Automata, Grammars and Languages

Discourse 03

Finite Automata

Finite Automata / Switching Theory

(CS) /

(CE)

• Boolean operators / Gates (Elem. Switching Ops)

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>x \land y</th>
<th>x \lor y</th>
<th>x \oplus y</th>
<th>\lnot x</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Boolean Functions / Combinatorial Circuits

• Circuit

H half adder

F full adder

Lecture 03
Boolean Functions / Comb. Circuits (cont’d)

• Table representing F

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>z_1</th>
<th>z_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Boolean Functions / Comb. Circuits (cont’d)

• Equations representing F:
 - $z_1 = g_1(x) = x_1 \oplus x_2 \oplus x_3$
 - $z_2 = g_2(x) = (x_1 \oplus x_3) \land (x_1 \land x_2)$

• General scheme (n inputs, m outputs)
 \[
 \overline{z} = g(\overline{x})
 \]
 \[
 (z_1, z_2, \ldots, z_m) = g(x_1, x_2, \ldots, x_n) =
 \left(g_1(x_1, x_2, \ldots, x_n), \ldots, g_m(x_1, x_2, \ldots, x_n) \right)
 \]

Finite Automata / Sequential Circuits

• Add "memory" elements = delay elements

 $y(i) \xrightarrow{\text{combinatorial circuit}} y(i + 1)$

 $\overline{x} \xrightarrow{f} \overline{z}$

 $\overline{z}(i) = f(\overline{x}(i), \overline{x}(i-1), \overline{x}(i-2), \ldots)$

• Finite # of delay elements possible $\Rightarrow \exists d$

 $\overline{x}(i) = f(\overline{x}(i), \overline{x}(i-1), \ldots \overline{x}(i-d))$
Finite Automata / Sequential Circuits

Ex: sequential adder: add 2 binary numbers; low order bits received first

(a) sequential net (circuit):

\[
\begin{align*}
x_i(i) & \rightarrow \text{full adder } F \\
x_i(i) & \rightarrow z_i(i) \\
y_i(i + 1) & \rightarrow y_i(i)
\end{align*}
\]

(b) Next-State & Output Equations:
\[
y_i(i + 1) = (x_i(i) \oplus x_i(i)) \land y_i(i) \lor (x_i(i) \land x_i(i))
\]
\[
z_i(i) = x_i(i) \oplus x_i(i) \lor y_i(i)
\]

(c) Transition Table:

<table>
<thead>
<tr>
<th>(q_0)</th>
<th>(00)</th>
<th>(01)</th>
<th>(10)</th>
<th>(11)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(q_0)</td>
<td>(q_0)</td>
<td>(q_1)</td>
<td>(q_0)</td>
<td>(q_0)</td>
</tr>
<tr>
<td>(q_1)</td>
<td>(q_0)</td>
<td>(q_0)</td>
<td>(q_0)</td>
<td>(q_0)</td>
</tr>
</tbody>
</table>

(d) State Diagram:
Finite Automata / Sequential Circuits

- (e) Finite-State Transducer (Mealy Machine)
 - A 5-tuple $M = (Q, \Sigma, \Gamma, \delta, q_0)$ where
 - $Q = \{ q_0, q_1 \}$ finite set of states
 - q_0 start state
 - $\Sigma = \{ (0,0), (0,1), (1,0), (1,1) \}$ input alphabet
 - $\Gamma = \{ 0, 1 \}$ output alphabet
 - $\delta: Q \times \Sigma \rightarrow Q \times \Gamma$ transition/output function
 - $\delta(q_0, (0,0)) = (q_1, 0)$
 - $\delta(q_0, (0,1)) = (q_1, 1)$
 - $\delta(q_0, (1,0)) = (q_1, 0)$
 - $\delta(q_0, (1,1)) = (q_1, 0)$
 - $e \in \mathbb{C}$

General Sequential Network

- $B = \{ 0, 1 \}
- \delta$ is a boolean function
- Input: x_1, \ldots, x_n
- Output: y_1, \ldots, y_n
- State space: B^n
- Transition function:
 - $\delta(q_i, (i, 0)) = (q_i, 0)$
 - $\delta(q_i, (i, 1)) = (q_i, 1)$

Three Types of Automata

- $a_i \in \Sigma$
- Transducer
-Recognizer (acceptor)
- Enumerator (generator)
Machines that Recognize

- Detection of an "event", i.e., a pattern in input
- Recognition of just those words in some language \(L \)
- Definition of a language
- Ex: detect \(abab \)—all non-overlapping occurrences

Ex: C Comments /* ... */

- Filter in the lexical scanner (transducer)
- Recognizer

Finite Automaton (Finite State Machine, FSA)

- Defn 1.5: A (deterministic) finite automaton is a 5-tuple \(M = (Q, \Sigma, \delta, q_0, F) \)
- \(Q \) is a finite set, the states
- \(\Sigma \) is a finite set, the alphabet
- \(\delta : Q \times \Sigma \rightarrow Q \) is the transition function
- \(q_0 \in Q \) is the start state
- \(F \subseteq Q \) is the set of accepting (final) states
- Ex: \(M_0 = (Q_0, \Sigma, \delta, q_0, F_0) = (q_0, q_1, q_2) \)
 - \(Q = \{q_0, q_1, q_2\} \)
 - \(\Sigma = \{a, b\} \)
 - \(F = \{q_2\} \)
 - \(\delta(q_0, a) = q_1 \)
 - \(\delta(q_1, b) = q_2 \)
 - \(\delta(q_2, a) = q_2 \)
How FA Compute

- FA $M = (Q, \Sigma, \delta, q_0, F)$ is a finite structure—like a program—fixed and static
- Need to define the behavior of M on input w
 - Sequence of configurations
 - Like trace of a program on given data
 - Dynamic and input-dependent
- Ex: start M on input $w = ababa$ Look at sequence of “moves” determined by the transition function:
 - $(q_0, ababa) \rightarrow (q_1, baba)$
 - $(q_1, ba) \rightarrow (q_2, a) \rightarrow (q_3, \varepsilon)$
 - $(q_3, ababa) \rightarrow (q_4, \varepsilon)$
- Since in accepting state when input exhausted, w is recognized by M_0

www.jflap.org

JFLAP is a package of graphical tools which can be used as an aid in learning the basic concepts of Formal Languages and Automata Theory.

