
CSC 473 Automata, Grammars & Languages 8/15/10

1

C SC 473 Automata, Grammars & Languages

Automata, Grammars and Languages

Discourse 01

Introduction

C SC 473 Automata, Grammars & Languages 2

Fundamental Questions
Theory of Computation seeks to answer fundamental

questions about computing
• What is computation?

 Ancient activity back as far as Babylonians, Egyptians
 Not precisely settled until circa 1936

• What can be computed?
 Different ways of computing (C, Lisp, …) result in the same

“effectively computable” functions from input to output?
• What cannot be computed?

 Not but can get arbitrarily close
 Are there precisely defined tasks (“problems”) that cannot be

carried out? Yes/No decisions that cannot be computed?
• What can be computed efficiently? (Computational

Complexity)
 Are there inherently difficult although computable problems?

2

C SC 473 Automata, Grammars & Languages 3

Basic Concepts: Automata, Grammars & Languages

• Language: a set of strings over some finite alphabet Σ
 Ex:

• Automaton (Machine): abstract (=simplified) model of a
computing device. Used to “recognize” strings of a
language L
 Ex:

• Grammar: finite set of string rewriting rules. Used to
specify (derive) strings of a language
 Ex:

{ , , , } DNA codons

={ , , , }

L TAA TGA TAG

A G C T

=

!

…

a

b

a b

Finite Automaton
(Finite State Machine)

S SS

S x

! +

!

Context-Free Grammar
(CFG)

CSC 473 Automata, Grammars & Languages 8/15/10

2

C SC 473 Automata, Grammars & Languages 4

Languages

1

2

3

4

5

is a well-formed C program

is a w.-f.

is a well-formed arithmetic expression in C

{ , , , } { , }

{ , , , , , } { }

{ : }

={ , }

{ : } {ASCII}

{ :

L aa ab ba bb a b

L a aa aaa aaaa a

L e e

L p p

L p p

!

= " =

= " =

=

"

= " =

=

0-9,a-z,A-Z,+,-,*,/,(,),.,&,!

…

!

6 is a decimal integer and is its binary representation

 C program that halts for all inputs}

{(,) : }L x y x y=

C SC 473 Automata, Grammars & Languages 5

Types of Machines
• Logic circuit

 memoryless; values combined using gates

zx y

c s

>
⊕

⊕

<
>

Circuit size = 5

Circuit depth = 3

C SC 473 Automata, Grammars & Languages 6

 Types of Machines (cont.)
• Finite-state automaton (FSA)

 bounded number of memory states
 step: input, current state determines next state & output

a

a

a

Mod 3 counter
state/ouput (Moore) machine

• models programs with a finite number of bounded registers
•reducible to 0 registers

b

0
/ 0q

1
/1q

2
/ 2q

1 2(,) (, 2)q a q! =

CSC 473 Automata, Grammars & Languages 8/15/10

3

C SC 473 Automata, Grammars & Languages 7

• Pushdown Automaton (PDA)
 finite control and a single

unbounded stack
ε, ε → $}1:#{ != nbaL

nn

 models finite program + one unbounded stack of bounded registers

$

top

 Types of Machines (cont.)

b

 #, $ → ε

a, ε → A

b, A → ε

b, A → ε
2 2(, ,) (,)q a q A! " =

C SC 473 Automata, Grammars & Languages 8

• Random access machine (RAM)
 finite program and an unbounded, addressable
random access memory of ``registers”
 models general programs

◆ unbounded # of bounded registers
◆ Simple 1-addr instructions

Example:
4
3
2
1
0

•
•
•

0 0 1

0 1 1

0

1

0

1

:

:

R R R

L JMPZ R L

INC R

DEC R

JMP L

L CONTINUE

! +

 Types of Machines (cont.)

b

•
•
•

C SC 473 Automata, Grammars & Languages 9

• Turing Machine (TM)
 finite control & tape of bounded cells unbounded in # to R
 Input left adjusted on tape at start with blank cell terminating
 current state, cell scanned determine next state & overprint symbol
 control writes over symbol in cell and moves head 1 cell L or R
 models simple ``sequentialʼʼ memory; no addressability
 fixed amount of information (b bits) per cell

 Types of Machines (cont.)

