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This paper describes an integrated procedure 
mechanism that permits procedures to be used as 
recursive functions or as coroutines. This integration is 
accomplished by treating procedures and their 
activation records (called environments) as data objects 
and by decomposing procedure invocation into three 
separate components at the source-language level. In 
addition, argument binding is under the control of the 
programmer, permitting the definition of various 
methods of argument transmission in the source 
language itself. The resulting procedure mechanism, 
which is part of the SL5 programming language, is well 
suited to goal-oriented problems and to other problems 
that are more readily programmed by using coroutines. 
Several examples are given. 
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1. Introduction 

The procedure has always been an important com- 
ponent of programming languages. Recognition of the 
procedure as one of the most powerful tools for abstrac- 
tion [6] has focused substantial attention on procedure 
mechanisms [10]. Recursive functions have become ac- 
cepted in high-level languages, but coroutines, in spite of 
their long history [19], have been confined mainly to 
operating system applications. 

Recent increased interest in search and backtrack 
algorithms has focused more attention on coroutines. 
The primary areas of application have been AI languages 
[2, 20] and string pattern matching [8]. Other areas of 
interest include simulation [ 17], applicative languages [4, 
23], and extensible languages [27]. 

While several languages have coroutine facilities [1, 
2, 25, 26, 28], these facilities are generally designed 
around specific applications and areas of interest, rather 
than being integrated components of the procedure 
mechanism of the language. 

The SL5 programming language was designed as a 
research tool for investigation into high-level program- 
ming language facilities and programming methodolo- 
gies in string and structure processing. Mechanisms for 
supporting search and backtrack algorithms were an 
important consideration, and motivated a procedure 
mechanism from which coroutine programming follows 
naturally. This procedure mechanism is characterized by 
the following features: 

1. Procedures and activation records for procedures 
(called environments) are source-language data ob- 
jects. 

2. Procedure invocation is decomposed into three sepa- 
rate components available to the programmer at the 
source-language level. 

3. The interpretation of identifiers (scoping) is dynamic 
and is designed to provide for a method of interpro- 
cedure communication that is useful for coroutine 
programming. 

4. Argument binding and transmission are under the 
control of the programmer. 

This paper describes the SL5 procedure mechanism 
and illustrates its use. 
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2. The SL5 Programming Language 

SL5 is similar in many respects to SNOBOL4 [13] and 
has most of the facilities of SNOBOL4. SL5 departs in 
many respects from SNOBOL4, most notably as described 
above and in its syntax and control structures. It has an 
expression syntax with reserved words. Expressions pro- 
duce both values and signals, with signals being used 
primarily for control purposes. 

Runtime flexibility, motivated by the research ori- 
entation of its expected applications, is emphasized. SL5 

Communications May 1978 
of  Volume 21 
the ACM Number 5 



supports many data types, but has no type declarations. 
Type checking and coercion, where appropriate, are 
performed dynamically. The remainder of  this section 
gives a brief introduction to SL5 to provide a framework 
for the material in the rest of  this paper. A summary of  
the language is given in [12]. 

2.1 The Result of SL5 Expressions 
An SL5 expression returns a result, which is com- 

posed of  a value and a signal. The value component of  
a result corresponds to the conventional concept of  a 
value. The signal component of  a result is a nonnegative 
integer and is used for control purposes. For  example, 
built-in control expressions in SL5 are driven by two 
signals--success and failure--which are indicated by 1 
and 0, respectively. A result is indicated by {value, 
signal}. The selectors V and S are used to refer to the 
value and signal components of  a result, respectively. 
For example, if r is a result, V(r) stands for the value 
component of  the result r. 

The procedure mechanism allows the programmer to 
transmit nonnegative integers as signals and to attach 
whatever meaning to those signals that is needed for the 
specific application. In this paper, the names "success" 
and "failure" are used to mean 1 and 0, respectively. 

The V component of  a result can be a variable, that 
is, a place where a value resides, such as a reference to 
an identifier. The term dereferencing refers to obtaining 
the value of  a variable. This operation returns a result 
containing the value of  the variable. 

The dereferencing operation distinguishes interpre- 
tation from evaluation. Interpretation is the execution of 
the basic operation given in an expression. Evaluation is 
the combination of  interpretation followed by derefer- 
encing. The basic operations of  interpretation and eval- 
uation are an integral part of  the procedure mechanism. 