Info on JFLAP

- Downloads
- Tutorial
- Lectura (linux) install
 - cd /usr/local/jflap
 - java -jar JFLAP.jar
- X11 forwarding (graphics)
 - ssh -X lectura
How FA Compute (cont’d)

- Given a FA $M = (Q, \Sigma, \delta, q_0, F)$
- Defn: configuration of M is an element of $Q \times \Sigma^*$
- Defn: yields in one step (or moves) relation $\overset{*}{\Rightarrow}$ between configurations is defined by

 $$(q, aw) \overset{a}{\Rightarrow} (q', w') \iff \delta(q, a) = q'$$

 where $a \in \Sigma, w \in \Sigma^*, q, q' \in Q$.

- Notes: \Rightarrow is a function, since δ is.
 $(q, \varepsilon) \overset{*}{\Rightarrow}$ is undefined.

- Defn: yields is the relation $\overset{*}{\Rightarrow}$
 - Means "moves in zero or more steps to"
 - $(q, w) \overset{*}{\Rightarrow} (q', w)$

- Defn: A string w is recognized (accepted) by $M \iff (q_0, w) \overset{*}{\Rightarrow} (F, \varepsilon)$

How FA Compute (cont’d)

- Defn: The language recognized (accepted) by M is

 $L(M) = \{ w : M \text{ accepts } w \}$

 $= \{ w : (\exists f \in F) (q, w) \overset{*}{\Rightarrow} (f, \varepsilon) \}$

- Defn 1.16: A language S is regular iff there is some FA that recognizes it, i.e., $L(M) = S$ \iff $S \in L(FA)$

- Ex: In FA M_0

 $(q_0, a) \overset{*}{\Rightarrow} (q_0, \varepsilon)$

 $(q_0, a) \overset{a}{\Rightarrow} (q_1, a)$

 $(q_0, ab) \overset{a}{\Rightarrow} (q_1, b)$

 \vdots

 $(q_i, (ab)^i a) \overset{a}{\Rightarrow} (q_i, \varepsilon)$

 $\vdash L(M_0) = \{ (ab)^i a : i \geq 0 \}$

Example:

- Coin checker for 30¢ coffee.

 $\Sigma = \{n, d, q\}$

 ![Diagram of coin checker FA]

 - Make change for $i - 30$¢ & vend coffee

 $i = \text{make change for } i - 30\text{¢ }\& \text{ vend coffee}$

 $0, 10, 20, 25, 30, 40, 50$
Regular Operations & Regular Expressions

- The regular operations on languages are:
 - union (\(\cup \)), concatenation (\(\cdot \)) and Kleene star (\(* \)).
- So called because the class of regular languages are closed under them—i.e., applying these operators to regular languages results in a regular language. (We will prove these closure results later.)
- In fact, these three operations (\(\cup \), \(\cdot \), \(* \)) actually characterize what it means to be a regular language: any regular language can be built up from alphabet symbols and a finite number of these regular operations.
- This motivates the notion of regular expression: a sequence of symbols, like an arithmetic expression, that defines a regular language using regular ops.

Regular Expressions

- A syntax for describing sets of strings (languages)
 - Terse
 - Eliminates fussy \(\{ \cdot \} \)
 - Reminiscent of arithmetic expressions
 - Obeys some useful "algebra", e.g., \((E^*F)^* = (E+F)^* \)
- Syntax for regular expressions over \(\Sigma, +, \cdot, * , (,) \)
 - \(E \rightarrow (E+E) \) (text uses \(\cup \) not +; some authors use \(| \))
 - \(E \rightarrow (EE) \) (usually suppress the \(\cdot \) in \(E \cdot E \))
 - \(E \rightarrow (E^*) \)
 - \(E \rightarrow \epsilon \) (some authors use \(\lambda \))
 - \(E \rightarrow \emptyset \)
 - \(E \rightarrow a \) for each \(a \) in \(\Sigma \)
 - suppress (\((,) \) where possible: \((a+b)^*a \) not \(((a + b)^*) \cdot a \))

Regular Expressions (cont’d)

- Meaning rules for the syntax
 - The meaning (denotation) of an expression, \(L(E) \), is a set of strings (a language)
- Rules

\[
\begin{align*}
\text{expression } E & \quad \text{language } L(E) \\
\emptyset & = \{ \} \\
a & = \{a\} \\
\epsilon & = \{\epsilon\} \\
(E+F) & = L(E) \cup L(F) \\
(EF) & = L(E) \cdot L(F) \\
(E^*) & = L(E)^* \\
\end{align*}
\]
Reg. Expr.: Examples, Equivalence(=)

- \((a+b)^*a\)
- \((a^b)^*\)
- \(=(a+b)^*\)
- \((a+b)^*a(a+b)^*a(a+b)^*\)
- \((b^a)^{ab^*ab^*}\)

\[w \in \Sigma : w \text{ has } \geq 2 \text{ a's} \]

PASCAL unsigned numbers. \(d=\{0,1,\ldots,9\}\)

- \(dd(\varepsilon+dd)(\varepsilon+E(\varepsilon+E)dd)\)
- \(a\Sigma^*a+b\Sigma^*a+a+b\)

Defn: \(E=F \iff L(E)=L(F)\)

- \(\varepsilon=\varepsilon\)
- \(E\cdot F=\varepsilon\)
- \(F=\varepsilon\cdot F \)

Nondeterminism

- Real computing devices are deterministic: the current configuration and instruction determines the next configuration. The \(\vdash\) relation is a function.

