L cut !

L cutl

2/26/106
AT&T
FOIL 1

The Store
primitive domains Location , Storable
domains contain [
locations can be unallocated (unused)
locations can be alocated but undefined

store: a mapping from locations (refs) to values

Store = Location - (stored Storable + undefined + unused)

Injection maps for tagged union:

stored : Storable - (stored Storable + undefined + unused)
undefined : (stored Storable + undefined + unused)

unused : (stored Storable + undefined + unused)

2/26/106
AT&T
FOIL 2

+

Update Operator

[a > D] isan operator that takes a function f to
another function f[a |- b]. It iswritten postfix.

Definition: Letf : X - Yandlet a, b be any
values. The functionf[a |- b] :
XoO{a} - YO({b} isdefined by:

b if x=a
f(x) if xza

(flal- b])(x) ={

We can extend this notation to multiple successive
changes as follows;

flar b bi,a2 b b2] =(f[a1 - bi])[az b
bo]

Example: Semantics of assignment. Suppose the
Identifier x is bound to the location |. Then executing

the assignment x: = e has the effect of changing
memory:

execute[x: = e]] sto = sto[l |» eval[[e] stO]

2/26/106
AT&T
FOIL 3

Auxiliary Functions

empty —store : Store

allocate . Store - Store X Location

deallocate . Store x Location - Store

update . Store x Location x Storable - Store
fetch . Store x Location - Storable

empty —store = A loc . unused

allocate sto =
let loc = any-unused —location(sto) in
(sto[loc |» undefined], loc)

deallocate(sto, loc) =
sto[loc |- unused]

update(sto, loc, sthle) =
sto[loc |- stored stble]

fetch(sto, loc) =
let stored —value(stored stble) = stble
stored —value(undefined) = [
stored —value(unused) = [
In
stored —value(sto(loc))

2/26/106
AT&T
FOIL 4

Example
A simple language with expressions and assignment

Syntax

Command ;.= ldentifier := Expression
| Command ; Conmand

Expression ::= Expression + Expression
| Nuner al
| Identifier
Semantics

semantic function binds names to locations:
location : | denti fier - Location
semantic map:

execute : Conmand - Store - Store

execute[[| : = EJ] sto =
let int = evaluate[E]] sto
in
update(sto, location I, int)

execute[Cq ; Co] sto =
let sto’ = execute[C1] sto
in
execute[C»] sto’