A result may be composed by using the & opera- 
tor. The expression el & e2 returns the result {V(e~ ), 
V(ee)}. The signal components of  el and e2 are ignored. 

2.2 Control Expressions 
Programming languages typically provide control 

structures in the form of  statements, such as the familiar 
if-then-else construct. In SL5 control operations are han- 
dled by expressions, which are referred to as "control 
expressions" since their primary purpose is to control 
program execution. Although SL5 control expressions 
generally resemble control structures in other languages, 
they are driven by signals, rather than by boolean values. 
An example is 

if  e, then  e2 e l se  e.~ 

The expression el is evaluated first. If  the resulting signal 
is 1, e2 is evaluated. Otherwise, e3 is evaluated. For 
example, in 

if x > y then  x := x - y e l se  y .---- y - x 

i f x  is greater thany,  the difference o f x  a n d y  is assigned 
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to x. Otherwise, the difference o f y  and x is assigned to 
y. The if-then-else construct is itself an expression and 
returns a result, which is the result (value and signal) of  
e2 or e3 depending on the signal of  el. 

SL5 has a large repertoire of  control expressions in 
order to facilitate programming. The following control 
expressions are representative: 

while  ej do e2 

unless  e~ do e2 

c a s e  e of  fi:e,; ... ln:e.; de fau l t :  e~+j end 
repeat  e 

ej and  e2 

el o r  e2 

{el; ... ; en) 

The while and unless expressions have conventional 
interpretations consistent with the signaling mechanism. 
In the case expression, II . . . . .  In can be any literals 
(strings, integers, and so on). The repeat expression 
evaluates e repeatedly until e signals failure. In the 
expression el or e2, el is evaluated first. If  el succeeds, its 
result becomes the result of  the control expression. Oth- 
erwise, e2 is evaluated and its result becomes the result 
of the control expression. The and expression is comple- 
mentary; if the evaluation of  el succeeds, e2 is evaluated 
and its result is the result of  the control expression. If  
evaluation of  el fails, the result of  the and expression is 
the result of  el. The braces enclose a sequence of  expres- 
sions. The result of  this control expression is the result of  
the last expression in the sequence. 

3. Procedure Creation 

In SL5, procedures are data objects. A procedure is 
created by the expression 

procedure  ( { id ) l ,  ( id)2  . . . . .  ( i d )n )  ( d e c l a r a t i o n s )  ( b o d y )  end 

where (id)l through (id),  are the formal arguments, 
(declarations) are of the form given below, and (body) 
is a sequence of  expressions separated by semicolons. 
For example, 

g c d  := p r o c e d u r e  (x,  y )  

while  x -  = y do 
if  x > y then x .--- x - y e l se  y .--- y - x;  

return x 

end; 

assigns to gcd a procedure that computes the greatest 
common divisor of  its arguments. Procedures can be 
created at any time during program execution and can 
be manipulated as values throughout the program. 

4. Decomposition of Procedure Activation 

In most programming languages, the invocation of  a 
procedure is considered to be an atomic operation. In 
SL5, the invocation of  a procedure is decomposed into 
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three distinct components that are available to the pro- 
grammer at the source-language level. This decomposi- 
tion provides the linguistic mechanism for SL5 proce- 
dures to be used as recursive functions or as coroutines. 
The steps in this decomposition are: create--creat ion 
of  an environment for the procedure; with--bind- 
ing of  the actual arguments to an environment; 
resume--resumption of  the execution of  the procedure 
for an environment. 

4.1 Environment Creation 
The expression 

e .---- create  p 

creates an environment for the procedure p and assigns 
this environment to e. An environment for a procedure 
contains the storage for variables corresponding to the 
identifiers appearing in the procedure. An environment 
also contains the procedure continuation point, which 
indicates where execution is to begin when the environ- 
ment is activated. When an environment for a procedure 
is created, the continuation point is at the beginning of  
the procedure. When a procedure returns, the continua- 
tion point is set to the position following the point of  
return. An environment is a source-language data object 
that can be manipulated as such. 

The environment in which the create p is executed is 
called the creator for that environment. Each environ- 
ment contains information identifying its creator. 

4.2 Argument Binding 
The binding of  the actual arguments to an environ- 

ment is accomplished by the with expression. The expres- 
sion 

e with ( a b  a~ . . . . .  an) 

transmits the actual arguments, a l  through an, to the 
environment e and returns that environment as its value. 
The methods by which the actual arguments are trans- 
mitted to the environment are controlled by the argu- 
ment transmitters associated with the procedure for 
which e is an environment. This mechanism is described 
in Section 6. In the absence of  any explicit specification 
of  transmitters, arguments are transmitted by value, that 
is, the expressions al through a,, are evaluated and the V 
components of  their results are assigned to the formal 
arguments for that environment. If  the evaluation of  any 
of  the argument expressions fails, the with expression is 
aborted and fails. 