- Why the concept of nondeterminism?
 - Provides powerful, economical descriptive ability
 - Provides a way to specify languages without over-specifying and complex handling of cases
 - Can be algorithmically converted to a deterministic description (at the sacrifice of some economy and with added complexity)
 - Generalization of determinism

Ex: \(abab\) occurs somewhere in \(w\): \(\ldots abab \ldots\)

- \(w \in \Sigma^*\) has penultimate symbol \(b\): \(w = \ldots b \)

- \(w \in \Sigma^*\) has \(\geq 2\) a's: \(w = \ldots a \ldots a \ldots\)
ε-Moves Can Be Useful

- SNOBOL arithmetic constants (no floating ε)
 - Use to specify "optional characters" like Unix command line [opt]

```
ε
-ε
d
```

Nondeterministic Finite Automaton

- Defn 1.5: A nondeterministic finite automaton is a 5-tuple

 \[M = (Q, Σ, δ, q_0, F) \]

 - \(Q \) is a finite set, the states
 - \(Σ \) is a finite set, the alphabet
 - \(δ : Q × (Σ ∪ \{ε\}) \rightarrow 2^Q \) transition function
 - \(q_0 \in Q \) is the start state
 - \(F \subseteq Q \) is the set of accepting (final) states

- Ex: \(M_1 = (Q, Σ, δ, q_0, F) \quad Q = \{q_0, q_1\} \quad Σ = \{a, b\} \quad F = \{q_1\} \)

 \[
 δ(q_0, a) = \{q_0, q_1\}
 \]

 \[
 δ(q_0, b) = \{q_1\}
 \]

DFA vs NFA

- DFA δ
 - For each state \(q \) and input symbol \(a \), there is exactly one choice of new state (or no transition is defined at all). Each transition "consumes" an input symbol
 - Special case of NFA!

- NFA δ
 - There may be multiple choices for the same input symbol
 - There may be ε-moves that do not "consume" an input character
 - There can be "chains" of ε-moves
 - ε-moves can create even more choice for the next input character
How NFA Compute

• Given a NFA \(M = (Q, \Sigma, \delta, q_0, F) \)
• Defn: configuration – \((q, w) \in Q \times \Sigma^*\)
• Defn: yields in one step (or moves) relation between configurations
 \((q, aw) \rightarrow (q', w) \Leftrightarrow q' \in \delta(q, a)\)
 \((q, w) \rightarrow (q', w) \Leftrightarrow q' \in \delta(q, \varepsilon)\) (\(\varepsilon\)-move)
• Defn: yields =
 • Means "COULD move in zero or more steps to"
• Defn: \(w \) is recognized (accepted) by \(M \) \(\Leftrightarrow \)
 \((\exists f \in F) \ (q_0, w) \rightarrow^* (f, \varepsilon)\)
 • Same as before, but has the meaning "if there exists some sequence of moves from the start config to some accepting config"

How NFA Compute (cont’d)

• Defn: The language recognized (accepted) by \(M \) is
 \(L(M) = \{ w : M \text{ accepts } w \} \)
 \(= \{ w : (\exists f \in F) \ (q_0, w) \rightarrow^* (f, \varepsilon) \} \)
• Ex: In NFA \(M \)
 \((q_1, aabbba) \rightarrow^* (q_1, \varepsilon)\)
 • This provides no "evidence" that aabbba is accepted (or not)
 • However, also via a separate computation sequence:
 \((q_1, aabbba) \rightarrow^* (q_1, \varepsilon)\)
 • And so aabbba is recognized!

“Tree” of Computations

• Ex: NFA \(M \)
 \((q_1, aabbba)\)
 \((q_1, abba)\)
 \((q_1, bba)\)
 \((q_1, ba)\)
 \((q_1, a)\)
 \((q_1, \varepsilon)\)
 null "evidence"
 \((q_1, bba)\)
 \((q_1, bba)\)
 \((q_1, ba)\)
 \((q_1, a)\)
 \((q_1, \varepsilon)\)
 \(q_1 \in F\) \(\exists\) accepting Computation \(\Rightarrow w \in L(M)\)
Computation Tree: Example

- Ex: $L = \{ w : w$ begins & ends same $\}$

\[
\begin{align*}
(1, \text{ababa}) & \quad 11 \quad \text{X} & \quad \text{accept } \text{ababe} \\
(2, \text{babab}) & \quad \text{X} & \quad \text{3 paths to } F \\
(3, \text{aba}) & \quad \text{X} & \quad \text{x} = F \\
(2, \text{a}) & \quad \text{X} & \quad \text{x} = F \\
(4, \text{ε}) & \quad \text{X} & \quad \text{x} = F \\
(5, \text{ε}) & \quad \text{3εF} & \quad \text{3εF} \\
(6, \text{ε}) & \quad \text{εF} & \quad \text{εF} \\
(7, \text{ε}) & \quad \text{εF} & \quad \text{εF} \\
(8, \text{ε}) & \quad \text{εF} & \quad \text{εF} \\
(9, \text{ε}) & \quad \text{εF} & \quad \text{εF} \\
(10, \text{ε}) & \quad \text{εF} & \quad \text{εF} \\
(11, \text{ε}) & \quad \text{εF} & \quad \text{εF} \\
\end{align*}
\]

Example with ε-Moves

- String length a multiple of 2 or 3

\[
\begin{align*}
(0, \text{a.a.a}) & \quad \text{ε-moves} \\
(2, \text{a.a.a}) & \quad 0 \quad \text{ε-moves} \\
(3, \text{a.a}) & \quad 2 \quad \text{ε-moves} \\
(4, \text{ε}) & \quad 4 \quad \text{ε-moves} \\
(5, \text{ε}) & \quad 5 \quad \text{ε-moves} \\
(6, \text{ε}) & \quad 6 \quad \text{ε-moves} \\
(7, \text{ε}) & \quad 7 \quad \text{ε-moves} \\
\end{align*}
\]

Example with ε-Moves

- a^*b^*

\[
\begin{align*}
(1, \text{ab}) & \quad \text{ε-moves } \text{"consume" no input symbols} \\
(2, \text{b}) & \quad \text{ε-moves } \text{"consume" no input symbols} \\
(3, \text{ε}) & \quad \text{ε-moves } \text{"consume" no input symbols} \\
\end{align*}
\]
Equivalence of NFA to DFA

- There is an algorithm to convert any NFA into a DFA
 - We show basic idea assuming NFA has no ε-moves
 - Then (later) modify the construction for NFAs with ε-moves
- Ex: \(L = \{ x : \text{last symbol of } x \text{ appeared previously} \} \) \(\Sigma = \{a, b\} \)

- Idea: given input string, keep track of all possible reached states after reading each letter. At end of input, see if a final state is among those reached

Equivalence of NFA and DFA (cont’d)

- Computation paths through NFA \(N_0 \) on \(w = abba \)

Equivalence of NFA and DFA (cont’d)

- Idea: keep a list of all possible states reachable by each prefix of \(w \) (“parallel worlds”). For NFA \(N_0 \):
 \[
 \begin{align*}
 (p) & \rightarrow \{ p_x \} \rightarrow \{ p_x \} \rightarrow \{ p_y \} \\
 q & \rightarrow q_x \\
 r & \rightarrow r_x \\
 s & \rightarrow s_x
 \end{align*}
 \]

 \[\vdash (p) \rightarrow \{ p_x, q_x, r_x, s \} \]

