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Fundamental Questions
Theory of Computation seeks to answer fundamental

questions about computing
• What is computation?

 Ancient activity back as far as Babylonians, Egyptians
 Not precisely settled until circa 1936

• What can be computed?
 Different ways of computing (C, Lisp, …) result in the same

“effectively computable” functions from input to output?
• What cannot be computed?

 Not              but can get arbitrarily close
 Are there precisely defined tasks (“problems”) that cannot be

carried out?  Yes/No decisions that cannot be computed?
• What can be computed efficiently? (Computational

Complexity)
 Are there inherently difficult although computable problems?

2
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Basic Concepts: Automata, Grammars & Languages

• Language:  a set of strings over some finite alphabet Σ
 Ex:

• Automaton (Machine): abstract (=simplified) model of a
computing device.  Used to “recognize” strings of a
language L
 Ex:

• Grammar: finite set of string rewriting rules.  Used to
specify (derive) strings of a language
  Ex:
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Languages
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is a well-formed C program

is a w.-f.

is a well-formed arithmetic expression in C
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0-9,a-z,A-Z,+,-,*,/,(,),.,&,!

…

!

6 is a decimal integer and is its binary representation

 C program that halts for all inputs}
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Types of Machines
• Logic circuit

 memoryless; values combined using gates
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Circuit size = 5 

Circuit depth = 3
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 Types of Machines (cont.)
• Finite-state automaton (FSA)

 bounded number of memory states
 step: input, current state determines next state & output

a

a

a

Mod 3 counter
state/ouput (Moore) machine

• models programs with a finite  number of bounded registers
•reducible to 0 registers

b

0
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• Pushdown Automaton (PDA)
 finite control and a single

unbounded stack
ε, ε  → $}1:#{ != nbaL

nn

 models finite program + one unbounded stack of bounded registers 

$

top

 Types of Machines (cont.)

b

 #, $ → ε

a, ε  → A

b, A  → ε

b, A  → ε
2 2( , , ) ( , )q a q A! " =
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• Random access machine (RAM)
 finite program and an unbounded, addressable
random access memory of ``registers”
 models general programs

◆ unbounded # of bounded registers
◆ Simple 1-addr instructions

Example:
4
3
2
1
0

•
•
•

0 0 1

0 1 1

0

1

0

1

:

:

R R R

L JMPZ R L

INC R

DEC R

JMP L

L CONTINUE

! +

 Types of Machines (cont.)

b

•
•
•

C SC 473 Automata, Grammars & Languages 9

• Turing Machine (TM)
 finite control & tape of bounded cells unbounded in # to R
 Input left adjusted on tape at start with blank cell terminating
 current state, cell scanned determine next state & overprint symbol
 control writes over symbol in cell and moves head 1 cell L or R
 models simple ``sequentialʼʼ memory; no addressability
 fixed amount of information (b bits) per cell

 Types of Machines (cont.)

 •••

Finite-
state 

control

b

( , ) ( , , )q X p Y R! =
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Theory of Computation
Study of languages and functions that can be described by

computation that is finite in space and time
• Grammar Theory

 Context-free grammars
 Right-linear grammars
 Unrestricted grammars
 Capabilities and limitations
 Application: programming language specification

• Automata Theory
 FA
 PDA
 Turing Machines
 Capabilities and limitations
 Characterizing “what is computable?”
 Application: parsing algorithms
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Theory of Computation (contʼd)
• Computational Complexity Theory

 Inherent difficulty of “problems”
 Time/space resources needed for computation
 “Intractable” problems
 Ranking of problems by difficulty (hierarchies)
 Application: algorithm design, algorithm improvement, analysis
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FSA Ex:  Specifying/Recognizing C Identifiers
• Deterministic FA     Λ={a,…,z,A…,Z, _ }  Δ={0,…,9}

 State diagram (labeled digraph)

 Regular Expression

 Right-Linear Grammar

0
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q

 Λ  Λ
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FSA Ex: C Floating Constants
• "A floating constant consists of an integer part, a decimal

point, a fraction part, an e or E, an optionally signed
integer exponent (and an optional type suffix …).  The
integer and fraction parts both consist of a sequence of
digits.  Either the integer part or the fraction part (not both)
may be missing; either the decimal point or the e and the
exponent (not both) may be missing. …"
 --B. W. Kernighan and D.M. Ritchie, The C Programming

Language, Prentice-Hall, 1978

 (The type is determined by the suffix; F or f makes it a float, L or l
makes it a long double; otherwise it is double.)
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FSA Ex: C Floats (contʼd)

0 | 1 | 9d = …

d

d

d

d

d

d

,+ !

e, E

•

•

d

Note: type suffixes
 f,F,l,L omitted

e, E

“Either the integer part or the fraction part (not both) may be missing;
either the decimal point or the e and the exponent (not both) may be missing”
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CFG Ex: A Calculator Language
• Syntactic Classes

