Automata, Grammars and Languages
Introduction
csc 473 Automata, Crammars \& Languages

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Fundamental Questions

Theory of Computation seeks to answer fundamental questions about computing
\qquad
\qquad

- Ancient activity back as far as Babylonians, Egyptians
- Not precisely settled until circa 1936 \qquad
- What can be computed?
- Different ways of computing (C, Lisp, ...) result in the same "effectively computable" functions from input to output? \qquad
- What cannot be computed?
- Not $\sqrt{2}$ but can get arbitrarily close
- Are there precisely defined tasks ("problems") that cannot be carried out? Yes/No decisions that cannot be computed?
- What can be computed efficiently? (Computational Complexity)
- Are there inherently difficult although computable problems? CSC 473 Automata, Granmas \& Languages

Basic Concepts: Automata, Grammars \& Languages

Language: a set of strings over some finite alphabet Σ

- Ex: $L=\{T A A, T G A, T A G, \ldots\}$ DNA codons
$\Sigma=\{A, G, C, T\}$
- Automaton (Machine): abstract (=simplified) model of a computing device. Used to "recognize" strings of a language L
- Ex:

Finite Automaton (Finite State Machine)

Grammar: finite set of string rewriting rules. Used to specify (derive) strings of a language

- Ex: $\quad S \rightarrow+S S$

Context-Free Grammar
$S \rightarrow x$ (CFG)

C SC 473 Automata, Grammars \& Languages

Languages

$L_{1}=\{a a, a b, b a, b b\} \quad \Sigma=\{a, b\}$
$L_{2}=\{\varepsilon, a, a a, a a a, a a a a, \ldots\} \quad \Sigma=\{a\}$
$L_{3}=\{e: e \quad$ is a well-formed arithmetic expression in C$\}$
$\Sigma=\{0-9, a-z, A-Z,+,-, *, /,(),, ., \&,!, \cdots\}$
$L_{4}=\{p: p$ is a well-formed C program $\} \Sigma=\{\mathrm{ASCII}\}$
$L_{5}=\{p: p$ is a w.-f. C program that halts for all inputs $\}$
$L_{6}=\{(x, y): x$ is a decimal integer and y is its binary representation $\}$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Types of Machines

- Logic circuit
- memoryless; values combined using gates

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Types of Machines (cont.)

- Finite-state automaton (FSA)
- bounded number of memory states
- step: input, current state determines next state \& output

Mod 3 counter
state/ouput (Moore) machine
$\delta\left(q_{1}, a\right)=\left(q_{2}, 2\right)$
models programs with a finite number of bounded registers -reducible to 0 registers \qquad

C SC 473 Automata, Grammars \& Language 6

Types of Machines (cont.)

Pushdown Automaton (PDA)

- finite control and a single $\quad \delta\left(q_{2}, a, \varepsilon\right)=\left(q_{2}, A\right)$ unbounded stack
$L=\left\{a^{\prime \prime} b^{n} \#: n \geq 1\right\}$

\qquad
\qquad
models finite program + one unbounded stack of bounded registers

SC 473 Automata, Grammars \& Language

Types of Machines (cont.)

\qquad
Random access machine (RAM)

- finite program and an unbounded, addressable \qquad random access memory of "registers"
- models general programs
- unbounded \# of bounded registers
- Simple 1-addr instructions

Example

.

Types of Machines (cont.)

\qquad
Turing Machine (TM)

- finite control \& tape of bounded cells unbounded in \# to R
- Input left adjusted on tape at start with blank cell terminating
- current state, cell scanned determine next state \& overprint symbo
- control writes over symbol in cell and moves head 1 cell L or R
- models simple "sequential" memory; no addressability
- fixed amount of information (b bits) per cell

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Theory of Computation

Study of languages and functions that can be described by computation that is finite in space and time

- Grammar Theory
- Context-free grammars
- Right-linear grammars
- Unrestricted grammars
- Capabilities and limitations
- Application: programming language specification
- Automata Theory
- FA
- PDA
- Turing Machines
- Capabilities and limitations
- Characterizing "what is computable?"
- Application: parsing algorithms

CSC 473 Automata, Grammars \& Languages

Theory of Computation (cont'd)

- Computational Complexity Theory
- Inherent difficulty of "problems"
- Time/space resources needed for computation
- "Intractable" problems
- Ranking of problems by difficulty (hierarchies)
- Application: algorithm design, algorithm improvement, analysis

FSA Ex: Specifying/Recognizing c Identifiers

Deterministic FA $\quad \Lambda=\{\mathrm{a}, \ldots, \mathrm{z}, \mathrm{A} \ldots, \mathrm{Z}, \ldots\} \Delta=\{0, \ldots, 9\}$

- State diagram (labeled digraph)

- Regular Expression
$(+a+\ldots+A+\ldots) \cdot(+a+\ldots+A+\ldots+0+\ldots 9)$ *
- Right-Linear Grammar
$S \rightarrow \mathrm{aT}|\ldots| \mathrm{zT} T \rightarrow \mathrm{aT}|\ldots| \mathrm{zT}$
|AT|...|ZT | AT | ...| $Z T$
| ${ }^{T}|0 T| \ldots|9 T| _T$
CSC 473 Automata, Grammars \& Languages
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