 •••

Finite-
state

control

b

(,) (, ,)q X p Y R! =

CSC 473 Automata, Grammars & Languages 8/15/10

4

C SC 473 Automata, Grammars & Languages 10

Theory of Computation
Study of languages and functions that can be described by

computation that is finite in space and time
• Grammar Theory

 Context-free grammars
 Right-linear grammars
 Unrestricted grammars
 Capabilities and limitations
 Application: programming language specification

• Automata Theory
 FA
 PDA
 Turing Machines
 Capabilities and limitations
 Characterizing “what is computable?”
 Application: parsing algorithms

C SC 473 Automata, Grammars & Languages 11

Theory of Computation (contʼd)
• Computational Complexity Theory

 Inherent difficulty of “problems”
 Time/space resources needed for computation
 “Intractable” problems
 Ranking of problems by difficulty (hierarchies)
 Application: algorithm design, algorithm improvement, analysis

C SC 473 Automata, Grammars & Languages 12

FSA Ex: Specifying/Recognizing C Identifiers
• Deterministic FA Λ={a,…,z,A…,Z, _ } Δ={0,…,9}

 State diagram (labeled digraph)

 Regular Expression

 Right-Linear Grammar

0
q

acc
q

 Λ Λ

Δ

reject
q

Δ

(_) (_ 0 9) *a A a A+ + + + ! + + + + + +… … … … …

a | | z a | | z

| A | | Z | A | | Z

| _ | 0 | | 9 | _

S T T T T T

T T T T

T T T T

! !… …

… …

…

CSC 473 Automata, Grammars & Languages 8/15/10

5

C SC 473 Automata, Grammars & Languages 13

FSA Ex: C Floating Constants
• "A floating constant consists of an integer part, a decimal

point, a fraction part, an e or E, an optionally signed
integer exponent (and an optional type suffix …). The
integer and fraction parts both consist of a sequence of
digits. Either the integer part or the fraction part (not both)
may be missing; either the decimal point or the e and the
exponent (not both) may be missing. …"
 --B. W. Kernighan and D.M. Ritchie, The C Programming

Language, Prentice-Hall, 1978

 (The type is determined by the suffix; F or f makes it a float, L or l
makes it a long double; otherwise it is double.)

C SC 473 Automata, Grammars & Languages 14

FSA Ex: C Floats (contʼd)

0 | 1 | 9d = …

d

d

d

d

d

d

,+ !

e, E

•

•

d

Note: type suffixes
 f,F,l,L omitted

e, E

“Either the integer part or the fraction part (not both) may be missing;
either the decimal point or the e and the exponent (not both) may be missing”

C SC 473 Automata, Grammars & Languages 15

CFG Ex: A Calculator Language
• Syntactic Classes

 Numerals 3 40
 Digits 0 1 9
 Expressions 3*9 40-3*3
 Commands 3*9= 40-3*3=

• Context-Free Grammar

20*30-12=
7 8 9 ∗
4 5 6 -
1 2 3 +

0 =

C →E=
E →N
 →E+N
 →E-N
 →E∗N
N →ND
N →D
D →0...
 →9

rules
R

terminals Σ = {=,+,−,∗,0,…,9}

variables = {N,D,E,C}

start variable = C

grammar (V, , ,C)G R!=

V

Note: no division &
no decimal point

CSC 473 Automata, Grammars & Languages 8/15/10

6

C SC 473 Automata, Grammars & Languages 16

Calculator Language (contʼd)
• Syntax Trees—exhibit “phrase structure”
• Numerals N

• Expressions E
• Commands C

N

D

3

N

D

4

N

D

0
N

D

3

N

D

6

N

D

5

E

N

3

E

N

9

C

=

∗

…

…

E

4

E

N

3

C

=

∗

…

…

E N-

N

0

…

3

…

3*9= 40-3*3=

Is this the parse
you expected?