 \(abba \in L(N) \) since \(\{ p_x, r_x, s \} \cap F \neq \emptyset \)
Equivalence of NFA and DFA (cont’d)

- Equivalent DFA \(M \) will have:
 - State set \(\mathcal{Q} \)
 - Alphabet \(\Sigma \)
 - Start state “set” \(\{q_0\} \)
 - Accepting states \(\{X \subseteq \mathcal{Q} : X \cap F \neq \emptyset\} \)
 - Deterministic transition function \(\delta' : \mathcal{Q} \times \Sigma \rightarrow \mathcal{P}(\mathcal{Q}) \)

- Ex: For NFA \(N_0 \):
 \[
 \delta'(\{p, q\}, a) = \{p, q, s\} \\
 \delta'(\{p, q\}, b) = \{p, q, r\} \\
 \delta'(p), a) = \{p, q\} \\
 \delta'(p), b) = \{p, r\} \\
 \ldots
 \]

Equivalence of NFA and DFA (cont’d)

- Thm: [Rabin-Scott Construction]. Let \(L = L(N) \) for some NFA \(N \) with no \(\epsilon \)-moves. There is an algorithm to construct a DFA \(M \) equivalent to \(N \), i.e. with \(L(M) = L(N) \).

 Pf: Given \(N \) we construct a DFA \(M \) and then verify that it recognizes the same set as \(N \).

 Construction: Given NFA \(N = (Q, \Sigma, \delta, s, F) \) construct \(M = (Q', \Sigma, \delta', s', F') \) where
 \[
 Q' = \mathcal{P}(Q), s' = (s), F' = \{X \in Q' : X \cap F \neq \emptyset\}
 \]
 and \(\delta' : Q' \times \Sigma \rightarrow Q' \) is defined as:
 \[
 (\forall S \subseteq Q, a \in \Sigma) \delta'(S, a) = (q \in Q : (\exists p \in S) q \in \delta(p, a))
 \]

Equivalence of NFA and DFA (cont’d)

- Picture of \(\delta' \)

- \(\delta'(S, a) = S' \)
Equivalence of NFA and DFA (cont’d)

- Verification: Show (1) M is a DFA and (2) $L(M) = L(N)$.
 1. δ is a function by the construction, and Q' is finite: $|Q'| = 2^{|Q|}$. So M is a DFA.
 2. To show equivalence we prove the
 - Lemma:
 \[(p, w) \overset{*}{\rightarrow} (q, \varepsilon) \iff \exists q \in Q \land (\{(p), w\})^{*}_{M} (Q, \varepsilon)\]

 \[P:\text{By induction on the length of the input string } w.\]

 \[\text{Base } |w| = 0.\]

 \[(p, \varepsilon) \overset{*}{\rightarrow} (q, \varepsilon) \iff p = q \iff (\{(p), \varepsilon\})^{*}_{N} (Q, \varepsilon).
 \]

 \[\text{Step Suppose (IH) the lemma is true } \forall w. \ |w| \leq k.\]

 \[\text{Let } \ |w| = k + 1, \ w = ua, \ |u| = k. \ \text{To show:} \]
 \[(p, ua \overset{*}{\rightarrow} (q, \varepsilon) \iff \exists q \in Q \land (\{(p), ua\})^{*}_{M} (Q, \varepsilon).\]

Equivalence of NFA and DFA (cont’d)

\[\Rightarrow. \ \text{Assume} \ (p, ua) \overset{*}{\rightarrow} (q, \varepsilon). \ \text{Then} \ \exists \ \text{state} \ r \ \text{with} \]
\[(p, u) \overset{*}{\rightarrow} (r, \varepsilon) \ \text{and} \ q \in \delta(r, a). \]

Then \[(p, u) \overset{*}{\rightarrow} (r, \varepsilon). \ \text{By (IH)} \]
\[\exists r, x \in R \land (\{(p), u\})^{*}_{N} (R, \varepsilon) \tag{\text{(*)}}\]

By construction of M $q \in \delta'(R, a)$. Let $Q = \delta'(R, a)$. Then $\exists q \in Q \land (R, a)^{*}_{N} (Q, \varepsilon)$.

Using this with (*) results in:
\[\exists q \in Q \land (\{(p), u\})^{*}_{N} (R, a)^{*}_{N} (Q, \varepsilon). \]

So
\[\exists q \in Q \land (\{(p), ua\})^{*}_{M} (Q, \varepsilon). \]

Equivalence of NFA and DFA (cont’d)

\[\Leftarrow. \ \text{Assume} \ \exists q \in Q \land (\{(p), u\})^{*}_{M} (Q, \varepsilon). \]

Then $\exists \text{state } r \ \text{with} \ \delta'(R, a) = Q$. So
\[\{(p), u\}^{*}_{N} (R, a)^{*}_{N} (Q, \varepsilon) \tag{1}\]

By construction $\exists x \in R, q \in \delta(x, a)$ and $(x, a)^{*}_{N} (q, \varepsilon). \tag{2}$

Since $(\{(p), u\})^{*}_{N} (R, \varepsilon)$ we have from (IH)
\[(p, u) \overset{*}{\rightarrow} (x, \varepsilon) \tag{3}\]

Combining (2) & (3):
\[(p, ua) \overset{*}{\rightarrow} (x, a) \overset{*}{\rightarrow} (q, \varepsilon)\]

So
\[(p, ua) \overset{*}{\rightarrow} (q, \varepsilon). \ \ \square\]

Equivalence of NFA and DFA (cont’d)
Equivalence of NFA and DFA (cont’d)

We now finish the verification proof. Let $F \in F$. From the Lemma

$$\exists Q, F \in Q \land (\{s\}, w) \xrightarrow{\epsilon} (Q, \epsilon) \iff (s', w) \xrightarrow{\epsilon} (Q, \epsilon) \land Q \cap F \neq \emptyset.$$

That is, $(s, w) \xrightarrow{\epsilon} (F, \epsilon)$ for some $F \in F \iff (s', w) \xrightarrow{\epsilon} (Q, \epsilon)$ for some $Q \in F'$.

