Csc 520 homework 1 23 January 2006
DUE: Monday 6 February 2006

READING
e Complete the reading assigment regarding syntax listed on the web page.
e Watt text: Chapter 3 (Semantics) — Sections 3.1-3.2; Chapter 5 (Theory) — Section 5.1
e Scott text: Chapter 3 (Names, Scopes and Bindings)

PROBLEMS
General Instructions for all written work in CSc 520: Please submit your solutions to homework assignments
using a program capable of producing typeset output with the appropriate type faces, symbols and notations
peculiar to programming language semantics (e.g., TeX, LaTeX, troff, MWrd). Do not submit
handwritten work.
Diagrams or pictures can be done free-hand; a drawing tool like xfi g is preferable.

Start each solution on a new page, identify the problem clearly, and number each page. Use one side of the
paper only. Submit answers in the envelope that is labeled with your name (these envelopes will be provided in
class) Do not seal the envelope, so that it may be reused for several assignments.

Clarity and conciseness in writing will earn points, so revise your work before submission, and consider how
your work is presented.

Some problems require syntactic or semantic specification. Your syntactic/semantic descriptions should include
thorough comments to explain the ideas behind each specification in clear technical English. The existence of a
formalism for describing syntax or semantics does not relieve you of this responsibility, any more than it does
when you are writing code. Well-chosen examples are never a bad idea, when a difficult point is being
explained.

In some problems, a range of different but equally reasonable semantics is possible. Grades will not be based
on the "rightness' of any particular choice, (as long as it is sensible, to the point, and does not trivialize the
problem) but on how clearly and thoroughly you describe your choice, both informally in your explanation and
rigorously in your semantic/syntactic descriptions.

Some problems require *‘experiments’’ to find out what actually happens in a compiler, or to test the meaning of
a construct as it is actually implemented. For such experiments, aways give the full context: particularly the
specific compiler used, version and date, manufacturer and the hardware and OS used. This is particularly
important if you use compliers other than the ones installed on | ect ur a.

1. Make
Scott text, Problem 1.5.

2. Machine Dependence
Scott text, Problem 1.4. Answer for Java and Scheme (not ADA and Pascal).

3. Expression and Assignment Semantics in Pascal, C++, C
In IEEE/ANS| Standard PASCAL T, an assignment statement has the form

variable —access ;= expression

A "variable-access" is one of four things: an "entire-variable", which is just a simple identifier like x or foo, a
"component-variable" like a[i] or ptrt .data, an "identified-variable" like ptrt .father 1, or a "buffer-variable"
like inputt. The official dictum (86.8.2.2) is. ‘‘The decision as to the order of accessing the variable and
evaluating the expression shall be implementation-dependent: the access shall establish a reference to the vari-
able during the remaining execution of the assignment-statement”. You can’t change horses in mid-stream, but

TAmerican National Standard Ingtitute, IEEE Standard Pascal Computer Programming Language: an American National Standard
(ANSI/IEEE 770 X3.97-1983), New Y ork: Institute of Electrical and Electronics Engineers, 1983.

hwl -1-

you get to say which bank the horse starts on.

(a) Could there be a situation in Pascal where this evaluation order makes a difference in the outcome of
the assignment? Could this affect portability of code? If so, give a concrete example. If not, explain
why not.

(b) Design an experiment to discover the "implementation-dependent” evauation order for a compiler to
which you have access, and explain your findings. Edit and comment your output listing for clarity
and compactness. Do not include irrelevant commands, but do include adequate information (file con-
tents, etc.) to alow the experiment to be duplicated.

The assignment statementt in C++ can be more complex, partly because there is a richer repertoire of legal
EXPressions.
(c) What is the standard for C++ that is analogous to the discussion above of ANSI PASCAL? Is the

evaluation order in an assignment statement determined by the language semantics? What is
guaranteed by the semantics, and what is not?

(d) Give the meanings of the following two fragments, or discuss any difficulties involved, based on your
answer to (c):

i =7, 0 = v[i+tH];
i =7, i++

(e) In the C language, the C Standard says that it is undefined to modify a variable or location, and then
try to use its value at another point, unless it is definitively known which of these actions (modification
or use) will occur first. So, for example, i ++ * i ++ does not meet the standard.

