Recursion

- Observe that EXP₁ — as currently defined — has no recursion:

Ex: Let \(\text{foo} \) be bound to \(\lambda x.0 \) in the environment \(u[\text{foo} \mapsto \lambda x.0] \). Consider the evaluation of the following expression:

\[
\begin{align*}
evaluate\left[\begin{let} \text{fun} \text{ foo} \left(n : \text{int} \right) = \\
\begin{if} n = 0 \then 0 \else n + \text{foo} \left(n-1\right) \in \text{foo} \left(3\right) \mapsto \left(\left.u[\text{foo} \mapsto \lambda x.0]\right)\right) \\
\end{if} \right]
\end{align*}
\]

where

\[
f = \lambda a. \evaluate\left[\begin{if} n = 0 \then 0 \else n + \text{foo} \left(n-1\right) \in \left.u[\text{foo} \mapsto \lambda x.0, \text{foo} \mapsto f]\right) \right]
\]

Thus:

\[
\begin{align*}
\evaluate\left[\begin{if} n = 0 \then 0 \else n + \text{foo} \left(n-1\right) \in \left.u[\text{foo} \mapsto \lambda x.0, \text{foo} \mapsto f]\right) \right] \\
\end{if} \right]
\end{align*}
\]

- *First* \(\text{foo} \) is newly introduced symbol, defined in terms of *second* \(\text{foo} \) — which is a pre-existing symbol in environment with a *different* binding.

- Analogous to \(\begin{let} \text{val} x = x \ast 2 \in \cdots \end{let} \) — not recursive!
Recursion (cont.)

- To obtain recursion, have to assure that both occurrences of `foo` are bound to the same (not previously defined & as yet unknown) function.
- Thus `foo` will be bound to `f*` where:
 \[f* = \lambda a.\text{evaluate}[\begin{array}{l}
 \text{if } n = 0 \text{ then } 0 \text{ else } n + f\circ (n-1) \\
 \end{array}] \\
 (u[\circ \mapsto f*, n \mapsto a]) \]
 \[= \lambda a.\text{if } a = 0 \text{ then } 0 \text{ else } a + f*(a-1) \]
- This last equation is is a fixed point equation of the form
 \[f* = \tau f* \]
 where \(\tau \) is a functional given by
 \[\tau = \lambda g.\lambda z.\text{if } z = 0 \text{ then } 0 \text{ else } z + g(z - 1) \]
- Note that the functional \(\tau \) is a “function transformer”:
 \[\tau : (\text{int} \rightarrow \text{int}) \rightarrow (\text{int} \rightarrow \text{int}) \]
- Scott: \(f* \) is defined by the fixed point equation \(f* = \tau f* \), where \(\tau = \lambda g.\lambda z.\cdots \) is a functional derived from the body of the recursive definition.
- What is \(f* \) for this example? What function \(f* \) makes the equation \(f* = \tau f* \) “balance”?
 \[f* = \begin{cases}
 \lambda n.______ \ & \text{if } n \geq 0 \\
 \lambda n.\perp \ & \text{if } n < 0
 \end{cases} \]
- Now what is the value of the program (expression)?
 \[\text{evaluate}[\begin{array}{l}
 f\circ (3) \\
 \end{array}] (u[\circ \mapsto f*]) = f*(3) \]
 = _______________
Recursive Definition

- ML:
 - fun fact(n: int) = if n=0 then 1 else n*fact(n-1);
 - fact(3);

- Scheme:
 >> (define (fact n)
 (if (= n 0) 1 (* n (fact (-1+ n)))))
 >> (fact 3)

- Two kinds of let clause in Scheme: (let ...) for non-recursive definition and (letrec ...) for recursive. Top-level definitions (as above) are assumed to be recursive.

- Define \(\text{EXP}_2 \triangleq \text{EXP}_1 + \text{recursion} + \text{conditional expressions} \):
 - Add syntax
 Declaration ::=...
 | recfun Identifier (Formal-Parameter)
 = Expression
 - example
 let recfun fact (n:int) =
 if n = 0 then 1 else n * fact (n - 1)
 in fact (3)

- In each case, what is the meaning of the ‘‘body’’ or RHS \(B \) of the recursive definition?
 - a functional that transforms a function to a function
 - \(\tau = \lambda f.\text{evaluate}[B][u[\text{fact} \mapsto f]] \)
 \(= \lambda f.\lambda x.\text{if } x = 0 \text{ then } 1 \text{ else } x \cdot f(x - 1) \)
Recursive Definition (cont.)

