Automata, Grammars and Languages

Discourse 01

Introduction

Fundamental Questions

Theory of Computation seeks to answer fundamental questions about computing

- What is computation?
 - Ancient activity back as far as Babylonians, Egyptians
 - Not precisely settled until circa 1936
- What can be computed?
 - Different ways of computing (C, Lisp, ...) result in the same "effectively computable" functions from input to output?
- What cannot be computed?
 - Not \(\sqrt{2} \) but can get arbitrarily close
 - Are there precisely defined tasks ("problems") that cannot be carried out? Yes/No decisions that cannot be computed?
- What can be computed efficiently? (Computational Complexity)
 - Are there inherently difficult although computable problems?

Basic Concepts: Automata, Grammars & Languages

- Language: a set of strings over some finite alphabet \(\Sigma \)
 - Ex: \(L = \{ TAA, TGA, TAG, \ldots \} \) DNA codons
 - \(\Sigma = \{ A, G, C, T \} \)
- Automaton (Machine): abstract (=simplified) model of a computing device. Used to "recognize" strings of a language \(L \)
 - Ex: Finite Automaton (Finite State Machine)
- Grammar: finite set of string rewriting rules. Used to specify (derive) strings of a language
 - Ex: \(S \rightarrow SS \) Context-Free Grammar
 - Ex: \(S \rightarrow x \) (CFG)
Languages

\[L_1 = \{aa, ab, ba, bb\} \quad \Sigma = \{a, b\} \]
\[L_2 = \{e, a, aa, aaaa, \ldots\} \quad \Sigma = \{a\} \]
\[L_3 = \{e : e \text{ is a well-formed arithmetic expression in C}\} \quad \Sigma = \{0-9, \pm, \times, \div, (,), \} \]
\[L_4 = \{p : p \text{ is a well-formed C program}\} \quad \Sigma = \{\text{ASCII}\} \]
\[L_5 = \{p : p \text{ is a w.-f. C program that halts for all inputs}\} \]
\[L_6 = \{(x, y) : x \text{ is a decimal integer and } y \text{ is its binary representation}\} \]

Types of Machines

• Logic circuit
 • memoryless; values combined using gates
 ![Logic Circuit Diagram]

 Circuit size = 5
 Circuit depth = 3

Types of Machines (cont.)

• Finite-state automaton (FSA)
 • bounded number of memory states
 • step: input, current state determines next state & output
 ![Finite-State Automaton Diagram]

 Mod 3 counter state/output (Moore) machine
 \[\delta(q_j, a) = (q_j, 2) \]

 models programs with a finite number of bounded registers
 reduce to 0 registers
Types of Machines (cont.)

- Pushdown Automaton (PDA)
 - finite control and a single unbounded stack
 - $L = \{a^n b^n : n \geq 1\}
 - $\delta(q_0, a, \epsilon) = (q_1, A)$

 models finite program + one unbounded stack of bounded registers

Types of Machines (cont.)

- Random access machine (RAM)
 - finite program and an unbounded, addressable random access memory of "registers"
 - models general programs
 - unbounded # of bounded registers
 - Simple 1-addr instructions

 Example:
 - $R_0 \leftarrow R_0 + R_1$
 - L_0 : $\text{INC } R_0$
 - $\text{DEC } R_0$
 - $\text{JMP } L_0$
 - L_0 : CONTINUE

Types of Machines (cont.)