Discuss the assignment a[i] = i ++; in terms of this prohibition in the Standard. What are the
possible meanings of this fragment? For each of these possible meanings, give C code that will force
that outcome to occur on any C compiler.

(f) You have learned from above that some programming languages do not completely specify the evalua-
tion order in arithmetic expressions and assignment statements. Based on your knowledge of instruc-
tion sets and how machine code is generated by a compiler, what is the reason for this
‘‘underspecification’”” in programming languages? Give a concrete example where such
‘‘underspecification’” would be important (or equivalently, where complete specification would create
difficulties.)

4. Semantics of Array Assignments

When ‘‘structured’’ variables, such as arrays or records, are involved, the semantics of even the assignment
statement becomes complex. If you do not believe this, consider the following problem.

(a) Just after the following C/C++ assignment executes, is it always true that (a[a[i]] == 1)7?
That is, it is true in all possible contexts? If yes, explain in detail the effect of executing the above.
If no, give a counter-example.

a[a[i]] =1

(b) Can the order of evaluation of sub-expressions affect the meaning of this assignment?
(c) One might conjecture that a reasonable semantic rule for assignment in C/C++ would state:

e the r-value of targ after executing assignment targ = source; is equal to the r-value of source
before executing the command.
This sounds eminently reasonable. |s this conjectured rule correct? [HINT: Consider the assignment
in part (a).]

fMargaret A. Ellis and Bjarne Stroustrup, The Annotated C++ Reference Manual, Reading: Addison-Wesley, 1990.

hwl -2-

e If it is correct, argue why.

e If it is not correct, give a counterexample, and then state the correct rule as clearly and com-
pactly as possible.

(d) Give an example similar to part (a) where pointers, not arrays, are used.

5. Scope vs. Lifetime
Scott text, Problem 3.4. Use 3 different programming languages in your 3 examples.

6. Criteria for Language Design
Illustrate each of the following "Criteria for Language Design", discussed so far during lecture:

(1) simplicity

(3) reliability

(4) fasttrandation

(5) efficient object code

(6) orthogonality

(7) language objects first-class
(8) transparent datatypes

For each criterion, give one example for which it is satisfied, and one example for which it is violated. Give con-
crete examples, not generalities, and do not repeat examples given in class. Choose your examples from among
languages such as: APL, LISP, ML, Scheme, Icon, SNOBOL, C, C++, PASCAL, Modula2, ADA, Java, C#
Other languages mentioned in the text may be used. A partia list of language processors available in the
Department is attached as an appendix below.

Give references to the language documentation or sources you use for your examples. Possible sources are:
papers from the literature, the Scott text, references on library reserve, language reference manuals, and particu-
lar compilers/interpreters accessible to you in the Department or elswhere. In the latter case, be explicit about
the language processor (e.g., "Sun Pascal 4.2 Compiler pc" not just "a Pascal compiler”.) Translators available
on home computers are fine, but cite them explicitly by manufacturer, version, date and hardware.

APPENDIX: Language Processors

Lectura (Linux)

C. cc, gcc, version 4.0.2, /usr/bin/fgcc. (cc is alink to gcc)
C++: g++, version 4.0.2, /usr/bin/g++.

Icon: icont, icon, version 9.4.2, /usr/local/bin/icon
java: version 1.5.0, /usr/local/bin/java

pascal : free pascal conpiler 2.0.2, /usr/bin/fpc
prolog: GNU Prolog 1.2.16, /usr/bin/gprolog

schene: unb-schene, version 3.2, /usr/bin/unb-schene
m: objective m 3.09.1, /usr/bin/ocan

[isp: GNU CLISP 2.37, /usr/bin/clisp

Haskel |, version 6.4.1, /usr/bin/ghc

Ruby, version 1.8.4, /usr/bin/ruby

Pyt hon, version 2.4.1, /usr/bin/python

perl, version 5.8.6, /usr/local/bin/perl

tcl, version 8.4.9, /usr/bin/tcl

hwl -3-