Ex:
\[\tau (\lambda.x.x + 1) \]
\[= \lambda.x. \text{if } x = 0 \text{ then } 1 \text{ else } x \cdot (\lambda.z.z + 1)(x - 1) \]
\[= \lambda.x. \text{if } x = 0 \text{ then } 1 \text{ else } x^2 \]
\[= (\lambda.x.x^2)[0 \mapsto 1] \]

\[\tau (\lambda.x.x) \]
\[= \lambda.x. \text{if } x = 0 \text{ then } 1 \text{ else } x \cdot (\lambda.z.z)(x - 1) \]
\[= \lambda.x. \text{if } x = 0 \text{ then } 1 \text{ else } x \cdot (x - 1) \]
\[= (\lambda.x.x^2 - x)[0 \mapsto 1] \]

\[\tau (\lambda.x.1) \]
\[= \lambda.x. \text{if } x = 0 \text{ then } 1 \text{ else } x \cdot (\lambda.z.1)(x - 1) \]
\[= \lambda.x. \text{if } x = 0 \text{ then } 1 \text{ else } x \cdot 1 \]
\[= (\lambda.x.x)[0 \mapsto 1] \]

\[\tau (\lambda.x.x!) \]
\[= \lambda.x. \text{if } x = 0 \text{ then } 1 \text{ else } x \cdot (\lambda.z.z!)(x - 1) \]
\[= \lambda.x. \text{if } x = 0 \text{ then } 1 \text{ else } x \cdot (x - 1)! \]
\[= (\lambda.x.x!) \]

- Notice that \(\lambda.x.x! \) is a fixed point of the functional \(\tau \)
- Meaning of \texttt{fact} in \texttt{let rec fun fact (n) = B in \cdots ?}
 - Want \(\text{evaluate}[[\texttt{fact}]] = \text{function } f^* \text{ such that } f^* = \text{evaluate}[[\texttt{B}} (u[\texttt{fact} \mapsto f^*]) \]
 - i.e., \(f^* = (\lambda.f. \text{evaluate}[[\texttt{B}} (u[\texttt{fact} \mapsto f])) f^* \)
 - i.e., \(f^* = \tau f^* \)
 - \(\therefore \) Want a function that is the fixed point of \(\tau \)
Recursive Definition (cont.)

- Solution: $f^* = \lambda z.z!$

 - Verify:

 $\tau f^* = \tau(\lambda z.z!)$

 $= \lambda x. \text{if } x = 0 \text{ then } 1 \text{ else } x^* (\lambda z.z!)(x - 1)$

 $= \lambda x. \text{if } x = 0 \text{ then } 1 \text{ else } x^* (x - 1)!$

 $= \lambda x. \text{if } x = 0 \text{ then } 1 \text{ else } x!$

 $= \lambda x. x!$

 $= f^*$

 - $\therefore f^* = \lambda z.z!$ is a fixed point

- Questions Remain:

 - Is $\lambda z.z!$ the right fixed point? (there might be several)

 - What is the connection between this fixed point and the function that is actually computed by recursion?
Fixed Points

• Definition: Let $\tau : D \rightarrow D$ be a mapping from a domain to itself. x^* is a fixed point of $D \iff x^* = \tau(x^*)$

Examples from various domains:

• $D = \mathbb{R}$. To find a root of $x^3 - x^2 - x - 1 = 0$, divide through by x^2 to get $x = 1 + (1/x) + (1/x^2) = \tau(x)$. The positive root $x^* = 1.839 \cdots$ is found by iterating: $x_0 = 1$, $x_{n+1} = \tau(x_n)$

• $D = \text{Integer}$.

 — $\tau = \lambda x.x + 1$ has no fixed point (except ∞).

 — $\tau = \lambda x.x^2$ has two fixed points.

 — $\tau = \lambda x.x$ has infinitely many fixed points — any point in D.

• $D = (\text{Integer} \rightarrow \text{Integer})$.