$\therefore \ L(M) = L(N)$. □

Example: ϵ-Free NFA → DFA

Consider the previous NFA $N_0 = (Q_0, \Sigma, \delta_0, p_0, \{s\})$

$$M_0 = (\mathcal{P}(Q), \Sigma, \delta', (p), \mathcal{F})$$

NFA with ϵ-Moves

- ϵ-closure(R) = $\mathcal{E}(R)$ for a set of states R
ε-closure of a set of states

- Coalesce all nodes reachable from \{4,5\} by ε-moves:

 ![Diagram of ε-closure](image)

 Note: still an NFA

\[\varepsilon \text{-closure}(\{4,5\}) = \varepsilon(\{4,5\}) = \{1, 2, 3, 4, 5, 6, 7, 8\} \]

Conversion: NFA → DFA

- **Thm**: There is an algorithm to convert any NFA to an equivalent DFA.

- **Pf**: Construction: Given NFA \(N = (Q, \Sigma, \delta, s_0, F) \) construct new NFA \(M = (2^Q, \Sigma, \delta', s_0', F') \) where

 \[F' = \{ S \subseteq Q \mid S \cap F' \neq \emptyset \} \]

 \[s_0' = E(s) \]

 \[\delta'(S, a) = \bigcup \{ E(p) \mid p \in \delta(q, a) \text{ for some } q \in S \} \]

 Verification

 \[(q, \omega) \vdash_M (p, \varepsilon) \iff (E(q), \omega) \vdash_m (E(p), \varepsilon) \]

 for some set \(P \) containing \(p \)

- **Pf**: By induction on \(|w| \)

Conversion: NFA → DFA

- **Thm 1.39**: [Rabin-Scott Theorem]: There is an algorithm to convert any NFA into an equivalent DFA.

- **Corollary 1.40**: A language is regular \(\iff \) some NFA recognizes it.

- **Ex**: Start with an NFA \(N_1 \) as follows:

 ![Diagram of NFA](image)
Conversion: NFA → DFA

Ex: N_i

$\begin{array}{c}
\rightarrow 1 \\
b \rightarrow 2 \\
e \rightarrow 3 \\
d \rightarrow 4
\end{array}$

Useful summary

$E(1) = \{1\}$ $E(2) = \{1, 2, 3\}$
$E(3) = \{1, 3\}$ $E(4) = \{4\}$
$1 \rightarrow 2$ $2 \rightarrow b$ $3 \rightarrow 4$ $4 \rightarrow b$
$1 \rightarrow \emptyset$ $2 \rightarrow 2$ $3 \rightarrow \emptyset$ $4 \rightarrow \emptyset$
$1 \rightarrow \emptyset$ $2 \rightarrow \emptyset$ $3 \rightarrow \emptyset$ $4 \rightarrow 3$

Ex: NFA → DFA

$\begin{array}{c}
\rightarrow 1 \\
b \rightarrow 2 \\
e \rightarrow 3 \\
d \rightarrow 4
\end{array}$

$\delta' = E(1) = \{1\}$
$\delta'(s', b) = E(2) = \{1, 2, 3\}$
$\delta'(s', \varepsilon) = \emptyset$
$\delta'(s', d) = \emptyset$
$\delta'(1, 2, 3, b) = E(1) \cup E(2) \cup E(3) \cup E(4) = \{1, 2, 3, 4\}$
$\delta'(1, 2, 3, \varepsilon) = E(3) = \{1, 3\}$
$\delta'(1, 2, 3, d) = \emptyset$

Ex: NFA → DFA (cont’d)

$\begin{array}{c}
\rightarrow 1 \\
b \rightarrow 2 \\
e \rightarrow 3 \\
d \rightarrow 4
\end{array}$

$\delta'(1, 2, 3, 4, b) = E(2) \cup E(4) = \{1, 2, 3, 4\}$
$\delta'(1, 2, 3, 4, \varepsilon) = E(3) = \{1, 3\}$
$\delta'(1, 2, 3, 4, d) = E(3) = \{1, 3\}$
$\delta'(1, 3, b) = E(2) \cup E(4) = \{1, 2, 3, 4\}$
$\delta'(1, 3, \varepsilon) = \emptyset$
$\delta'(1, 3, d) = \emptyset$
Conversion: NFA → DFA (cont’d)

Regular Expression → NFA

• Thm 1.55: There is an algorithm that, given a regular expression E, constructs an NFA N such that $L(E) = L(M)$.

Pf: Induction on the # of operator symbols in E.

 Base: $E = \varepsilon \emptyset a \in \Sigma$

 Step: Assume (IH) the result is true of all expressions with \leq operator symbols $(+, \cdot, *)$. Let E have $k+1$ ops.

 Three cases:

 Case $E = (E_1 + E_2)$. By IH, \exists FA M_1, M_2 with $L(E_1) = L(M_1)$ and $L(E_2) = L(M_2)$. Construct the following NFA M.

Case $+$

$L(M) = L(M_1) \cup L(M_2)$
Regular Expression → NFA (cont’d)

• Case $E = (E_1 E_2)$. By IH, \exists FA M_1, M_2 with $L(E_1) = L(M_1)$ and $L(E_2) = L(M_2)$. Construct the following NFA M.

\[
\begin{align*}
M_1 & \quad M_2 \\
F_1 & \quad F_2
\end{align*}
\]

Unmark final states in M_1

$L(M) = L(M_1) \cdot L(M_2)$

Regular Expression → NFA (cont’d)

• Case $E = (E_1)^*$. By IH, \exists FA M_1 with $L(E_1) = L(M_1)$. Construct the following NFA M.
Lecture 03

Case *

\[M \]

\[F = F_1 \cup \{s\} \]

\[L(M) = L(M_1)^* \]

Example: Reg. Exp. \(\rightarrow\) NFA

- \((b+aa)^*\)

\[(b+aa)^* \]

Not very economical

Regular Expressions—Applications

- Regexp used in various development tools
 - qed – interactive text editor. 1st version Lampson & Deutsch 1967
 - Regexp added by Ken Thompson, Bell Labs, ca. 1968
 - Regexp compiled into NFA in machine code
 - Rabin-Scott idea used to scan “on the fly”
 - One of the first software patents
 - Offspring ed by Ken for Unix
 - Many others followed: em, vi / ex, sam, qedx, ...
 - grep, egrep – pattern search in a file
 - shell – command line interpreter
 - lex – lexical analyzer generator
 - sed – non-interactive stream editor
 - awk – pattern scanning and processing language
 - perl – pattern-driven programming language
Applications (cont’d)