- Turing Machine (TM)
 - finite control & tape of bounded cells unbounded in # to R
 - Input left adjusted on tape at start with blank cell terminating
 - current state, cell scanned determine next state & overprint symbol
 - control writes over symbol in cell and moves head 1 cell L or R
 - models simple "sequential" memory; no addressability
 - fixed amount of information (b bits) per cell

 $\delta(q, X) = (p, Y, R)$
Theory of Computation
Study of languages and functions that can be described by computation that is finite in space and time
• Grammar Theory
 ▪ Context-free grammars
 ▪ Right-linear grammars
 ▪ Unrestricted grammars
 ▪ Capabilities and limitations
 ▪ Application: programming language specification
• Automata Theory
 ▪ FA
 ▪ PDA
 ▪ Turing Machines
 ▪ Capabilities and limitations
 ▪ Characterizing “what is computable?”
 ▪ Application: parsing algorithms

Theory of Computation (cont’d)
• Computational Complexity Theory
 ▪ Inherent difficulty of “problems”
 ▪ Time/space resources needed for computation
 ▪ “Intractable” problems
 ▪ Ranking of problems by difficulty (hierarchies)
 ▪ Application: algorithm design, algorithm improvement, analysis

FSA Ex: Specifying/Recognizing C Identifiers
• Deterministic FA
 ▪ \(\Lambda = \{ a, ..., z, A, ..., Z, _ \} \) \(\Delta = \{ 0, ..., 9 \} \)
 ▪ State diagram (labeled digraph)

• Regular Expression
 \((+ a + ... + A + ...) \cdot (+ a + ... + A + ... + 0 + ... 9)^* \)

• Right-Linear Grammar
 \begin{align*}
 S & \rightarrow aT | ... | zT \\
 T & \rightarrow aT | ... | zT \\
 & | AT | ... | ZT \\
 & | _T \\
 & | 0T | ... | 9T | T
 \end{align*}
Floating Constants

- A floating constant consists of an integer part, a decimal point, a fraction part, an e or E, an optionally signed integer exponent (and an optional type suffix …). The integer and fraction parts both consist of a sequence of digits. Either the integer part or the fraction part (not both) may be missing; either the decimal point or the e and the exponent (not both) may be missing; …

- (The type is determined by the suffix; F or f makes it a float, L or l makes it a long double; otherwise it is double.)

Floating (cont’d)

- Either the integer part or the fraction part (not both) may be missing; either the decimal point or the e and the exponent (not both) may be missing.

Calculator Language

- Syntactic Classes
 - Numerals 3 4 0
 - Digits 0 1 9
 - Expressions 3*9 40-3*3
 - Commands 3*9= 40-3*3=

- Context-Free Grammar
 - C → E=
 - E → N
 - E → E+N
 - E → E-N
 - E → E*E
 - D → 0...

 terminals $\Sigma = \{e, +, -, *, 0, \ldots, 9\}$
 - rules G
 - variables $V = \{N, D, E, C\}$
 - start variable $= C$
 - grammar $G = (V, \Sigma, R, C)$

Note: no division & no decimal point
Calculator Language (cont’d)
- Syntax Trees—exhibit “phrase structure”
- Numerals N
- Expressions E
- Commands C

\[
\begin{align*}
N & \rightarrow 3 \mid 9 \\
E & \rightarrow N \mid E + N \\
C & \rightarrow * \\
\end{align*}
\]

Is this the parse you expected?

TM Ex: An “Algorithmically Unsolvable” Problem
- Q: Is there an algorithm for deciding if a given program \(\mathcal{P} \) halts on a given input \(x \)?
- A: No. There is no program that works correctly for all \(\mathcal{P}, x \)
- For the proof, we will need a simple programming language‡: \(\text{Nat}_{\mathcal{C}} \)—a simplified \(\text{C} \)
 - One data type: \(\text{nat} = \{0, 1, 2, \ldots\} \). All variables of type \(\text{nat} \)
 - All programs have one \(\text{nat} \) input and one \(\text{nat} \) output

‡We will later on use Turing Machines to model a “simple programming language”. \(\text{Nat}_{\mathcal{C}} \) is simpler to describe.