C SC 473 Automata, Grammars & Languages 17

TM Ex: An “Algorithmically Unsolvable” Problem

• Q: Is there an algorithm for deciding if a given program P
halts on a given input x?

• A: No. There is no program that works correctly for all
P,x

• For the proof, we will need a simple programming
language‡: NatC—a simplified C
 One data type: nat = {0,1,2, …}. All variables of type nat
 All programs have one nat input and one nat output

‡We will later on use Turing Machines to model a “simple
programming language”. NatC is simpler to describe.

Halting
Decider

P

x

1 if P(x)

0 if P(x)

! "#
$

%#&

C SC 473 Automata, Grammars & Languages 18

Unsolvable Problem (contʼd)
• Observations:

 A standard C compiler can be modified to accept only NatC programs as
“legal”

 Every NatC program P computes a function from natural numbers to
natural numbers.

 Note: may not be defined for some inputs, i.e., it is a partial
function

nat P(nat x)
{
 if (x=3)
 return(6);
 else {

 while(x=x) do x=x+1;
 return x;
 }
}

:
P
f nat nat!

P
f

Ex: P does not halt for
some inputs

CSC 473 Automata, Grammars & Languages 8/15/10

7

C SC 473 Automata, Grammars & Languages 19

Unsolvable Problem (contʼd)
• Enumeration

 A systematic list of all NatC programs
 For program i is called the programʼs index
 program→index: write out program as bit sequence in ASCII;

interpret the bit sequence as a binary integer—its index
◆ A program is just a string of characters!!!

 index→program: given i ≥ 0, convert to binary. Divide into 8-
bit blocks. If such division is impossible (e.g., 3 bits) or if some
block is not an ASCII code, or if the string is not a legal program,

will be the default “junk” program {nat x; read(x);
while(x=x) do x=x+1;write(x)} which is undefined
(“diverges” ↑) for every legal input.

 Conclusions about enumeration
◆ Given n can compute with NatC program
◆ Given P can compute index n such that with NatC.

0 1 2
, , ,P P P …

i
P

i
P

0 1 2
, , ,P P P …

n
P

n
P P=

C SC 473 Automata, Grammars & Languages 20

Unsolvable Problem (contʼd)
• Unsolvability Result: Does halt on input n ?

Question cannot be settled by an algorithm.
• Theorem: Define the function h: nat → nat by

 h (x) = if Px halts on input x then 1 else 0
Then h is not computable by any NatC program.
Proof: Proof by contradiction. Suppose (contrary to what

is to be proved) that h is computable by a program
 called halt. halt has input variable x, and output

variable y.
 By assumption (i.e., that it exists) it has the following

behavior:

f halt (x) = if Px halts on input x then 1 else 0

n
P

C SC 473 Automata, Grammars & Languages 21

Unsolvable Problem (contʼd)
• Modify halt to a NatC function nat halt(nat x)
• Construct the following NatC program:

• Consequences
 If halt is a legal program, so is “diagonal”
 Therefore, diagonal has some index e in the enumeration:

◆ Pe = diagonal

nat diagonal(nat n)
{ nat y;
 if halt(n)=0

y:=1;
 else {

 y:=1;
 while (y!=0) do

y:=y+1;}
 return y;
}

CSC 473 Automata, Grammars & Languages 8/15/10

8

C SC 473 Automata, Grammars & Languages 22

Unsolvable Problem (contʼd)
• How does diagonal behave on its own index e ?
• fdiagonal(e)=1 ⇔ fhalt (e) = 0 ⇔ Pe does not halt on e ⇔

diagonal does not halt on e
• fdiagonal(e)=undefined ⇔ fhalt (e) = 1 ⇔ Pe halts on e ⇔

diagonal halts on e
• ∴ diagonal halts on e ⇔ diagonal does not halt on
e

• Contradiction!!!
• ∴ program diagonal cannot exist Q.E.D. �
• The “Halting Problem” is unsolvable

 Undecidable, recursively undecidable, algorithmically undecidable,
unsolvable—all synonyms