- Regular expressions = “patterns”

<table>
<thead>
<tr>
<th>meaning</th>
<th>awk regexp</th>
</tr>
</thead>
<tbody>
<tr>
<td>matches >=1 r</td>
<td>r+</td>
</tr>
<tr>
<td>matches >=0 r</td>
<td>r*</td>
</tr>
<tr>
<td>matches 0 or 1 r</td>
<td>r?</td>
</tr>
<tr>
<td>matches r then s</td>
<td>rs</td>
</tr>
<tr>
<td>matches r or s</td>
<td>r</td>
</tr>
<tr>
<td>match literal “c”</td>
<td>\c</td>
</tr>
<tr>
<td>match begin/end line</td>
<td>^</td>
</tr>
<tr>
<td>match any char</td>
<td>.</td>
</tr>
<tr>
<td>group exprs</td>
<td>(s)</td>
</tr>
<tr>
<td>character list</td>
<td>[abc...]</td>
</tr>
<tr>
<td>negated char list</td>
<td>[^abc...]</td>
</tr>
</tbody>
</table>

Applications--Examples

-?[0-9]+ nonempty digit strings, optional sign
[^0-9] any char except digit
[^\[\].*\]] reference citations in a paper
g/[^]*$d delete blank lines
g/[]*/d delete lines with a blank

Ex: match is always (1) leftmost and (2) longest
file: abcddddef
 vi: s/d*/s/ xabcddddef
 s/d*/s/ abcxef

Ex: csh: sort roll[1-5] | egrep “C SC|MATH” | pr

Applications--Examples

Ex: traditional spelling mnemonic
- “i before e, except after c,
or when pronounced ‘a’,
as in ‘neighbor’ and ‘weigh’
--except for ‘weird’ examples.”
- grep “[^c]el” /usr/share/dict/words > foo
cat foo
 abseil Aeneid ageing Alamein albeit atheist
 Boeing Budweiser caffeine canoeist deice deictic
dilettantism dreidl ...
- if you think this spelling rule is sufficient, you will be deficient,
inefficient, unscientific and far from omniscient
Applications--Examples

Ex: lex - generates a lexical analyzer yylex(). Example: wordcount (wc)

```c
int nchar, nword, nline;
%
\n\n% {  nline++; nchar++; }
(\^t\n)+ { nword++, nchar += yyleng; }
\n// yyleng = length of matched string
\n% { nchar++;}
%
int main(void) {
    yylex();   // invoke generated lexer
    printf("%d	%d	%d
" , nchar, nword, nline);
    return 0;
}
```

Regular ⇔ L. Denoted by a Reg. Exp.

- We’ve defined “regular” as meaning: recognized by a DFA (equiv. to rec. by an NFA)
- This equivalence result is known as “Kleene’s Theorem”
- We’ve already shown the ⇐ direction—we constructed an NFA from a regular expression (Using Rabin-Scott we could convert this NFA to a DFA.)
- Now we show the ⇒ direction: given a DFA \(M \) construct a regular expr. \(E \) with \(L(M) = L(E) \).
- Thm (Kleene): There is an algorithm that, given a DFA \(M \), computes a regular expression \(E \) such that \(L(M) = L(E) \).
- Pf: Given the graph of the DFA, use the “node elimination algorithm” to gradually eliminate all nodes in favor of expressions on the edges of the graph.

Kleene’s Thm: use “Generalized NFA”

<table>
<thead>
<tr>
<th>State</th>
<th>Input</th>
<th>Transition</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>B</td>
</tr>
<tr>
<td>A</td>
<td>1</td>
<td>C</td>
</tr>
<tr>
<td>B</td>
<td>0</td>
<td>A</td>
</tr>
<tr>
<td>C</td>
<td>0</td>
<td>B</td>
</tr>
</tbody>
</table>

Order: CAB
Ex: Node Elimination Algorithm

Add ϵ-moves:

Ex: Node Elimination Algorithm (ACB)

Elim. A:

Elim. C:

Elim. B:

Ex: Node Elimination: other orders
Ex: Other elimination orders (CAB)

Elim. C:

Elim. A:

CA = AC (above)

Elim. B:

CAB = ACF

Ex: Other elimination orders (CBA)

Elim. C:

Elim. B:

CB

Elim. A:

CBA

Ex: Other elimination orders (BAC)

Elim. B:

Elim. A:

BA = AB

Elim. C:

B-BC = ABC
Ex: All elimination orders equiv \((BAC = ACB)\)

\[
\begin{align*}
BAC & \quad \left(b(b+a)^*ab \right)^* \\
ACB & \quad \left(b(b+a)^*a \right)^* \\
\end{align*}
\]

Easy to prove by induction: for any expression \(E\), \(b(\epsilon+E)b^* = b(\epsilon+a^*a)b\).

Using this identity: \(b(bb+a^*ab)^* = b(b(b+a^*ab))^* = b(b(a^*a)a)b^* = b(ba^*)^*\)

Further regular expression simplification is possible: \(b(bb+a^*ab)^* = b(b(b+a^*ab))^* = b(b(a^*a)a)b^* = b(ba^*)^*\)

Good exercise: show results of all other elimination orders are equivalent to these, using regular expression algebra

Algebra of Regular Expressions

- \(\exists\) an algebra for simplifying regular expressions
- Can use this algebra to construct RegExps from FSA

\[
\begin{align*}
(r+s)t & = r(st) + s(t) \\
r+rr & = r \\
r+0 & = r \\
(r^*)^* & = r^* \\
(r^*) & = r + r^* \\
(r+s)^* & = (r+s)^* \\
\end{align*}
\]

Solving Regular Expr Equations

- Can solve “linear equations” with regexp variables

\[
\begin{align*}
X & = aX + b \\
& = a(aX + b) + b = a^2X + ab + b \\
& = a^2(aX) + ab + b = a^3X + a^2b + ab + b \\
& \vdots \\
X & = a^*b \\
\end{align*}
\]

Check: \(a[a^*b] + b = aa^*b + b = (aa^*+\epsilon)b = a^*b\)

Ex:

\[
\begin{align*}
X & \rightarrow aX + bY \\
Y & \rightarrow \epsilon \rightarrow X = a^*b
\end{align*}
\]
Solving RegExp Equations (cont’d)