 — $\tau = \lambda f.\lambda x.f(x)$ has any function in D as fixed point

 — $\tau = \lambda f.\lambda x. \text{if } x = 0 \text{ then } 0 \text{ else } x + f(x - 1)$ has fixed point $f^* = \lambda x.x(x + 1)/2$
- $\tau = \lambda f. \lambda x. x + f(x - 1)$ has the fixed points
 $f_c^* = \lambda x. x(x + 1)/2 + c$, one for each c in D.
 Note that $f_\bot^* = \lambda x. \bot = \Omega$.

- $\tau = \lambda f. \lambda x. \text{if } f(x) = 0 \text{ then } 1 \text{ else } 0$ has the fixed point $f^* = \lambda x. \bot = \Omega$.

- $\tau = \lambda f. \lambda x. \text{if } x = 0 \text{ then } a \text{ else } f(x)$ has as fixed point f^* any f such that $f(0) = a$.

- $D = (\text{Integer} \times \text{Integer} \rightarrow \text{Integer})$.

- Consider the fixed point equation
 $f(m, n) = \tau(f)(m, n)$

 $= \text{if } m = 0 \text{ then } n \text{ else } f(m - 1, n + 1)$

- $g(m, n) = m + n$ is a fixed point. Verification:
 $\tau(g)(m, n) = \text{if } m = 0 \text{ then } n \text{ else } g(m - 1, n + 1)$

 $= \text{if } m = 0 \text{ then } n \text{ else } (m - 1) + (n + 1)$

 $= \text{if } m = 0 \text{ then } n \text{ else } m + n$

 $= m + n$

 $= g(m, n)$

- Fact: If a fixed point is defined for every element of the source domain, then it is the unique fixed point (McCarthy’s Recursion Induction Principle).
• $D = (\text{Integer} \rightarrow \text{Integer})$.

 — Let $\tau = \lambda f. \lambda n. f(n + 1)$. Now for every integer a, $g_a = \lambda n. a$ is a fixed point.

 — Which one is “correct”?

 — What do we get by computing the recursion?

 $f(n) \rightarrow f(n + 1) \rightarrow f(n + 2) \rightarrow \cdots$

 — So the fixed point actually computed is $g_\bot = \lambda n. \bot$. This is the minimal fixed point of τ in $D = (\text{Integer} \rightarrow \text{Integer})$, i.e., that fixed point of τ that contains the least amount of information.
Semantics of Recursion

• Principle: The function defined by the recursive definition
 \[f = \tau(f) \]
 is the fixed point \(f^* \) of \(\tau \) that is minimal in
 information ordering among all fixed points of \(\tau \)

• Key Properties:

 — *Uniqueness*: There is only one such minimal \(f^* \) for
 \(\tau \).

 — *Existence*: \(f^* \) always exists: any \(\tau \) constructible by
 a syntactic definition in any programming language
 is monotone and continuous, and hence has such a
 minimal fixed point.

 — *Correctness*: For every input \(n \), \(f^*(n) \) agrees with
 the value (possibly \(\bot \)) that is computed by
 “unwinding the recursion” in the usual way:
 \[f(n) \to \tau(f(n)) \to \tau(\tau(f(n))) \to \]

 — *Realized by Successive Approximation*. The
 sequence of functions \(f_0 = \Omega; f_{n+1} = \tau(f_n) \)
 forms a monotone chain (nondecreasing sequence)
 in \(D f_0 \sqsubseteq f_1 \sqsubseteq f_2 \sqsubseteq \cdots \). This chain
 converges to a limit identical to the minimal fixed
 point: \(f^* = \cup_i f_i \)
Semantics of Recursion (cont.)

- Main result of fixed point semantics: the notion of “function defined by recursion” has a semantic meaning independent of what is obtained by formal computation, but agreeing with it in all respects.

- **Ex:** \(\tau = \lambda f. \lambda x. \text{if } x = 0 \text{ then } 1 \text{ else } f(x - 2) \)

 - Fixed points are
 \[g_n = \lambda x. \text{if } (x \geq 0) \land \text{even}(x) \text{ then } 1 \text{ else } n \]

 - Minimal fixed point is
 \[g_\bot = \lambda x. \text{if } (x \geq 0) \land \text{even}(x) \text{ then } 1 \text{ else } \bot \]

 because \(g_\bot \sqsubseteq g_n \) for all \(n \) in \(D \).

