:

After this line executes, ‘i’ contains a number representing
the color of the pixel at x=3, y=5 in the Game Slate.

Example 2: DrawPx(3,4,ReadPx(3,3)); Make the pixel at x=3, y=4 the same color as
the pixel at x=3, y=3.

Example 3: if (ReadPx(PlayerX,PlayerY) == Red)
 Alive = 0;

(This supposes that you have variables already
 assigned for PlayerX, PlayerY, and Alive.)

The double equals (‘==’) is used for testing equivalency.
Again, see the Arduino language reference for syntax on the
use of variables and conditionals like the ‘if ’ statement.

The x and y inputs are 8-bit unsigned integers (type 'byte'), and
should each only be given numbers or variables that will be in the
range 0 to 7. (Eight possible values for eight rows and eight columns.)

http://arduino.cc/en/Reference/
http://arduino.cc/en/Reference/

	

 6.	

 EditColor :: Configure custom pixel colors.

[Meggy Jr Programming Guide] [17]

Programming Meggy Jr: Function Reference:: ClearSlate

DrawPx(4,3,Red);
EditColor(Red, 0, 0, 7);
DisplaySlate();

EditColor(CustomColor8, 5, 15, 1);Example usage:

EditColor(ColorName, R, G, B);

Note 1: The color balance of the LED display can be lopsided. This function
allows you to adjust the actual colors drawn under names like 'White' or
'Violet' to better suit your taste. Achieving true color reproduction is not
necessarily possible or easy-- Meggy Jr is designed to display cheerfully
colored pixels, not video.

Note 2: The color definitions that will actually be drawn on the LED display
are the ones that are in effect at the times that DisplaySlate is executed.
Thus, Example 2 on the right will draw a blue dot on the screen.

This is even true after running DisplaySlate, since that function does not
affect the Game Slate. Example 3 draws a pixel first as blue and then as
green, while only using DrawPx once.

Syntax: The four arguments to the function are each unsigned 8-bit
integers (type ‘byte’). The color name should be one of the pre-
defined color names (which is internally resolved to a number).

The three color components R, G, and B, should each be a
number in the range 0 to 15, giving 16 levels of shading for each
color component.

 Any of the pre-defined colors can be edited. This function also allows
you to use the ten "custom color" placeholders to define new colors.

Configures CustomColor8 with R=5, G=15, B=1.

EditColor(CustomColor7, 0, 0, 7);
DrawPx(2,2, CustomColor7);
DisplaySlate();
delay(100);
EditColor(CustomColor7, 0, 15, 0);
DisplaySlate();

Draws a blue dot.

Draws a blue dot, then changes the color of the dot to green.

Example 2:

Example 3:

	

 7.	

 CheckButtonsDown :: Check to see which buttons are currently pressed down.

[Meggy Jr Programming Guide] [18]

Programming Meggy Jr: Function Reference:: CheckButtonsDown

 Executing this command sets six variables that tell you about the buttons:

CheckButtonsDown();Example usage:

Button_A
Button_B
Button_Up

Button_Down
Button_Left
Button_Right

Buttons A and B are the two round ones on the right side
of the LED display. Buttons Up, Down, Left, and Right are
the “arrow key” buttons on the left side of the LED display.

ClearSlate();

CheckButtonsDown();

if (Button_A)
 DrawPx(6,4,Green);

if (Button_B)
 DrawPx(5,4,Green);

DisplaySlate();

 If one of the six buttons was down when you checked, the
corresponding variable will be nonzero. You can test this by using
an “if(Button_X)” type statement. Note that this method only
detects that buttons was down at the moment you checked. It
makes no attempt to look for changes in the button state or look
for key pressing events.

The example to the right, if placed in the loop portion of a sketch,
will light up two different LEDs if button A or B is held down. The
LEDs will stay lit up as long as the buttons are held down.

For a more detailed example, see the example sketch:
 MeggyJr_CheckButtonsDown

 If one of the six buttons was down when you checked, and was not
down the last time that you checked, the corresponding variable will be
nonzero. You can test this by using an “if(Button_X)” type statement.
Note that this method only detects buttons that changed and were
down when you looked.

