
↓ cut ↓ ↓ cut ↓
������������� �������������

2/26/106
recur5

FOIL 1

| |

+ +

Recursion
� Observe that EXP 1 — as currently defined — has no

recursion:

Ex: Let foo be bound to λx.0 in the environment
u[foo |→ λx.0]. Consider the evaluation of the
following expression:

evaluate[[let fun foo(n: int) =
if n =0 then 0 else n + foo(n −1)

in foo(3)]] (u[foo |→ λx.0])

= evaluate[[foo(3)]] (u[foo |→ λx.0, foo |→ f])
where
f = λa.evaluate[[if n =0 then 0 else n + foo(n −1)]]

(u[foo |→ λx.0, n |→ a])

= λa.if a = 0 then 0 else a + (λx.0)(a − 1)

= λa.if a = 0 then 0 else a

= λa.a

Thus: evaluate[[(foo(3)]] (u[foo |→ λx.0, foo |→ f])

= evaluate[[(foo(3)]] (u[foo |→ f])

= f (3) = (λa.a) 3 = 3

� First foo is newly introduced symbol, defined in terms of second
foo — which is a pre-existing symbol in environment with a
different binding.

� Analogous to let val x = x * 2in . . . — not recursive!

+ +

| |

������������� �������������
2/26/106

recur5
FOIL 2

| |

+ +

Recursion (cont.)
� To obtain recursion, have to assure that both

occurrences of foo are bound to the same (not
previously defined & as yet unknown) function.

� Thus foo will be bound to f ∗ where:

f ∗ = λa.evaluate[[if n =0 then 0 else n + foo(n −1)]]
(u[foo |→ f ∗ , n |→ a])

= λa.if a = 0 then 0 else a + f ∗(a − 1)

� This last equation is is a fixed point equation of the form

f ∗ = τ f ∗

where τ is a functional given by

τ = λg.λz.if z = 0 then 0 else z + g(z − 1)

� Note that the functional τ is a ‘‘function transformer’’:
τ : (int → int) → (int → int)

� Scott: f ∗ is defined by the fixed point equation f ∗ = τ f ∗, where
τ = λg.λz. . . . is a functional derived from the body of the
recursive definition.

� What is f ∗ for this example? What function f ∗ makes the
equation f ∗ = τ f ∗ ‘‘balance’’?

f ∗ =

�
���
λn.⊥
λn._______

if n < 0

if n ≥ 0

� Now what is the value of the program (expression)?

evaluate[[foo(3)]](u[foo |→ f ∗]) = f ∗(3)
= _________________

+ +

| |

������������� �������������

2/26/106
recur5

FOIL 3

| |

+ +

Recursive Definition
� ML:
- fun fact(n: int) = if n=0 then 1 else n*fact(n-1);
- fact(3);

� Scheme:
>> (define (fact n)

(if (= n 0) 1 (* n (fact (-1+ n)))))
>> (fact 3)

— Two kinds of let clause in Scheme: (let ...) for
non-recursive definition and (letrec ...) for recursive.
Top-level definitions (as above) are assumed to be recursive.

� Define EXP 2 =∆ EXP 1 + recursion + conditional expressions:

— Add syntax
Declaration ::=...

| recfun Identifier (Formal-Parameter)
= Expression

— example
let recfun fact(n:int) =

if n = 0 then 1 else n * fact(n − 1)
in fact(3)

� In each case, what is the meaning of the ‘‘body’’ or RHS B of
the recursive definition?

— a functional that transforms a function to a function

— τ = λ f .evaluate[[B]] (u[fact |→ f])
= λ f .λx.if x = 0 then 1 else x . f (x − 1)

+ +

| |

������������� �������������

2/26/106
recur5

FOIL 4

| |

+ +

Recursive Definition (cont.)
Ex:

τ (λx.x + 1)
= λx. if x = 0 then 1 else x .(λz.z + 1)(x − 1)
= λx. if x = 0 then 1 else x 2

= (λx.x 2) [0 |→ 1]

τ (λx.x)
= λx. if x = 0 then 1 else x .(λz.z)(x − 1)
= λx. if x = 0 then 1 else x .(x − 1)
= (λx.x 2 − x) [0 |→ 1]

τ (λx.1)
= λx. if x = 0 then 1 else x .(λz.1)(x − 1)
= λx. if x = 0 then 1 else x .1
= (λx.x) [0 |→ 1]

τ (λx.x!)
= λx. if x = 0 then 1 else x .(λz.z!)(x − 1)
= λx. if x = 0 then 1 else x .(x − 1) !
= (λx.x!)