- Ex: NFA → RegExp

\[
\begin{align*}
A &= 0A + 1B + \varepsilon \\
B &= 1B + 0C \\
C &= 0A + 1B \\
\text{elim.} B &: B = 1'0C \\
\text{elim.} C &: C = (0'1)'0A \\
A &= 0A + 1'0C + \varepsilon \\
C &= 0A + 1'0C \\
A &= 0A + 1'0(1'1)'0A + \varepsilon \\
&= (0 + 1'0)(1'1)'0A + \varepsilon \\
&= (0 + 1'0)(1'1)'0'0' \\
\text{Simplify using reg. algebra:} \\
0 + 1'0(1'1)'0'0' &= (0 + 1'0)(1'1)'0'0' \\
&= 0'1'00' \\
\therefore A &= (0'1)'0' \\
\end{align*}
\]

Ex: Node Elimination Example via Algebra

- Want B. C is accept state.

\[
\begin{align*}
A &= aA + aB \\
B &= bA + bB + bC + \varepsilon \\
C &= bA + ab + bb + \varepsilon \\
\text{elim. A:} \\
A &= aA + aB \\
B &= bA + bB + bC + \varepsilon \\
\text{elim. B:} \\
B &= bA + bB \\
C &= (ba + ab + bb) * \\
\text{elim. C:} \\
B &= bA + bB + bC + \varepsilon \\
\therefore B &= bA + bB + bC + \varepsilon \\
\text{Simplifies to} B &= bA + bB + bC + \varepsilon \\
\end{align*}
\]

Closure Properties

- A class of languages is said to be closed under an operation if applying that operation to members of the class results in a language that is again a member of the class. Example: the regular languages are closed under the operations of union, concatenation and Kleene star.

- Thm: The regular languages are closed under intersection and complementation.

Proof: Let \(L = L(M) \) where \(M = (Q, \Sigma, \delta, s_0, F) \) is a DFA. Then the FA \(\mathcal{R} = (Q', \Sigma, \delta', s_0, F') \) is also deterministic, and \((s_0, w) \sim (Q_0, \varepsilon) \iff (s_0, w) \sim (Q_0, \varepsilon) \). So \(w \) leads to a non-accepting state in \(M \) \(\iff \) \(w \) leads to an accepting state in \(\mathcal{R} \). So \(L(\mathcal{R}) = \Sigma^* - L(M) \).
Closure Properties (cont’d)

Intersection. Let \(L_1, L_2 \) be regular. By DeMorgan’s law
\[
L_1 \cap L_2 = (L_1 \cup L_2)'
\]
Since the regular languages are closed under complementation and union, the result follows. \(\square \)

Closure Properties (cont’d)

- Another proof of closure under \(\cap \) illustrates the technique called “cross-product construction”. See Sipser text, Theorem 1.25.
- Thm: The class of regular languages is closed under the intersection operation.

 Pf: Assume \(L_1 = L(M_1) \), \(L_2 = L(M_2) \) and

 where the automata are deterministic.

 Construction. Construct a “cross-product machine” \(M \) as follows:

 \[
 \delta \times \delta' \left(q_1, q_2 \right), a = \left(\delta (q_1, a), \delta' (q_2, a) \right),
 \]

 Machine \(M \) simulates the two given machines “in parallel”, keeping each machine state in one component of \(\left(q_1, q_2 \right) \).

Verification. By an easy induction on \(|x| \), can show that
\[
\left((q_1, q_2), x \right) \vdash_{M} \left((p_1, p_2), \varepsilon \right) \Leftrightarrow \left((q_1, x) \right) \vdash_{M_1} \left(p_1, \varepsilon \right) \land \left((q_2, x) \right) \vdash_{M_2} \left(p_2, \varepsilon \right)
\]
Therefore, for a pair of final states \(q_1 \in F_1, q_2 \in F_2 \)
\[
\left((q_1, q_2), x \right) \vdash_{M} \left((p_1, p_2), \varepsilon \right) \Leftrightarrow \left((q_1, x) \right) \vdash_{M_1} \left(p_1, \varepsilon \right) \land \left((q_2, x) \right) \vdash_{M_2} \left(p_2, \varepsilon \right)
\]
This says that
\[
x \in L(M) \Leftrightarrow x \in L(M_1) \land x \in L(M_2)
\]
i.e., that
\[
L(M) = L(M_1) \cap L(M_2).
\]
Closure Properties (cont’d)

- **Defn:** A **homomorphism** \(h \) is a function that maps each symbol of \(\Sigma = \{ a_1, a_2, \ldots, a_n \} \) to a string over some alphabet \(\Delta \), i.e.,
 \[h(a_1) = w_1, \ h(a_2) = w_2, \ldots, \ h(a_n) = w_n. \]
- The homomorphism is extended to operate on strings character-by-character, i.e.,
 \[h(c_1 c_2 \ldots c_n) = h(c_1) h(c_2) \ldots h(c_n). \]
- It is further extended to languages element-wise, i.e.,
 \[h(L) = \{ h(w) : w \in L \}. \]
- **Thm:** If \(L \) is regular and \(h \) is a homomorphism, then \(h(L) \) is regular.

 Pf: Assume \(L \) is recognized by a DFA \(M = (Q, \Sigma, \delta, s_0, F) \).

Closure Properties (cont’d)

- **Construction:** Construct the machine \(M^h = (Q, \Sigma, \delta^h, s_0, F) \) where for each transition in \(M: \)
 \[p \xrightarrow{a} q \]
 put into \(M^h \) the transition \[p \xrightarrow{h(a)} q. \]

 An easy induction establishes that
 \[(s, w) \xrightarrow{a} (q, \varepsilon) \iff (s, h(a)w) \xrightarrow{a} (q, \varepsilon), \]
 from which it follows that
 \[L(M^h) = h(L(M)) \]. \(\square \)

What is **Not** Regular?