4.3 Procedure Resumption 
A procedure is activated by the resume expression. 

In its simplest form, the resume expression is written 

resume e 

where e is an environment. In the discussion that follows, 
this operation is referred to as "resuming e." 

The resume expression causes the execution of  the 
current procedure to be suspended and e to be resumed. 
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The current procedure is suspended within the resume 
expression itself. When the environment is subsequently 
reactivated, the resume expression produces the result 
that is provided by the environment causing the subse- 
quent reactivation. 

The general form of  the resume expression is 

resume (e, r) 

This expression suspends the current environment, re- 
sumes e, and transmits the result of  interpreting r to e. 

The resume expression also establishes the resumer 
for an environment-- the environment that caused its 
most recent resumption via the resume expression. Note 
that an environment's resumer changes during the course 
of  program execution, whereas the creator, defined 
above, remains constant, since an environment is created 
only once. 

4.4 Procedure Returns 
The resume expression provides one method for com- 

municating results among procedures. The other method 
is by the return expression. While the resume expression 
requires an explicit indication of  the environment to 
which control should be transferred, the return expres- 
sion returns control to the resumer of  the current envi- 
ronment. The expression 

return r 

returns the result of  interpreting r. If  r is omitted in 
return, the null string is assumed. Like resume, the return 
expression causes the current procedure to be suspended. 
When the procedure is subsequently reactivated, the 
result transmitted becomes the result of  the return 
expression. 

The important difference between return and resume 
is that return does not establish a new resumer for the 
environment to which control is returned. Only an ex- 
plicit resume establishes a resumer. 

Since the signals success and failure are used so 
frequently in SL5, the expressions 

succeed r and  fail r 

are provided as equivalents, respectively, to 

return r & I an d  re tu rn  r & 0 

Note that a value is returned even if the signal is failure. 
I f  r is omitted, the null string is assumed. 

4.5 Functional Notation 
The abbreviated notationf~ el, e2 . . . . .  e.)  may be used 

for the usual recursive function invocation. This form of  
procedure invocation is equivalent to 

resume ( e r e a t e f w i t h  (el, e2 . . . . .  e n d  

Note that the functional notation results in the in- 
vocation of  the procedure that is the current value o f f ,  
not a procedure namedf .  This feature permits functional 
composition since procedures are data objects. For ex- 
ample, f l x ) ( a ,  b)  first invokes the procedure given by 
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the value o f f  with the argument x. Assuming that f 
returns a procedure as its result, that procedure is then 
invoked with the arguments a and b. 

4.6 Two Simple Examples 
Assuming that gcd has been assigned the procedure 

given in Section 3, the conventional function invocation 
of gcd 

z := gcd(45, 27); 

results in z being assigned 9 and is equivalent to the 
decomposition 

c ~ c r e a t e  gcd; 
c ~ c wi th  (45,  27);  

z := resume c; 

Note that the expression return x in gcd transmits the 
result {9, success}, which in turn becomes the result of  
the expression resume c. The V component of  that result 
is then assigned to z. The procedure gcd is not written to 
be used as a coroutine, and resumption of  c after it has 
returned would be a programming error. 

To illustrate a simple application of coroutine usage, 
consider a label generator for generating a series of  
labels: 

genlab .--- procedure (prefix, n, limit) 
repeat 

i fn  < limit then {succeed pref ix  II n; n ~ n + i} 
else fail 

end; 

(The operator II denotes string concatenation as in PL/I .)  
The arguments prefix, n, and limit indicate the prefix for 
the labels, the initial label number, and the maximum 
label number, respectively. For example, 

t e n  .--- c r e a t e  genlab with ( " L " ,  10,100); 

assigns to ten an environment that generates the label 
sequence L10, LI  1 . . . . .  LI00. To obtain the next label in 
this sequence, ten is resumed: 

x .--- resume gen; 

After the label L100 has been generated, subsequent 
resumptions of  ten result in failure. The sequence may 
be reinitialized by retransmitting the arguments. For 
example, 

t e n  with ( " L " ,  10,1000); 

resets ten with the same prefix, the original value of  n, 
and a limit of  1000. 