	

 8.	

 CheckButtonsPress :: Check to see which buttons are pressed that weren't, last we checked.

[Meggy Jr Programming Guide] [19]

Programming Meggy Jr: Function Reference:: CheckButtonsPress

 Executing this command sets six variables that tell you about the buttons:

CheckButtonsPress();Example usage:

Button_A
Button_B
Button_Up

Button_Down
Button_Left
Button_Right

Buttons A and B are the two round ones on the right side
of the LED display. Buttons Up, Down, Left, and Right are
the “arrow key” buttons on the left side of the LED display.

CheckButtonsPress();
ClearSlate();

if (Button_A)
 DrawPx(6,4,Blue);

if (Button_B)
 DrawPx(5,4,Blue);

DisplaySlate();
delay(30);

The example to the right, if placed in the loop portion of a sketch, will light
up two different LEDs if button A or B is pressed. No matter how long you
hold down the buttons, the corresponding LEDs will only stay on for 30
milliseconds– it only detects that a button was pressed, not that it’s held
down.

This method of detecting button presses is suitable for most video games
(and similar applications), and is used in some of the example sketches, such
as Froggy Jr and MeggyBrite.

For a more detailed example, see also the example sketch:
 MeggyJr_CheckButtonsPress

Note: Mechanical buttons can occasionally produce a “bounce”-- more than one
transition when a button is pressed or released. This routine makes no attempt to
“debounce.” However, it works well in practice because you only check occasionally
to see if there has been a change. This is in contrast to situations where bounce is
a big problem: when events are directly triggered electrical signals from buttons.

	

 9. Tone_Start :: Begin sound output at a given frequency

[Meggy Jr Programming Guide] [20]

Programming Meggy Jr: Function Reference:: Tone_Start & Tone_Update

Tone_Start(18182, 50);Example usage:

Tone_Start(Divisor, Duration)Syntax: The two arguments to the function are unsigned 16-bit integers
(type ‘unsigned int’).

The frequency output is 8 MHz/Divisor.
Duration is specified in (approximately) milliseconds.

Begin sound output at frequency 8 MHz/18182 = 440 Hz,
which is an ‘A4’ note, scheduled to last for roughly 50 ms.

Tone_Start only starts sound output, scheduled to last for a given duration of time. A separate routine, built into the video refresh
routine, automatically stops the tone if the scheduled time has elapsed. If you are already playing a tone and call Tone_Start again,
the old tone will stop immediately and be replaced by the new call-- starting at the new frequency and lasting for the new duration,
starting at the moment of the new call.

 While a note is still playing, the read-only variable 'MakingSound' is nonzero; you can use that fact to detect when the sound
finishes for multi-note sound effects.

 A number of frequency divisors are predefined:
 ToneC3, ToneCs3, ToneD3, ToneDs3, ToneE3, ToneF3,
 ToneFs3, ToneG3, ToneGs3, ToneA3, ToneAs3, ToneB3,

 where “Fs” stands for F#, and so forth. Notes are defined in the range ToneB2 (124 Hz) to ToneDs9 (9963 Hz).

Example 2 begins a tone of F# (Octave 3), for a duration of 100 ms.
The actual frequency output is 8 MHz/43243 = 185 Hz.

Tone_Start(ToneFs3, 100);Example 2:

Upgrading note: In library versions before 1.3, the function call SoundCheck() should be also added to the main loop of the
program and checked often (e.g., at the same frequency of the buttons) to check and see if it's time to stop playing a tone.

[Meggy Jr Programming Guide]

Example Code (Demo Programs)

MeggyJr_MeggyBrite

A pixel art drawing program. Move your cursor with the arrow
keys. The right-most button is draw/erase and the remaining button
changes colors. When you change colors, the auxiliary LEDs change
to indicate which one you are on. There are two other “color”
modes too: an erase-only mode and a cursor-off display mode.

A number of example programs are available in the Meggy Jr RGB Arduino Library.