 Numerals  3 40
 Digits 0 1 9
 Expressions  3*9 40-3*3
 Commands 3*9=  40-3*3=

• Context-Free Grammar

20*30-12=
7 8 9 ∗
4 5 6 -
1 2 3 +

0 =

C →E=
E →N
  →E+N
  →E-N
  →E∗N
N →ND
N →D
D →0...
  →9

rules
R

terminals Σ = {=,+,−,∗,0,…,9}

variables    = {N,D,E,C}

start variable = C

grammar (V, , ,C)G R!=

V

Note:  no division &
no decimal point
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Calculator Language (contʼd)
• Syntax Trees—exhibit “phrase structure”
• Numerals N

• Expressions E
• Commands C

N

D

3

N

D

4

N

D

0
N

D

3

N

D

6

N

D

5

E

N

3

E

N

9

C

=

∗

…

…

E

4

E

N

3

C

=

∗

…

…

E N-

N

0

…

3

…

3*9= 40-3*3=

Is this the parse
you expected?
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TM Ex: An “Algorithmically Unsolvable” Problem

• Q:  Is there an algorithm for deciding if a given program P
halts on a given input x?

• A: No.  There is no program that works correctly for all
P,x

• For the proof, we will need a simple programming
language‡:  NatC—a simplified C
 One data type:  nat = {0,1,2, …}.  All variables of type nat
 All programs have one nat input and one nat output

‡We will later on use Turing Machines to model a “simple
programming language”. NatC   is simpler to describe.

Halting
Decider

P

x

1 if P(x)

0 if P(x)

! "#
$

%#&
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Unsolvable Problem (contʼd)
• Observations:

 A standard C compiler can be modified to accept only NatC  programs as
“legal”

 Every NatC  program P computes a function from natural numbers to
natural numbers.

 Note:               may not be defined for some inputs, i.e., it is a partial
function

nat P(nat x)
{
    if (x=3)
        return(6);
    else {

  while(x=x) do x=x+1;
    return x;
         }
}

:
P
f nat nat!

P
f

Ex: P does not halt for
some inputs 
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Unsolvable Problem (contʼd)
• Enumeration

 A systematic list of all NatC  programs
 For program               i is called the programʼs index
 program→index:  write out program as bit sequence in ASCII;

interpret the bit sequence as a binary integer—its index
◆ A program is just a string of characters!!!

 index→program:  given i ≥ 0, convert to binary.  Divide into 8-
bit blocks.  If such division is impossible (e.g., 3 bits) or if some
block is not an ASCII code,  or if the string is not a legal program,

will be the default “junk” program {nat x; read(x);
while(x=x) do x=x+1;write(x)} which is undefined
(“diverges” ↑) for every legal input.

 Conclusions about enumeration
◆ Given n can compute            with NatC  program
◆ Given P can compute index n such that                      with NatC.

0 1 2
, , ,P P P …

i
P

i
P

0 1 2
, , ,P P P …

n
P

n
P P=
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Unsolvable Problem (contʼd)
• Unsolvability Result:  Does            halt on input n ?

Question cannot be settled by an algorithm.
• Theorem: Define the function   h: nat → nat    by

 h (x) = if Px halts on input x then 1 else 0
Then h is not computable by any NatC  program.
Proof:  Proof by contradiction.  Suppose (contrary to what

is to be proved) that h is computable by a program
   called halt.  halt has input variable x, and output

variable y.
  By assumption (i.e., that it exists)  it has the following

behavior:

f halt  (x) = if Px halts on input x then 1 else 0

n
P
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Unsolvable Problem (contʼd)
• Modify halt to a NatC  function nat halt(nat x)
• Construct the following NatC  program:

• Consequences
 If halt is a legal program, so is “diagonal”
 Therefore, diagonal has some index  e in the enumeration:

◆ Pe = diagonal

nat diagonal(nat n)
{ nat y;
  if halt(n)=0

y:=1;
  else {

   y:=1;
   while (y!=0) do

y:=y+1;}
  return y;
}
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Unsolvable Problem (contʼd)
• How does  diagonal behave on its own index e ?
• fdiagonal(e)=1 ⇔ fhalt (e) = 0 ⇔ Pe does not halt on e ⇔

diagonal does not halt on e
• fdiagonal(e)=undefined ⇔ fhalt (e) = 1 ⇔ Pe halts on e ⇔

diagonal halts on e
• ∴ diagonal halts on e ⇔ diagonal does not halt on
e

• Contradiction!!!
• ∴ program diagonal cannot exist     Q.E.D. �
• The “Halting Problem” is  unsolvable

 Undecidable, recursively undecidable, algorithmically undecidable,
unsolvable—all synonyms