4.7 Generalized Transfer of Control 
As illustrated by the examples above, coroutine pro- 

gramming follows naturally from the treatment of  envi- 
ronments as data objects and the decomposition of  pro- 
cedure invocation. While experience indicates that the 
implicit updating of  the resumer that is performed by the 
resume operation is usually desirable, there are situations 
in which it is necessary to resume an environment with- 
out changing the resumer. 
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This kind of  resumption is accomplished by a more 
general form of  the return expression. In most circum- 
stances, the return expression is used to return from an 
environment to its resumer. The return expression also 
may be used to return to an arbitrary environment. The 
return expression is used in this fashion to resume an 
environment without changing the resumer. 

The general form of  the return expression is 

r e t u r n  r to e 

This expression suspends the current environment, re- 
sumes the execution of  e, and transmits the result of  
interpreting r to e. If  r is omitted, the null string is 
assumed. 

To facilitate the construction of  general control re- 
lationships, the built-in functions creator(e) and resu- 
mer(e) are provided to specify the creator and resumer 
of  e, respectively. If  e is omitted, the current environment 
is assumed. Thus, the return expression 

return r 

is equivalent to 

return r to resumer ( ) 

5. The Interpretation of Identifiers 

In search and backtrack algorithms, the relationships 
between procedures often are most conveniently derived 
from data. This motivates a procedure mechanism in 
which the binding of  identifiers is dynamic (during pro- 
gram execution), rather than static (during program com- 
pilation). 

Declarations in SL5 procedures are used to determine 
the scope of  identifiers. The scoping conventions in SL5 
are similar to the dynamic scoping conventions [7] used 
in SNOBOL4 and LISP. 

An identifier may be declared either public or private 
in declarations having the form 

public ( id) j ,  (id)2 . . . . .  (id)n 
private ( id)l ,  (id)2 . . . . .  ( id)n 

An identifier that does not appear in any of  the decla- 
rations for the procedure in which it is used is termed 
nonlocal. 

5.1 Private Identifiers 
The scope of  a private identifier is restricted to the 

procedure, and only the procedure, in which it is de- 
clared. Private identifiers are used for data that is local 
to a particular environment for a procedure. For exam- 
ple, when a procedure is used as a coroutine, private 
identifiers can be used to "remember" information from 
one resumption to the next. This type of  facility is useful 
when procedures are used for goal-oriented program- 
ming involving backtracking. Unless otherwise declared, 
the formal argument identifiers for a procedure are 
considered to be private identifiers. 
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5.2 Public and Nonlocal Identifiers 
Public identifiers provide the principal means of  inter- 

procedure communication. Public declarations provide 
the information that is necessary to determine the scope 
of  nonlocal identifiers. This determination is guided by 
the way in which environments are connected to each 
other, namely, as descendants. An environment is the 
descendant of  its creator. Descendants of  an environment 
possess the same transitive closure property that descen- 
dants shown in lineal charts do, that is, an environment 
is a descendant of  its creator, its creator's creator, and so 
o n .  

The scope of  nonlocal identifiers is determined when 
an environment for the procedure is created, and is 
obtained by examining the creation history. For  each 
nonlocal identifier in a newly created environment, a 
search is performed by examining each successive creator 
until an environment containing a public identifier by 
the same name is found. If  the search is successful, the 
nonlocal identifier henceforth refers to that public iden- 
tifier. I f  this search fails, the nonlocal identifier is consid- 
ered to be erroneous. 

These conventions give SL5 aspects of  both dynamic 
and static scope. The initial interpretation is dynamic 
and is made at the time of  creation. Once an environment 
is created, the interpretation of  nonlocal identifiers re- 
mains static throughout the lifetime of  the environment. 
As a result, environments are similar to lambda closures 
(FUNARGS) in LISP [21]. One of  the important differences 
between lambda closures and environments is that en- 
vironments include an implicit indication of  their exe- 
cution state, which is used to continue execution upon 
resumption. Implementation of  a similar mechanism 
using lambda closures requires that each execution state 
be represented explicitly by a separate lambda closure 
[24]. 