Unsolvable Problem (cont’d)
- Observations:
 - A standard \(\text{C} \) compiler can be modified to accept only \(\text{Nat}_{\mathcal{C}} \) programs as “legal”
 - Every \(\text{Nat}_{\mathcal{C}} \) program \(\mathcal{P} \) computes a function from natural numbers to natural numbers: \(\mathcal{f}_\mathcal{P} : \text{nat} \rightarrow \text{nat} \)
 - Note: \(\mathcal{f}_\mathcal{P} \) may not be defined for some inputs, i.e., it is a partial function

\[
\text{nat } \mathcal{P}(\text{nat } x) =
\begin{cases}
1 & \text{if } x=3 \\
0 & \text{if } x \neq 3
\end{cases}
\]

Ex: \(\mathcal{P} \) does not halt for some inputs
Unsolvable Problem (cont’d)

• Enumeration
 - A systematic list of all \texttt{NatC} programs P_0, P_1, P_2, \ldots
 - For program P_i its index is called the program’s index
 - \texttt{program-index}: write out program as bit sequence in ASCII; interpret the bit sequence as a binary integer—its index
 - A program is just a string of characters!!!
 - \texttt{index-program}: given $i \geq 0$, convert to binary. Divide into 8-bit blocks. If such division is impossible (e.g., 3 bits) or if some block is not an ASCII code, or if the string is not a legal program, P_i will be the default “junk” program \texttt{nat n; read(x); while(x=x) do x=x+1;write(x);} which is undefined (“diverges”) for every legal input.
 - Conclusions about enumeration P_0, P_1, P_2, \ldots
 - Given n can compute P_n with \texttt{NatC} program
 - Given r can compute index n such that $P = P_r$ with \texttt{NatC}.

Unsolvable Problem (cont’d)

• Unsolvability Result: Does P_n halt on input n? Question cannot be settled by an algorithm.
• \textbf{Theorem:} Define the function $h: \texttt{nat} \rightarrow \texttt{nat}$ by
 - $h(n) = \begin{cases} 1 & \text{if } P_n \text{ halts on input } n \text{ then } 1 \text{ else } 0 \\ 0 & \text{otherwise} \end{cases}$
 - Then h is not computable by any \texttt{NatC} program.
 - \textbf{Proof:} Proof by contradiction. Suppose (contrary to what is to be proved) that h is computable by a program called \texttt{halt}. \texttt{halt} has input variable x, and output variable y.
 By assumption (i.e., that it exists) it has the following behavior:

 $f_{\text{halt}}(x) = \begin{cases} 1 & \text{if } P_n \text{ halts on input } x \text{ then } 1 \text{ else } 0 \\ 0 & \text{otherwise} \end{cases}$

Unsolvable Problem (cont’d)

• Modify \texttt{halt} to a \texttt{Nat} function $\texttt{nat\ halt(nat\ x)}$
 - Construct the following \texttt{Nat} program:
 - $\texttt{nat diagonal(nat n)}$
 - $\texttt{nat y; if halt(n)=0}$
 - $y:=1$;
 - else {
 - $y:=1$;
 - while ($y!=0$) do
 - $y:=y+1$;
 - return y;
 }$
 - Consequences n
 - If \texttt{halt} is a legal program, so is “diagonal”
 - Therefore, diagonal has some index n in the enumeration:
 * $P_n = \text{diagonal}$
Unsolvable Problem (cont’d)

- How does diagonal behave on its own index \(e \)?
- \(f_{\text{diagonal}}(e) = 1 \) \iff \(f_{\text{halt}}(e) = 0 \) \iff \(P_e \) does not halt on \(e \) \iff \(\text{diagonal} \) does not halt on \(e \)
- \(f_{\text{diagonal}}(e) = \text{undefined} \) \iff \(f_{\text{halt}}(e) = 1 \) \iff \(P_e \) halts on \(e \) \iff \(\text{diagonal} \) halts on \(e \)
- \(\therefore \) diagonal halts on \(e \) \iff diagonal does not halt on \(e \)
- Contradiction!!!
- \(\therefore \) program diagonal cannot exist \(\text{Q.E.D.} \)
- The “Halting Problem” is unsolvable
 - Undecidable, recursively undecidable, algorithmically undecidable, unsolvable—all synonyms