L cut ! L cutl

2/26/106
recurb
FOIL 1

Recursion

e Observe that EXP1 — as currently defined — has no
recursion:

Ex: Let f oo be bound to Ax.0 in the environment

u[f oo |- AX.0]. Consider the evaluation of the
following expression:

evaluate[[l et funfoo(n: int) =
if n=0thenOelsen+foo(n-1)
in foo(3)] (ufoo |- Ax.0])

= evaluate[[foo(3) J] (u[foo - Ax.0,fo0 |- f])

where

f = Aa.evaluate[[if n=0thenOelse n+foo(n-1)]
(u[foo - Ax.0,n | a])

= Aaifa=0 then 0 dsea + (Ax.0)(a-1)
= Aa.if a=0 then 0 else a
= Aa.a
Thus. evaluate[[(foo(3) J] (u[foo - Ax.0,fo0 |- f])
= evaluate[(foo(3) J] (u[foo |- f])
= f(3) = (Aa.a) 3 = 3

e First foo isnewly introduced symbol, defined in terms of second
f 00 — which is a pre-existing symbol in environment with a
different binding.

e Analogousto let val x =x * 2in --- — not recursivel

2/26/106
recurb
FOIL 2

Recursion (cont.)

e TO obtain recursion, have to assure that both
occurrences of f oo are bound to the same (not
previously defined & as yet unknown) function.

e Thus f oo will be bound to f Owhere:

f0= Aa.evaluate[[i f n=0thenOelse n+foo(n-1)]
(uffoop fONn}p al)

= Aaifa=0 then 0 edlsea + f(Ja-1)
e Thislast equation is is a fixed point equation of the form
fi=1f0O
where T is a functional given by
T = Ag.Azif z=0 then O elsez+ g(z - 1)

e Note that the functional T is a ‘‘function transformer’’:
T: (int -int) - (int -int)

o Scott: f [Jis defined by the fixed point equation f 0 = 1 f [J where
T = Ag.Az. - - - isafunctional derived from the body of the
recursive definition.

e What is f Ofor this example? What function f [makes the
equation f 0 = 1 fJ**balance’’ ?

0 = AN. !fnzo
An.Od ifn<O

o Now what is the value of the program (expression)?

evaluate[[f oo(3) JJ(u[foo |- fO) = fII3)

2/26/106
recurb
FOIL 3

Recursive Definition

o ML:
- fun fact(n: int) = if n=0 then 1 else n*fact(n-1);
- fact(3);

e Scheme:
>> (define (fact n)
(if (= n 0) 1 (* n (fact (-1+ n)))))
>> (fact 3)

— Two kindsof | et clausein Scheme: (let ...) for
non-recursive definition and (letrec ...) for recursive,
Top-level definitions (as above) are assumed to be recursive.

o Define EXP, & EXP; + recursion + conditional expressions:

— Add syntax
Declaration ::=...
| recfun Identifier (Formal-Paraneter)
= Expression

— example
|l et recfun fact(n:int) =
ifn=0thenlelsen*fact(n-1)
in fact (3)

e In each case, what is the meaning of the ‘“body’’ or RHS B of
the recursive definition?

— afunctional that transforms a function to a function

— 1 = Af.evaluate[[B]] (u[fact |- f])
= M. Axif x=0 then 1 else x-f(x - 1)

2/26/106
recurb
FOIL 4

Recursive Definition (cont.)

EX:

T (AX.x+ 1)
= M. if x=0 then 1 ese x:(Az.z+1)(x - 1)
= M. if x =0 then 1 else x?
= (A\x.x?)[0 b 1]

T (AX.X)
= AX.if x=0 then 1 dse x'(Az.2)(x — 1)
= AX.if x=0 then 1 ese x:'(x — 1)
= (A x.x% - X)[0 | 1]

T (AX.1)
= AX.if x=0 then 1 ese x:(Az.1)(x — 1)
= AX.if x=0 then 1 ese x-1
= (Ax.X)[0 b 1]

T (Ax.x!)

= AX.if x=0 then 1 dse x'(Az.2!)(x — 1)
= AX.if x=0 then 1 else x:(x — 1)!
= (Ax.x!)

o Notice that Ax.x! is afixed point of the functional 1
e Meaning of fact in let recfun fact(n) =Bin ---?

— Want evaluate[[f act J] = function f Osuch that
f 0= evaluate[[B]] (u[fact |- f0O)

— l.e,f0= (Af.evaluate[[B]] (u[fact - f])) fO

— ie,fO=1f0
[Want a function that is the fixed point of t

2/26/106
recurb
FOIL 5

+

Recursive Definition (cont.)
o Solution: f 0= Az.Z!

— Veify:
tfd=1(Az.2!)
= AX. if x=0 then 1 dse x*(Az.2!)(x - 1)
=AX. if x=0 then 1 ese x*(x - 1)!
= AX. if x=0 then 1 else x!
= AX. X!
=f0

— O fO= Az.z! isafixed point
e Questions Remain:

— IsAz.z! theright fixed point ? (there might be
several)

— What is the connection between this fixed point
and the function that is actually computed by
recursion?

2/26/106
recurb
FOIL 6

+

Fixed Points

o Definition: Let T : D - D be a mapping from a domain
to itself. xUisafixed point of D = x[= 1(x0)

Examples from various domains;

e D = R To find aroot of x3 — x2 — x — 1=0,
divide through by X2 to get
x = 1+ (1/x) + (1/x?) = 1(X)
The positive root x[1= 1.839 - - - isfound by
iterating: Xg = 1, Xp+1 = T(Xp)

e D = Integer.
— T = AX.X + 1 has no fixed point (except).
— T = AX.x? has two fixed points.

— T = AX.X hasinfinitely many fixed points — any
point in D.

e D = (Integer - Integer).