� Notice that λx.x! is a fixed point of the functional τ
� Meaning of fact in let recfun fact(n) = B in . . . ?

— Want evaluate[[fact]] = function f ∗ such that
f ∗ = evaluate[[B]] (u[fact |→ f ∗])

— i.e., f ∗ = (λ f .evaluate[[B]] (u[fact |→ f])) f ∗

— i.e., f ∗ = τ f ∗
∴ Want a function that is the fixed point of τ

+ +

| |

������������� �������������

2/26/106
recur5

FOIL 5

| |

+ +

Recursive Definition (cont.)
� Solution: f ∗ = λz.z!

— Verify:
τ f ∗ = τ (λz.z!)

= λx. if x = 0 then 1 else x .*(λz.z!)(x − 1)
= λx. if x = 0 then 1 else x .*(x − 1) !
= λx. if x = 0 then 1 else x!
= λx. x!
= f ∗

— ∴ f ∗ = λz.z! is a fixed point

� Questions Remain:

— Is λz.z! the right fixed point ? (there might be
several)

— What is the connection between this fixed point
and the function that is actually computed by
recursion?

+ +

| |

������������� �������������

2/26/106
recur5

FOIL 6

| |

+ +

Fixed Points
� Definition: Let τ : D→D be a mapping from a domain

to itself. x∗ is a fixed point of D ⇔ x∗ = τ(x∗)

Examples from various domains:

� D = R. To find a root of x 3 − x 2 − x − 1 = 0,
divide through by x 2 to get
x = 1 + (1/x) + (1/x 2) = τ(x)
The positive root x∗ = 1.839 . . . is found by
iterating: x 0 = 1, x n + 1 = τ(x n)

� D = Integer .

— τ = λx.x + 1 has no fixed point (except ∞).

— τ = λx.x 2 has two fixed points.

— τ = λx.x has infinitely many fixed points — any
point in D.

� D = (Integer →Integer).

— τ = λ f .λx. f (x) has any function in D as fixed
point

— τ = λ f .λx. if x = 0 then 0 else x + f (x − 1)
has fixed point f ∗ = λx.x(x + 1) /2

+ +

| |

������������� �������������

2/26/106
recur5

FOIL 7

| |

+ +

— τ = λ f .λx.x + f (x − 1) has the fixed points
f c ∗ = λx.x(x + 1) /2 + c, one for each c in D.
Note that f ⊥ ∗ = λx.⊥ = Ω.

— τ = λ f .λx. if f (x) = 0 then 1 else 0 has the
fixed point f ∗ = λx.⊥ = Ω.

— τ = λ f .λx. if x = 0 then a else f (x) has as
fixed point f ∗ any f such that f (0) = a.

� D = (Integer ×Integer →Integer).

— Consider the fixed point equation
f (m , n) = τ(f)(m ,n)

= if m = 0 then n else f (m − 1, n + 1)

— g(m , n) = m + n is a fixed point. Verification:
τ (g)(m , n) = if m = 0 then n else g(m − 1, n + 1)

= if m = 0 then n else (m − 1) + (n + 1)
= if m = 0 then n else m + n
= m + n
= g(m , n)

— Fact: If a fixed point is defined for every element
of the source domain, then it is the unique fixed
point (McCarthy’s Recursion Induction Principle).

+ +

| |

������������� �������������

2/26/106
recur5

FOIL 8

| |

+ +

� D = (Integer →Integer).

— Let τ = λ f .λn. f (n + 1). Now for every integer
a, g a = λn.a is a fixed point.

— Which one is ‘‘correct’’?

— What do we get by computing the recursion?

f (n) → f (n + 1) → f (n + 2) → . . .

— So the fixed point actually computed is
g ⊥ = λn.⊥. This is the minimal fixed point of τ
in D = (Integer →Integer), i.e., that fixed point
of τ that contains the least amount of information.

+ +

| |

������������� �������������

2/26/106
recur5

FOIL 9

| |

+ +

Semantics of Recursion
� Principle: The function defined by the recursive

definition
f = τ(f)
is the fixed point f ∗ of τ that is minimal in
information ordering among all fixed points of τ

� Key Properties:

— Uniqueness: There is only one such minimal f ∗ for
τ.