[21]

MeggyJr_Attack :: Attack of the Cherry Tomatoes

(The game that comes on the Meggy Jr RGB). Move your fighter up
and down and fire at the ever advancing army of cherry tomatoes.
Stop them--at all costs-- before they splat against your wall. You
have an infinite number of Blueberry Bullets ('A' button), and a
limited number of bombs and laser shots.

You start out the game with five bombs (Left arrow) and six laser
shots ('B' button). Lasers are super bullets that destroy everything
in your line of fire. Bombs destroy all the Cherry Tomatoes
presently on the screen. If you use all of your laser shots, you can
take take the power cells out of a remaining bomb to power five
more shots.

The Cherry Tomatoes come at you in waves of 75, increasing in
speed and density. For each wave you survive you get an extra bomb
(up to 8 max), and the number of bombs is always shown on the
auxiliary LED display at the top of the screen. If things get dull, you
can boost yourself forward (right arrow). When things get tight, you
can zoom up and down between shots by holding the up or down
arrow buttons.

(Note: this program was written before the simplified library.)

MeggyJr_FroggyJr :: Froggy Jr

Why did the green pixel cross the road... and then the river?
And how do the logs drifting in the river go both ways?
Regardless, you’ve got to get your young froglets to the other side,
without drowning or becoming road kill. (Good luck.)
Navigate with the arrow keys. Things get faster as you go along.

You can load find them listed in your menu, by navigating to:
 File>Sketchbook>Examples>Library-MeggyJr>

MeggyJr_RandomColors

Draw randomly colored dots on the LED screen. Slightly
interactive; change the speed or number of colors. Pause, resume.
Demonstrates using buttons, drawing dots, loop structures.

Some of these are “real” programs, showing off the capabilities of the hardware:

Many other programs for the Meggy Jr RGB are linked to from the Meggy Jr
Link wiki page; you can get to that page from the main Meggy Jr RGB project
page, http://www.evilmadscientist.com/go/meggyjr

[Meggy Jr Programming Guide]

Example Code (Demo Programs)

Where to go from here?

To go forward, try out these various demo programs and look through
their code. Start small, by modifying these programs to make them still
work but do different things. Once you understand that basic process--
modifying code without breaking it-- you're good to go!

[22]

MeggyJr_Blink

Blink an LED pixel. Shows off basic drawing and displaying.
It’s the example from P. 7.

MeggyJr_CheckButtonsDown

Test your six buttons, demonstrate reading the button states.

MeggyJr_CheckButtonsPress

Demonstrate detecting individual button-press events

MeggyJr_CustomColors

Demonstrate configuring custom colors with the EditColor routine.

MeggyJr_EasyDrawDots

Draw a few colored dots on the screen.

MeggyJr_SetPxClr

Like MeggyJr_EasyDrawDots, but less easy. This demo is written
with the Meggy Jr library, without the simplified functions. It
demonstrates the use of a custom color look-up table.

Some of the other programs are just simple programming
demonstrations-- good starting points for learning about the
different library functions.

 If you encounter difficulty with Meggy Jr RGB in hardware,
software, or elsewhere, odds are that somebody knows how to
help you out. Your first stop should be the Evil Mad Scientist
Laboratories forums:
 http://www.evilmadscientist.com/forum/

There are also three sketches that demonstrate communication
between Meggy Jr RGB and a host computer over the serial link.
These are located in the SerialCommunication subdirectory Library:
File>Sketchbook>Examples>Library-MeggyJr>SerialCommunication

MeggyJr_SerialMonitor

This program shows the process of sending text from the Meggy Jr
to your computer and reading it out from within the Arduino
environment. See the next page of this guide for more about serial
monitoring.

MeggyJr_BinaryClock,

A full-fledged binary clock application, where you can set the time
from the Meggy Buttons. You can also run the included processing
sketch to set the Meggy Jr clock to your computer time.

MeggyJr_RemoteDraw

A Meggy Jr program to allow a remote user to draw dots to the
screen over the serial interface. The included Processing sketch
draws random dots from your computer to your Meggy Jr RGB.