— 1T = A .AX.f(X) has any function in D as fixed
point

— T = AfAx. ifx=0 then 0O dsex + f(x — 1)
has fixed point f 1= AX.x(x + 1)/2

2/26/106
recurb
FOIL 7

+

T = AM.AX.X + f(x — 1) has the fixed points
fcd = AX.X(X + 1)/2 + c, one for each c in D.
Note that fp = Ax.00 = Q.

T = Af.Ax If f(X) =0 then 1 ese 0 hasthe
fixed point f = Ax.00 = Q.

T = AMf.AX. if x=0 then a else f(x) has as
fixed point f Clany f such that f(0) = a.

= (Integer xInteger — Integer).

Consider the fixed point equation
f(m,n) = 1(f)(m,n)
=ifm=0 thenn esef(m-1,n+ 1)

g(m, n) = m+ nisafixed point. Verification:

T(g)(m,n) =if m=0 thenn edseg(m-1,n+ 1)
=ifm=0 thenn else(m-1) + (n+ 1)
=ifm=0 thenn edsem+n
=m+n

g(m, n)

Fact: If afixed point is defined for every element
of the source domain, then it is the unique fixed
point (McCarthy's Recursion Induction Principle).

e D

2/26/106
recurb
FOIL 8

+

= (Integer - Integer).

Lett = Af.An.f(n + 1). Now for every integer
a, 0q = An.ais afixed point.

Which oneis ‘‘correct’’ ?
What do we get by computing the recursion?
f(n) - f(n+1) - f(n+2) -

S0 the fixed point actually computed is

g = An.[. Thisisthe minimal fixed point of 1
in D = (Integer - Integer), i.e., that fixed point
of T that contains the least amount of information.

2/26/106
recurb
FOIL 9

+

Semantics of Recursion

e Principle: The function defined by the recursive
definition
f = 1(f)
IS the fixed point f Jof T that is minimal in
information ordering among all fixed points of t

o Key Properties:

— Uniqueness. There is only one such minimal f Cfor
T.

— Existence: f always exists. any T constructible by
a syntactic definition in any programming language
IS monotone and continuous, and hence has such a
minimal fixed point.

— Correctness. For every input n, f [{n) agrees with
the value (possibly [J) that is computed by
“‘unwinding the recursion’’ in the usua way:

f(n) - t©(f(n) - t(t(t(n))) -

— Realized by Successive Approximation. The
sequence of functionsfg = Q; fr+1 = T(fp)
forms a monotone chain (nondecreasing sequence)
inDfo C f1 C fp © --- Thischan
converges to a limit identical to the minimal fixed
point: f 0 = [fj

2/26/106
recurb
FOIL 10

+

Semantics of Recursion (cont.)

o Main result of fixed point semantics. the notion of
““function defined by recursion’’ has a semantic
meaning independent of what is obtained by formal
computation, but agreeing with it in all respects.

e EX:T = AfAXIf x=0 then 1 ese f(x — 2)

— Fixed points are
On = AX.if (x=0) Oeven(x) then 1 else n

— Minimal fixed point is
gg = AX.if (x=0) Oeven(x) then 1 else [
because g [gn for al ninD.

It is the *‘“most partial’’ of al the fixed points; i.e.,
contains the bare minimum of information needed
to satisfy the equation f = t(f).

2/26/106
recurb
FOIL 11

+

Semantics of Recursion (cont.)

— Pick values and compute by unwinding the

recursion
f(n) = t(f)(n) =ifn=0 then 1 else f(n - 2)
f(3) - f(1) - f(-1) - --- (diverges)

f(4) - f(2) - f(0) - 1 (converges)
and in general f(n) diverges for n odd or negative
and converges to 1 for n even and non-negative.

— Start with *‘zero-information’” approximation Q,
and form a chain by successive application of T:
do = Q
g1 1(90)

Anif n=0 then 1 ese Q(n - 2)

An.if n=0 then 1 else [

g2 1(91)
= An.if n =0 then 1
else (if (n—2) =0 then 1 else)
= An.if (n=0) O(n=2) then 1 ese [
g3 = 1(92)

An.if n=0 then 1

gse (if (N-2)=00(n-2) =2 then 1
else)

= Anif (n=0) O(n=2) 0n=4) then 1
else [

2/26/106
recurb
FOIL 12

J4 = 1(93)

It is clear that these functions form a chain, each
an extension of its predecessor containing more
information (being more defined) than its
predecessor. It is also evident that the chain
converges to the limit function

g = An.if (n=0) Oeven(n) then 1 ese [

2/26/106
recurb
FOIL 13

EXP»>: EXP With Recursive Function Definition

(EXP, & EXP; + recursion + conditional expressions)

o Extend Syntax:
Declaration ::=...
| recfun ldentifier (Formal-Paraneter)
= Expression
Expression::=...
| Expressi on = Expression
| | f Expression then Expression
el se Expression

e Extend Semantics:
New semantic rule for recursive function definition:

— constuct a functional abstraction T that
. binds forma parm to A-variable x
. binds function name to A-variable f
. evaluates body in definition env overlain by these
bindings
. constructs T from this body by lambda abstraction

— bind fixed point of T to name |

2/26/106
recurb
FOIL 14

+

EXP> (cont.)

elaboratef[recfun I(FP) =E] env =
let T = Af . AXx . evaluate[E]] (env[l |- f,FP |- X])

in

let func = 1 func — fixed point

In

bind(Il, function func)

— If 1 does not occur in E, then this reduces to

func = T func = Ax. evaluate[[E] (env[FP |-~ X])
which reduces to the rule for ordinary functions:
elaboratef[f un [(FP) = EJ env =

o Add semanticsfor if , relational operators, etc.

o All other semantics (e.g., function calls) stays the same