5.3 Accessing Identifiers in Environments 
The identifiers in an environment are attributes of  that 

environment. They may be accessed from outside the 
environment by using the environment reference opera- 
tor, which is indicated by an infix dot. The expression e.i 
refers to the identifier i in the environment e. The 
environment reference operator provides an external 
means of  fetching and setting the values of  identifiers in 
inactive environments. For  example, the sequence num- 
ber in the label generator described in Section 4 can be 
reset as follows: 

gen.n ~ m; 

6. Argument Binding and Transmission 

The with operator is used to bind the actual arguments 
to an environment. The method by which this is done is 
determined by the argument transmitters associated with 
the arguments. Transmitters may be built-in or program- 
mer-defined procedures or environments. 

396 

Transmitters are specified when a procedure is created. 
For example, 

gcd := procedure ( x:val, y:val) ... end; 

creates a procedure with two arguments, x and y, each 
of which has the transmitter that is the value of  the 
identifier val. In general, a formal argument of  a proce- 
dure has the form 

[(scope)] (id) [: (exp)]  

where (scope) is either public or private, (id) is the 
formal argument, and the value of  (exp) is the transmit- 
ter for that argument. The transmitter expression (exp) 
is evaluated when the procedure is created. 

For  example, the procedure heading 

procedure (i, public x:val, public y:val, private z:ref) 

specifies a procedure with four arguments. The first 
argument, i, has the default scope and transmitter--  
private and val. The second and third arguments, x and 
y, have the same transmitter and are declared public. 
The fourth argument, z, is private and its transmitter is 
ref, which transmits arguments by reference. 

6.1 Transmission 
When the with expression is invoked, either implicitly 

or explicitly, each actual argument expression is passed 
to the transmitter associated with the corresponding 
formal argument for the procedure. The value returned 
by the transmitter is established as the value of  the 
formal argument identifier. If  any of  the transmitters 
fails, the with expression fails, and any remaining argu- 
ments are not transmitted. 

If  the number of  actual arguments exceeds the number 
of  formal arguments, the excess argument expressions 
are ignored and are not evaluated. If  there are fewer 
actual arguments than formal arguments, null strings are 
provided for the omitted arguments. In this case, the 
transmitter for an omitted argument is invoked with the 
null string as argument. 

6.2 Built-in Transmitters 
The value of  val is a built-in transmitter that transmits 

arguments by value. In this case, the actual argument 
expression is evaluated and, provided that evaluation is 
successful, the value component of  the result is estab- 
lished as the value of  the associated formal argument. 
The signal component of the result is discarded. If  the 
evaluation fails, the argument transmission fails. 

The value of  refis a built-in transmitter that transmits 
arguments by reference. The actual argument expression 
is interpreted. If  the actual argument is a variable, assign- 
ments and references to the formal argument refer to the 
actual argument that is passed. For example, if the gcd 
procedure given in Section 3 is defined by using the 
procedure heading 

gcd := procedure ( x:ref, y:ref) ... end; 

the expressions 

Communications May 1978 
of Volume 21 
the ACM Number 5 



a := 45; 
b := 27; 
c .'=- gcd(a, b); 

result in the values of a, b, and c being changed to 9. 
Since argument binding is a separate operation and is 

not a part of procedure resumption, transmission by 
reference can be used to pass arguments before their 
intended values are assigned. For example, the sequence 

e :=- create  gcd with (a, b); 
a .---- 45; 
b := 27; 
c .'= resume e; 

has the same effect as above; the formal arguments x 
and y refer to a and b in the calling procedure, not just 
to their values. 

The value of exp is a built-in transmitter that transmits 
arguments by expression, which is similar to transmission 
by name in Algol 60. The actual argument expression is 
interpreted at each reference to the corresponding formal 
argument in the procedure. This interpretation is per- 
formed in the environment in Which the argument trans- 
mission occurred. 

6.3 Programmer-Defined Argument Transmitters 
A transmitter may be a built-in procedure, a program- 

mer-defined procedure, or an environment. Program- 
mer-defined transmitters can be used to perform data- 
type checking, tracing, or common preprocessing of ar- 
guments. For example, 

integerval := procedure (x) 
if ident(datatype(x), "integer") then 

succeed x; 
out ~ "integer argument expected"; 
fail 

end; 

assigns to integerval a procedure that checks the datatype 
of its argument. If  the argument is not an integer, an 
error message will then be issued and transmission fails. 
If  one wishes to use integerval as the transmitter for the 
arguments to gcd, the following procedure heading may 
be employed: 

gcd := procedure ( x:integerval, y:integerval) 

Since procedures are data objects, it is possible to 
provide transmitters such as integerval for documentation 
and debugging purposes and then to change their values 
in order to dispense with the time-consuming type check- 
ing after the program is working. For example, the 
assignment 

integerval := val; 

changes integerval to the default value transmission 
transmitter. 