 It is the “most partial” of all the fixed points; i.e., contains the bare minimum of information needed to satisfy the equation \(f = \tau(f) \).
Semantics of Recursion (cont.)

— Pick values and compute by unwinding the recursion

\[f(n) = \tau(f)(n) = \text{if } n = 0 \text{ then } 1 \text{ else } f(n - 2) \]

\[f(3) \rightarrow f(1) \rightarrow f(-1) \rightarrow \cdots \text{ (diverges)} \]
\[f(4) \rightarrow f(2) \rightarrow f(0) \rightarrow 1 \text{ (converges)} \]

and in general \(f(n) \) diverges for \(n \) odd or negative
and converges to 1 for \(n \) even and non-negative.

— Start with “zero-information” approximation \(\Omega \),
and form a chain by successive application of \(\tau \):

\[
\begin{align*}
g_0 &= \Omega \\
g_1 &= \tau(g_0) \\
&= \lambda n. \text{if } n = 0 \text{ then } 1 \text{ else } \Omega(n - 2) \\
&= \lambda n. \text{if } n = 0 \text{ then } 1 \text{ else } \bot \\
g_2 &= \tau(g_1) \\
&= \lambda n. \text{if } n = 0 \text{ then } 1 \\
&\quad \text{ else (if } (n - 2) = 0 \text{ then } 1 \text{ else } \bot) \\
&= \lambda n. \text{if } (n = 0) \lor (n = 2) \text{ then } 1 \text{ else } \bot \\
g_3 &= \tau(g_2) \\
&= \lambda n. \text{if } n = 0 \text{ then } 1 \\
&\quad \text{ else (if } (n - 2) = 0 \lor (n - 2) = 2 \text{ then } 1 \\
&\quad \quad \text{ else } \bot) \\
&= \lambda n. \text{if } (n = 0) \lor (n = 2) \lor (n = 4) \text{ then } 1 \\
&\quad \text{ else } \bot
\end{align*}
\]
\[g_4 = \tau(g_3) \]

\[\ldots \]

It is clear that these functions form a chain, each an extension of its predecessor containing more information (being more defined) than its predecessor. It is also evident that the chain converges to the limit function

\[g_{\perp} = \lambda n. \text{if } (n \geq 0) \land \text{even}(n) \text{ then } 1 \text{ else } \perp. \]
EXP₂: EXP With Recursive Function Definition

(\(\text{EXP}_2 \triangleq \text{EXP}_1 + \text{recursion} + \text{conditional expressions} \))

- Extend Syntax:

 Declaration ::= ...
 |
 \text{recfun} \text{Identifier} (\text{Formal-Parameter}) = \text{Expression}

 Expression ::= ...
 |
 \text{Expression} = \text{Expression}
 |
 \text{if} \text{Expression} \text{then} \text{Expression} \text{else} \text{Expression}

- Extend Semantics:

New semantic rule for recursive function \textit{definition}:

- construct a functional \textit{abstraction} \(\tau \) that

 . binds formal parm to \(\lambda \)-variable \(x \)
 . binds function name to \(\lambda \)-variable \(f \)
 . evaluates body in definition \textit{env} overlain by these bindings
 . constructs \(\tau \) from this body by lambda abstraction

- bind \textit{fixed point} of \(\tau \) to name \(I \)
EXP₂ (cont.)

\[
\begin{align*}
elaborate\left[\text{recfun } I(\text{FP}) = E \right] \text{ env } &= \\
\text{let } \tau = \lambda f . \lambda x . \text{evaluate}[E] \left(\text{env}[I \mapsto f, \text{FP} \mapsto x] \right) & \\
\text{in} & \\
\text{let } \text{func} = \tau \text{func} & \quad \text{— fixed point} \\
\text{in} & \\
\text{bind}(I, \text{function func}) & \\
\end{align*}
\]

— If \(I \) does not occur in \(E \), then this reduces to

\[
\begin{align*}
\text{func} = \tau \text{func} &= \lambda x . \text{evaluate}[E] \left(\text{env}[\text{FP} \mapsto x] \right)
\end{align*}
\]

which reduces to the rule for ordinary functions:

\[
\begin{align*}
elaborate\left[\text{fun } I(\text{FP}) = E \right] \text{ env } &= \cdots
\end{align*}
\]

- Add semantics for \textit{if}, relational operators, etc.
- All other semantics (e.g., function calls) stays the same