The other two serial apps are designed for communicating with your
computer when it is running sketches (programs) in the Processing
Development Environment, http://processing.org/

Advanced Topic: Serial monitoring

 Meggy Jr RGB is normally hooked up to a computer through the USB-TTL cable for
programming. However, that cable can also be used for other types of serial communication
between Meggy Jr RGB and the host computer.

 After you’ve finished uploading your program, you can-- if you like-- leave the cable connected
to your computer. You can then use any serial communication program to interact with the
Meggy Jr RGB. One handy application of this is to use the Serial Monitor function of the Arduino
development environment for debugging purposes.

#include <MeggyJrSimple.h>

void setup()
{
 MeggyJrSimpleSetup();
 Serial.begin(9600);
}

void loop()
{
 byte b;
 Serial.println("Hello world!");
 delay(1000);
 b = 5;
 Serial.println(b);
 delay(1000);
}

[Meggy Jr Programming Guide] [23]

Monitoring Serial Output

“Serial Monitor”

Add this line to initialize the Serial
routine at 9600 baud. 19200 baud
is also a good choice.

Print a line of text
followed by a return.

Print the value of variable
‘b’ on its own line.

To make your Meggy output serial data, first add the line
Serial.begin(baud rate), to the setup section of your sketch.

Using the Serial.println routine, you can output text or the
value of variables one line at a time, as shown in the
example to the right. (There is also a Serial.print routine,
without the return at the end of each line.)

To see the serial output on your computer, click the
"Serial Monitor" button in the Arduino environment; it's
the one next to the "Upload to I/O board" button. Also,
make sure that you have the correct baud rate selected--
the baud rate selection should be visible once you have
the serial monitor on.

For additional information, see LadyAda's tutorial:
 http://www.ladyada.net/learn/arduino/lesson4.html

and the Arduino reference on Serial.println:
 http://arduino.cc/en/Serial/Println

See also the MeggyJr_SerialMonitor example sketch.

Advanced Topic: The underlying Meggy Jr Library - “low level” API

 The Meggy Jr library can be used on its own, without the simplified functions, in case
you want to work without the Game Slate, for example. For a quick start, see the
example program MeggyJr_SetPxClr. What follows here are some quick notes on
the library, intended for folks who know their way around C++.

The first step is to create an instance of the MeggyJr, and initialize the hardware, like
so:

[Meggy Jr Programming Guide] [24]

The Meggy Jr Library: On its own

MeggyJr Meg;

void setup()

{
 Meg = MeggyJr();
}

You can use a different name instead
of Meg-- that’s just our habit.

There are a number of useful structures and functions:

MeggyFrame[];
AuxLEDs;
ClearMeggy (void);	

ClearPixel(byte x, byte y);
GetButtons(void);
GetPixelR(byte x, byte y);
GetPixelG(byte x, byte y);
GetPixelB(byte x, byte y);
SetPxClr(byte x, byte y, byte rgb[3]);
SoundState(byte t);
StartTone(unsigned int Tone, unsigned int duration);
SoundCheck(void) ;

You may note that some of these are nearly identical to
versions in the simplified library. To see what these do and
look at their code, open up MeggyJr.cpp.

MeggyFrame is the name of the 1-D display memory array.
Each of the 192 bytes in the array stores a number from 0 to
15 representing the brightness of that particular LED
element. It’s easiest to understand the structure by looking
how we set the color of a pixel in the array, like in the
definition of the function SetPxClr:

void MeggyJr::SetPxClr(byte x, byte y, byte *rgb)
{
byte PixelPtr = 24*x + y;
MeggyFrame[PixelPtr] = rgb[2];
PixelPtr += 8;
MeggyFrame[PixelPtr] = rgb[1];
PixelPtr += 8;
MeggyFrame[PixelPtr] = rgb[0];
}

Note: Since only values 0-15 are used, it’s actually possible to
use the upper 4 bits of each byte for your own storage,
should that become handy.