Like other identifiers in the language, the values of the 
identifiers val and ref may be changed. For example, by 
changing the value of val, it is possible to change the 
default argument transmitter for subsequently created 
procedures. Further details concerning argument trans- 
mitters are given in [15]. 
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7. Examples 

7.1 A Generator of Random Number Generators 
The values of private identifiers in an environment for 

a procedure partly characterize the state of that instance 
of the procedure. As such, they provide a mechanism for 
the parameterization of a given environment for a pro- 
cedure. For example, consider the procedure rangen 
defined as follows. 

rangen .--- procedure ( s, p, c, m, n) 
repeat  { 

s .--- remdr(s*p + c, m); 
succeed s*n /m + l; 
} 

end; 

The procedure rangen computes a sequence of pseu- 
dorandom numbers using the linear congruence method 
[18]. An environment for rangen computes the next 
number within the range 1 to n in the sequence defined 
by the parameters s, p, c, and m. An environment for 
rangen is parameterized by the values of the arguments 
to rangen and generates the next number from an inde- 
pendent sequence every time it is resumed. For example, 

rg .--- create rangen with (0, 12621, 21131, 100000, 100); 

assigns to rg an environment for rangen. To obtain the 
next number in the sequence, rg is resumed: 

x := resume rg; 

The sequence of  pseudorandom numbers may be re- 
started by retransmitting the arguments, as was done for 
the label generator, or by simply resetting the seed s to 
its original value: 

rg.s ~ O 

Since it is the environments for rangen that constitute the 
generators, any number of generators can be created by 
using the single common procedure rangen. For instance, 
the expressions 

rg2 .--- create rangen with (0, 12641, 11241, 10000, 10); 
rg3 .--- create rangen with (111, 12321, 12231, 100000, 50); 

assign two separate environments for rangen to rg2 and 
rg3. Each generator, rg, rg2, and rg3, generates an inde- 
pendent sequence of pseudorandom numbers. 

This approach to independent generators differs from 
the usual methods that require extraneous data structures 
or the creation of  separate procedures for each generator. 
Here, there is only a single procedure, with separate 
environments for each generator. With this approach, it 
becomes natural to conceptualize program organization 
in terms of environments, rather than procedures. Thus 
the creation of  appropriate environments is of more 
concern than the procedures that these environments 
use .  

7.2 Sentence Generation 
A less familiar application of coroutine programming 

is illustrated by the problem of systematically generating 
the sentences of the language described by a context-free 
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grammar. The approach is to construct an environment 
for each symbol of  the grammar. Each time such an 
environment is resumed, it generates a sentence of  the 
language it describes. 

The form of  environment for a terminal symbol is very 
simple and has the procedure 

t e r m i n a l  ~ procedure ( s )  
return s; 
fail 

end; 

For example, 

A ~ c r ea t e  t e r m i n a l  with "A";  

creates an environment for the terminal symbol A. 
When the environment for a terminal symbol is re- 

sumed, it returns that symbol. On the next resumption it 
fails, since there are no other sentences for this symbol. 
By convention, a generating environment is not resumed 
after it has signaled failure. 

In a BNF-like grammar, nonterminal symbols are 
defined in terms of  the alternation and concatenation of  
other symbols. These relations correspond to environ- 
ments that control the resumption of  their arguments. 
The alternative of  two symbols is represented by an 
environment for 

ni t  .--- procedure  ( el ,  e2 ) private s; 

el .--- c opy (e l  ); 
while s := resume el do succeed s; 

e2 ~ copy(  e2 ); 
while  s .--- resume e2 do succeed  s; 
fail 

end; 

The copy operations in this procedure make fresh copies 
of  el and e2 to avoid possible interference from other 
resumptions of  these environments. The first environ- 
ment is repeatedly resumed until it fails, thus yielding all 
the sentences of  el. Next all the sentences of  e2 are 
generated. 

The concatenation of  two symbols is represented by 
an environment for 

cat  ~ procedure  (el ,  e~ ) pr ivate  Sl, ,~2; 

el .---- copy (e l  ); 
while  Sl .--- r esume e~ do { 

e2 .'= copy(e2 ); 
while  s2 .--- r esume e2 do succeed  s~ [] s2 
}; 

fail 
end; 

In this case, every sentence of  e2 is concatenated onto 
each sentence of  el. 