FSA Ex: C Floating Constants

- "A floating constant consists of an integer part, a decimal point, a fraction part, an e or \mathbf{E}, an optionally signed integer exponent (and an optional type suffix ...). The integer and fraction parts both consist of a sequence of digits. Either the integer part or the fraction part (not both) may be missing; either the decimal point or the \mathbf{e} and the exponent (not both) may be missing. ..."
- --B. W. Kernighan and D.M. Ritchie, The C Programming Language, Prentice-Hall, 1978
- (The type is determined by the suffix; \mathbf{F} or \mathbf{f} makes it a float, \mathbf{L} or I makes it a long double; otherwise it is double.)
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

FSA Ex: C Floats (cont'd) \qquad

"Either the integer part or the fraction part (not both) may be missing; either the decimal point or the e and the exponent (not both) may be missing"
C SC 473 Automata, Grammars \& Languages
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

CFG Ex: A Calculator Language

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

TM Ex: An "Algorithmically Unsolvable" Problem

- Q: Is there an algorithm for deciding if a given program P halts on a given input x ?

- A: No. There is no program that works correctly for all P, x \qquad
- For the proof, we will need a simple programming language \ddagger : $\mathcal{N a t C}$-a simplified C
- One data type: nat $=\{0,1,2, \ldots\}$. All variables of type nat
- All programs have one nat input and one nat output
\ddagger We will later on use Turing Machines to model a "simple programming language". $\mathfrak{N a t C}$ is simpler to describe.
CSC 473 Automata, Granmas \& Languages

Unsolvable Problem (cont'd)

Observations:

- A standard C compiler can be modified to accept only $\mathfrak{N a t C}$ programs as "legal"
- Every $\mathcal{N a t C}$ program P computes a function from natural numbers to natural numbers. $f_{p}:$ nat \rightarrow nat
- Note: f_{P} may not be defined for some inputs, i.e., it is a partial function
nat P (nat x)
Ex: P does not halt for
\{
some inputs
if ($x=3$) \qquad
else \{
while($x=x$) do $x=x+1$; \qquad
return x ;
\}
dsc 473 Automata, Grammars \& Languages \qquad

Unsolvable Problem (cont'd)

Enumeration

- A systematic list of all \mathfrak{N} atC programs $P_{0}, P_{1}, P_{2}, \ldots$
- For program P_{i} i is called the program's index
- program \rightarrow index: write out program as bit sequence in ASCII; interpret the bit sequence as a binary integer-its index
- A program is just a string of characters!!!
- index \rightarrow program: given $i \geq 0$, convert to binary. Divide into 8 bit blocks. If such division is impossible (e.g., 3 bits) or if some block is not an ASCII code, or if the string is not a legal program, $P_{i} \quad$ will be the default "junk" program (nat x ; read (x); while $(x=x)$ do $x=x+1$;write (x) \} which is undefined ("diverges" \uparrow) for every legal input.
- Conclusions about enumeration $P_{0}, P_{1}, P_{2}, \ldots$
- Given n can compute P_{n} with NatC program
- Given P can compute index n such that $P=P_{n}$ with $\mathfrak{N a t C}$

Unsolvable Problem (cont'd)

Unsolvability Result: Does P_{n} halt on input n ?
Question cannot be settled by an algorithm.
Theorem: Define the function h : nat \rightarrow nat by

- $h(\mathrm{x})=$ if P_{x} halts on input x then 1 else 0

Then h is not computable by any NatC program.
Proof: Proof by contradiction. Suppose (contrary to what is to be proved) that h is computable by a program called halt. halt has input variable x, and output variable y.
By assumption (i.e., that it exists) it has the following behavior:
$f_{\text {halt }}(\mathrm{x})=$ if P_{x} halts on input x then 1 else 0
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Unsolvable Problem (cont'd)

- Modify halt to a NatC function nat halt (nat x)

Construct the following $\mathfrak{N a t C}$ program:
nat diagonal (nat n)
\{ nat y;
if halt $(\mathrm{n})=0$ $\mathrm{y}:=1$; else \{
$\mathrm{y}:=1$;
$\mathrm{y}:=\mathrm{y}+1$;
return y;

- Consequences
- If halt is a legal program, so is "diagonal"
- Therefore, diagonal has some index e in the enumeration:
- $\mathrm{P}_{\mathrm{e}}=$ diagonal
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

[^0]\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

[^0]: Unsolvable Problem (cont'd)
 How does diagonal behave on its own index e ?

 - $f_{\text {diagonal }}(\mathrm{e})=1 \Leftrightarrow f_{\text {halt }}(\mathrm{e})=0 \Leftrightarrow \mathrm{P}_{\mathrm{e}}$ does not halt on $\mathrm{e} \Leftrightarrow$ diagonal does not halt on e
 - $f_{\text {diagonal }}(e)=$ undefined $\Leftrightarrow f_{\text {halt }}(e)=1 \Leftrightarrow \mathrm{P}_{\mathrm{e}}$ halts on $\mathrm{e} \Leftrightarrow$ diagonal halts on e
 - \therefore diagonal halts on $\mathrm{e} \Leftrightarrow$ diagonal does not halt on e
 - Contradiction!!!
 - \therefore program diagonal cannot exist Q.E.D.
 - The "Halting Problem" is unsolvable
 - Undecidable, recursively undecidable, algorithmically undecidable, unsolvable-all synonyms