— Existence: f ∗ always exists: any τ constructible by
a syntactic definition in any programming language
is monotone and continuous, and hence has such a
minimal fixed point.

— Correctness: For every input n, f ∗(n) agrees with
the value (possibly ⊥) that is computed by
‘‘unwinding the recursion’’ in the usual way:
f (n) → τ(f (n)) → τ(τ(f (n))) →

— Realized by Successive Approximation. The
sequence of functions f 0 = Ω; f n + 1 = τ(f n)
forms a monotone chain (nondecreasing sequence)
in D f 0 |———

f 1 |———
f 2 |———

. . . This chain
converges to a limit identical to the minimal fixed
point: f ∗ = ∪ i f i

+ +

| |

������������� �������������

2/26/106
recur5

FOIL 10

| |

+ +

Semantics of Recursion (cont.)
� Main result of fixed point semantics: the notion of

‘‘function defined by recursion’’ has a semantic
meaning independent of what is obtained by formal
computation, but agreeing with it in all respects.

� Ex: τ = λ f .λx.if x = 0 then 1 else f (x − 2)

— Fixed points are
g n = λx.if (x≥0) ∧ even(x) then 1 else n

— Minimal fixed point is
g ⊥ = λx.if (x≥0) ∧ even(x) then 1 else ⊥
because g ⊥ |———

g n for all n in D.

It is the ‘‘most partial’’ of all the fixed points; i.e.,
contains the bare minimum of information needed
to satisfy the equation f = τ(f).

+ +

| |

������������� �������������

2/26/106
recur5

FOIL 11

| |

+ +

Semantics of Recursion (cont.)

— Pick values and compute by unwinding the
recursion
f (n) = τ(f)(n) = if n = 0 then 1 else f (n − 2)

f (3) → f (1) → f (− 1) → . . . (diverges)
f (4) → f (2) → f (0) → 1 (converges)
and in general f (n) diverges for n odd or negative
and converges to 1 for n even and non-negative.

— Start with ‘‘zero-information’’ approximation Ω,
and form a chain by successive application of τ:
g 0 = Ω
g 1 = τ(g 0)

= λn.if n = 0 then 1 else Ω(n − 2)
= λn.if n = 0 then 1 else ⊥

g 2 = τ(g 1)
= λn.if n = 0 then 1

else (if (n − 2) = 0 then 1 else ⊥)
= λn.if (n = 0) ∨ (n = 2) then 1 else ⊥

g 3 = τ(g 2)
= λn.if n = 0 then 1

else (if (n − 2) = 0 ∨ (n − 2) = 2 then 1
else ⊥)

= λn.if (n = 0) ∨ (n = 2) ∨(n = 4) then 1
else ⊥

+ +

| |

������������� �������������

2/26/106
recur5

FOIL 12

| |

+ +

g 4 = τ(g 3)
. . .

It is clear that these functions form a chain, each
an extension of its predecessor containing more
information (being more defined) than its
predecessor. It is also evident that the chain
converges to the limit function
g ⊥ = λn.if (n≥0) ∧ even(n) then 1 else ⊥.

+ +

| |

������������� �������������

2/26/106
recur5

FOIL 13

| |

+ +

EXP 2: EXP With Recursive Function Definition

(EXP 2 =∆ EXP 1 + recursion + conditional expressions)

� Extend Syntax:
Declaration ::=...

| recfun Identifier (Formal-Parameter)
= Expression

Expression::= ...
| Expression = Expression
| if Expression then Expression

else Expression

� Extend Semantics:

New semantic rule for recursive function definition:

— constuct a functional abstraction τ that
� binds formal parm to λ-variable x
� binds function name to λ-variable f
� evaluates body in definition env overlain by these

bindings
� constructs τ from this body by lambda abstraction

— bind fixed point of τ to name I

+ +

| |

������������� �������������

2/26/106
recur5

FOIL 14

| |

+ +

EXP 2 (cont.)

elaborate[[recfun I(FP) = E]] env =
let τ = λ f . λx . evaluate[[E]] (env[I |→ f , FP |→ x])
in
let func = τ func — fixed point
in
bind(I , function func)

— If I does not occur in E, then this reduces to
func = τ func = λx . evaluate[[E]] (env[FP |→ x])
which reduces to the rule for ordinary functions:
elaborate[[fun I(FP) = E]] env = . . .

� Add semantics for if , relational operators, etc.

� All other semantics (e.g., function calls) stays the same

+ +

| |

↑ cut ↑ ↑ cut ↑