Environments for the alternation of  symbols are cre- 
ated by 

a l t s y m  .--- procedure  (el : genenv ,  e2 : g e n e n v  ) 

re tu rn  c r ea t e  al t  with (e l ,  e2 ) 
end; 

A procedure, catsym, for creating environments for con- 
catenation is similar. The transmitter, genenv, is used to 
coerce terminal symbols to corresponding generating 
environments and is given by 
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g e n e n v  ~ procedure ( x )  
case d a t a t y p e ( x )  of 

"env i ronmen t " :  r e tu rn  x; 

"s t r ing":  return create t e r m i n a l  with x; 
defaul t :  fail 

end 
end; 

SL5 permits the association of  procedures with oper- 
ator symbols (see [11] for the method). This allows a 
syntax for the construction of  generators that approxi- 
mates the notation of  BNF. For example, if the infix 
operators I and - -  are chosen for altsym and catsym, 
respectively, the generators for the BNF grammar 

(D) :  := d[.d.  
( G O A L ) :  := a l b ( D  ) 

are constructed by the SL5 expressions 

D .--- " d " l " . d . " ;  
G O A L  ~ " a " [ ( " b "  - -  D);  

The sentences for GOAL are generated by 

repeat ou t  :=- resume G O A L ;  

which produces 

a 

bd  
b.d. 

Other generators can be added to extend the basic set 
given above. For example, recursive references to non- 
terminal symbols can be handled by an environment 
that defers the evaluation of  the nonterminal symbol 
until it is needed during generation. It should be noted 
that unless the first argument to alt (el)  and the second 
argument to cat (e2) generate finite sublanguages, there 
are portions of  the entire language that are never 
reached. This problem can be avoided by more sophis- 
ticated versions of  nit and cat that use a scheme similar 
to the method for enumerating the union of  two denu- 
merable sets. 

Enhancements to the somewhat barren descriptive 
power of  BNF are easily provided. Of  course, there is no 
barrier to extensions beyond the domain of context-free 
languages since any type of  computation can be incor- 
porated in a generator. 

It should be noted that the conventions used above for 
generation of  successive sentences on successive resump- 
tions and the use of  the failure signal to signal the end of  
a language comprise a sort of  communication protocol. 
The synthetic process of  generation is, in fact, closely 
related to the analytic process of  pattern matching. Pat- 
tern matching requires a somewhat more complicated 
communication protocol because of  the backtracking 
required. See [ 11 ] for a description of  the process. 

8. Comparison with Other Mechanisms 

Coroutines have been proposed or have appeared in 
other programming languages in various forms. One of  
the earliest proposals was made by Mcllroy [19], who 
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suggested linguistic mechanisms for defining coroutines 
and for connecting coroutines together in various control 
relationships. That proposal, like several others, requires 
that the identity of coroutines connected together be 
known to each other. The equivalent of  the SL5 return 
expression was not included. Such control relationships 
can be implemented in SL5 by assigning the environ- 
ments of  interest to public variables or by using the 
environment reference operator, described in Section 5.3, 
to make connections between environments. 

The asymmetry of  the SL5 operations of  resume and 
return permits the realization of  many control relation- 
ships without having to know the identity of  all of  the 
environments involved. This is a result of using a decom- 
position of  procedure invocation as the basis for the 
semantics of  the resume and return expressions. The 
return to expression can be used for those situations 
where the resume and return expressions do not match 
the desired relationship well. 

Another approach, used in connection with LISP sys- 
tems, is to use lambda closures as environments, passing 
them to other functions as explicit continuation param- 
eters [4, 23]. Instead of  returning, the functions "resume" 
their continuations. Coroutines can therefore be imple- 
mented by constructing appropriate continuations. 

While this approach, based on the lambda calculus, 
is mathematically elegant, it is somewhat clumsy in 
practice. The problem is that the programmer must be 
too explicit. In effect, these languages do not include 
coroutines as an integral component of  the language, but 
rather provide facilities that permit the programmer to 
implement coroutines. For example, the programmer 
must explicitly save the continuation point of  a coroutine 
in some form, depending on the particular implementa- 
tion scheme that is used. This is accomplished by the 
construction of  a continuation, for instance. In SL5, these 
kinds of  operations are implicit, permitting the program- 
mer to work in terms of  control relationships instead of  
their implementation. 