- **FA** have a very limited computing ability. They cannot, for example, recognize strings of well-nested parentheses, or well-formed arithmetic expressions, or even the language of strings of the form \(w^2 \), having two copies of the same substring.
- How can we show some languages are **not** regular? We will give a property that all regular languages **must have** (called the pumping property). Then, to show that a language \(L \) is not regular, we argue that it lacks this pumping property.
Pumping Lemma

- Thm [Pumping Lemma for Regular Languages]. Suppose that L is an infinite⁴ regular language. Then

$$(\exists p) \ (\forall w) \ [w \in L \land |w| \geq p \Rightarrow (\exists x, y, z) \ (w = xyz \land y \neq \varepsilon \land |xy| \leq p \land (\forall i \geq 0) \ xy^i z \in L)]$$

⁴All finite languages are regular, so only infinite languages are of interest.

Pumping Lemma (English)

- Thm [Pumping Lemma for Regular Languages]. Suppose that L is an infinite⁴ regular language. Then there is some number p (called the pumping length) such that:

 if w is any string in L with $|w| \geq p$, then w can be factored into 3 substrings, $w = xyz$, that satisfy the following 3 conditions:

 (i) $y \neq \varepsilon$ [y is not empty]
 (ii) $|xy| \leq p$ [the prefix and pumped part are short]
 (iii) for every $i \geq 0$, $xy^i z \in L$ [“pumped up” and “pumped down” ($i = 0$) versions of the string must also be in L]

⁴All finite languages are regular, so only infinite languages are of interest.

Pumping Lemma (cont’d)

- Pf: Let $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA recognizing L and let p be the number of its states.

 Let $w = a_1 a_2 \cdots a_n$ be an input string of length n where $n \geq p$.

 Let $x_1, x_2, \cdots, x_n, x_{n+1}$ be the sequence of states that M enters while processing w so that $x_a = \delta(x_{a-1}, a)$ for $1 \leq a \leq n$. This state sequence has length $n+1 \geq p+1$.

 Among the first $p+1$ states of this sequence, at least 2 must be the same state [“pigeonhole principle”]. Call the first of these 2 x_j and the second $x_k = x_j$. Because $x_j = x_k$ occurs among the first $p+1$ places in the sequence $x_1, x_2, \cdots, x_n, x_{n+1}$, we have that $k \leq p+1$.

 Define the following substrings of w:

 $X = a_1 \cdots a_{j-1}, y = a_j \cdots a_{k-1}, z = a_k \cdots a_n$
Pumping Lemma (cont’d)

- Picture:

- From the picture, we see that there is an accepting path from \(r_i \) to a final state \(r_k \) for all the strings of the form \(x y^i z \), \(i \geq 0 \). Also, since \(j \neq k \) it must be that \(y \neq z \). Furthermore, \(|y| > k \) so \(|xy| \leq p \). □

Non-regular Examples

- Ex: \(L = \{a^n : k \geq 0\} \) is not regular.

 \(\text{Pf:} \) By contradiction. Suppose \(L \) is regular. Then by the Pumping Lemma,
 \((\exists x, y, z) x = a^k, y = a^l (q > 0), z = a^m \) \((\forall n \geq 0) a^p \cdot (a^q)^n \cdot a^r \in L \).

 Then it follows that \((\forall n \geq 0) p + q \cdot n + r \) is a perfect square. This is impossible. For suppose \(p + r + q \cdot n_i = k_i^2 \) for a \(k_i \) so large that \(2k_i + 1 > q \). Then \(p + r + q \cdot (n_i + 1) = k_i^2 + q < k_i^2 + 2k_i + 1 = (k_i + 1)^2 \).

 Hence \(p + r + q \cdot (n_i + 1) \) falls “in between” perfect squares—a contradiction. □

Non-regular Examples (cont’d)

- Ex: \(L = \{w : w \in \{a, b\}^*\} \) is not regular.

 \(\text{Pf:} \) By contradiction. Suppose \(L \) is regular. Then by closure properties of the regular languages
 \(L_1 = L \cap a \cdot b \cdot a \) is regular. Now \(L_1 = \{a^n bba : n \geq 0\} \). We show \(L_1 \) cannot be regular, which provides a contradiction.

 If \(L_1 \) is regular, then there are substrings \(x, y, z \) with \(y \neq \varepsilon \) such that \((\forall n \geq 0) xy^n z \in L \).

 Case 1: \(y \) is entirely in the \(a \)’s. Assume it is in the \(a \)’s before the \(2 \) \(b \)’s (The other subcase is symmetric). Then \(x = a^p, y = a^q, z = a^r bba^s (q > 0) \)

 and \(p + q + r = s \). But then \(a^p a^q bba^s \in L \)

 where \(p + r < s \). This is a contradiction.
Non-regular Examples (cont’d)

- Case 2. \(y \) contains a b. Then \(xy^i z \) has more than 2 b’s, and so \(xy^i z \notin L_A \). This is a contradiction.

Contradictions in all cases \(\Rightarrow \) contradiction to the assumption that \(L_A \) is regular. So \(L_A \) is not regular. \(\Box \)

- Ex: \(B = \{ w : w \) is a well-nested string of parentheses\) is not regular.

 Pf: Suppose \(B \) is regular. Then so is \(B' = B \cap (\cdot)^* = \{ (\cdot)^n : n \geq 0 \} \) as its homomorphic image \(\{a^nb^n : n \geq 0 \} \). Contradiction. \(\Box \)

Decision Problems

- For a property/predicate \(P \) the decision problem for \(P \) is:
 - Given: \(x \)
 - Question: Is \(P(\alpha) \) true?

- Ex: Given DFA \(M \), is it true that \(L(M) = \emptyset \)?

- Thm: For DFA \(M \) all the following decision problems are solvable, i.e. there exists an algorithm to decide the question for any input:

 Given \(\quad \) Question
 1. \(M, w \) \(w \in L(M) ? \)
 2. \(M \) \(L(M) = \emptyset ? \)
 3. \(M \) \(L(M) = \Sigma^* ? \)
 4. \(M, M' \) \(L(M) \subseteq L(M')? \)
 5. \(M, M' \) \(L(M) = L(M')? \)

Decision Problems (cont’d)

Pf: Assume given DFAs for inputs.

1. Trace \(w \) through \(M \). “Yes” if leads from \(s \) to some \(q \in F \)
2. “Yes” if there is some \(q \in F \) reachable from \(s \)
3. Convert \(M \to \Pi \). \(L(M) = \Sigma^* \Leftrightarrow \Pi(M) = \emptyset \)
4. \(L(M_1) \subseteq L(M_2) \Leftrightarrow \Pi(M_1) \cap \Pi(M_2) = \emptyset \)
5. Use (4) twice