Similar comments apply to schemes for including 
backtracking mechanisms in programming languages by 
permitting the explicit manipulation of  stack frames [3, 
22]. This approach has been used, for example, in cow- 
NIVER [25]. Using this approach, the programmer must 
think in terms of  "reactivating" stack frames, and con- 
tinuation points for a coroutine must be indicated ex- 
plicitly. In addition, the coroutines that correspond to 
the SL5 notions of  creator and resumer must be explicitly 
indicated when transferring control. The explicit manip- 
ulation of  stack frames is similar to the use of  so-called 
"label variables" [9], which are used to "capture" the 
bindings associated with a particular program block. By 
transferring to a label of  this kind, the saved bindings 
are "reinstated" and execution continues. This technique 
is used in GEDANKEN [23] to implement coroutines. 

The class mechanism of  Simula 67 [1, 5] is, in some 
respects, similar to the SL5 procedure mechanism. In 
Simula 67, an instance of  a block may outlive its calling 
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statement. Block instances of  this kind are called classes. 
Classes are used mainly for data structures, but they 

also can be used as coroutines. The basic similarities 
between SL5 environments and Simula 67 classes are 
that they are both data objects and both may be used as 
coroutines. One difference is that there is no way in 
Simula 67 to transmit values to a class when it is resumed, 
except through global variables. The principal differ- 
ences between SL5 and Simula 67, however, lie in the 
operations that govern the transfer of  control among 
environments in SL5 and classes in Simula 67. 

SL5 permits procedure decomposition at the source- 
language level. Simula 67 does provide an operation 
similar to the resume expression for use with classes, but 
does not permit a general decomposition of  recursive 
function invocation. As a result, recursive functions and 
coroutines are treated as linguistically different concepts 
in Simula 67, whereas they are treated as variations of 
the same linguistic concept in SL5. 

The difference between procedures and classes in 
Simula 67 can be understood by examining the subtle 
subordinate relationship that classes have to procedures. 
In Simula 67, classes are said to be "attached" to a 
procedure instance. This attachment is made when the 
class is created and can be changed by the primitive 
call(x), which causes class x to be attached to the current 
procedure instance and the execution of  x to be resumed. 
This operation is similar to the SL5 expression resume 
when the resumer is viewed as the means of  attachment. 
A class can "detach" itself and return control to the 
procedure to which it is attached by executing the prim- 
itive detach. This is similar to the return expression in 
SL5. In addition, a class can pass control to another class 
using the primitive resume(y),  which causes the execu- 
tion of  class y to continue. This primitive also causes y to 
become attached to whatever procedure instance x is 
attached. Hence the execution of  a detach in y causes a 
return to that procedure, not a return to x at the point of  
the resume(y)  primitive. 

A subordinate relationship is imposed by the restric- 
tion that classes can be attached only to procedure 
instances; a class cannot be attached to another class. In 
addition, the detach and resume primitives can be exe- 
cuted only from within a class. The SL5 mechanism was 
designed specifically to avoid these kinds of  subordinate 
relationships. While it is possible to devise schemes that 
favor each mechanism, initial experience with SL5 sug- 
gests that the treatment of  functions and coroutines as 
alternative ways of  using a general procedure mechanism 
is more flexible. 

9. Conclus ions  

Experience in using SL5 has shown it to be a good 
vehicle for coroutine programming. In addition to the 
classical problems [16], it has been used to implement, at 
the source-language level, the built-in pattern-matching 
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mechanism of  SNOBOL4 and the more extensive string 
analysis and synthesis facility that is built into SL5 [11]. 
SL5 appears to be well suited for" the kinds of  goal- 
oriented programming problems that arise so frequently 
in artificial intelligence applications and around which 
AI languages proliferate [2]. In addition, the procedure 
mechanism is the basis for the SL5 data structuring 
facility [ 14] and for a facility that enables an environment 
to be connected to a variable for filtering assignment and 
value fetching [15]. 

While a number of  programming languages have 
coroutine mechanisms, the distinguishing characteristic 
of  SL5 is the incorporation of  these facilities as a natural 
part of  the procedure mechanism of  the language. In 
practice, the utility of  these features seems to derive 
largely from the decomposition of  procedure activation 
into more primitive components and the consequent 
characterization of  coroutines as an integral part of  the 
procedure mechanism, instead of  their being a separate 
ad hoc mechanism. An additional advantage is gained 
by the ability to manipulate procedures and environ- 
ments as source-language data objects, which allows the 
programmer to control processes that are traditionally 
hidden in the implementation. 
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