
Programming J .J . Homing
Languages Editor

The SL5 Procedure
Mechanism
David R. Hanson
Yale University

Ralph E. Griswold
The University of Arizona

This paper describes an integrated procedure
mechanism that permits procedures to be used as
recursive functions or as coroutines. This integration is
accomplished by treating procedures and their
activation records (called environments) as data objects
and by decomposing procedure invocation into three
separate components at the source-language level. In
addition, argument binding is under the control of the
programmer, permitting the definition of various
methods of argument transmission in the source
language itself. The resulting procedure mechanism,
which is part of the SL5 programming language, is well
suited to goal-oriented problems and to other problems
that are more readily programmed by using coroutines.
Several examples are given.

Key Words and Phrases: procedures, coroutines,
programming languages, interpreters, SNOBOL4,
backtracking

CR Categories: 4.2, 4.20, 4.22, 4.13

1. Introduction

The procedure has always been an important com-
ponent of programming languages. Recognition of the
procedure as one of the most powerful tools for abstrac-
tion [6] has focused substantial attention on procedure
mechanisms [10]. Recursive functions have become ac-
cepted in high-level languages, but coroutines, in spite of
their long history [19], have been confined mainly to
operating system applications.

Recent increased interest in search and backtrack
algorithms has focused more attention on coroutines.
The primary areas of application have been AI languages
[2, 20] and string pattern matching [8]. Other areas of
interest include simulation [17], applicative languages [4,
23], and extensible languages [27].

While several languages have coroutine facilities [1,
2, 25, 26, 28], these facilities are generally designed
around specific applications and areas of interest, rather
than being integrated components of the procedure
mechanism of the language.

The SL5 programming language was designed as a
research tool for investigation into high-level program-
ming language facilities and programming methodolo-
gies in string and structure processing. Mechanisms for
supporting search and backtrack algorithms were an
important consideration, and motivated a procedure
mechanism from which coroutine programming follows
naturally. This procedure mechanism is characterized by
the following features:

1. Procedures and activation records for procedures
(called environments) are source-language data ob-
jects.

2. Procedure invocation is decomposed into three sepa-
rate components available to the programmer at the
source-language level.

3. The interpretation of identifiers (scoping) is dynamic
and is designed to provide for a method of interpro-
cedure communication that is useful for coroutine
programming.

4. Argument binding and transmission are under the
control of the programmer.

This paper describes the SL5 procedure mechanism
and illustrates its use.

General permission to make fair use in teaching or research of all
or part of this material is granted to individual readers and to nonprofit
libraries acting for them provided that ACM's copyright notice is given
and that reference is made to the publication, to its date of issue, and
to the fact that reprinting privileges were granted by permission of the
Association for Computing Machinery. To otherwise reprint a figure,
table, other substantial excerpt, or the entire work requires specific
permission as does republication, or systematic or multiple reproduc-
tion.

This work was supported by the National Science Foundation
under Grant DCR75-01307.

Authors' addresses: D. R. Hanson, Department of Computer
Science, Yale University, New Haven, CT 06520; R. E. Griswold,
Department of Computer Science, The University of Arizona, Tucson,
AZ 85721.
© 1978 ACM 0001-0782/78/0500-0392 $00.75

3 9 2

2. The SL5 Programming Language

SL5 is similar in many respects to SNOBOL4 [13] and
has most of the facilities of SNOBOL4. SL5 departs in
many respects from SNOBOL4, most notably as described
above and in its syntax and control structures. It has an
expression syntax with reserved words. Expressions pro-
duce both values and signals, with signals being used
primarily for control purposes.

Runtime flexibility, motivated by the research ori-
entation of its expected applications, is emphasized. SL5

Communications May 1978
of Volume 21
the ACM Number 5

supports many data types, but has no type declarations.
Type checking and coercion, where appropriate, are
performed dynamically. The remainder of this section
gives a brief introduction to SL5 to provide a framework
for the material in the rest of this paper. A summary of
the language is given in [12].

2.1 The Result of SL5 Expressions
An SL5 expression returns a result, which is com-

posed of a value and a signal. The value component of
a result corresponds to the conventional concept of a
value. The signal component of a result is a nonnegative
integer and is used for control purposes. For example,
built-in control expressions in SL5 are driven by two
signals--success and failure--which are indicated by 1
and 0, respectively. A result is indicated by {value,
signal}. The selectors V and S are used to refer to the
value and signal components of a result, respectively.
For example, if r is a result, V(r) stands for the value
component of the result r.

The procedure mechanism allows the programmer to
transmit nonnegative integers as signals and to attach
whatever meaning to those signals that is needed for the
specific application. In this paper, the names "success"
and "failure" are used to mean 1 and 0, respectively.

The V component of a result can be a variable, that
is, a place where a value resides, such as a reference to
an identifier. The term dereferencing refers to obtaining
the value of a variable. This operation returns a result
containing the value of the variable.

The dereferencing operation distinguishes interpre-
tation from evaluation. Interpretation is the execution of
the basic operation given in an expression. Evaluation is
the combination of interpretation followed by derefer-
encing. The basic operations of interpretation and eval-
uation are an integral part of the procedure mechanism.

A result may be composed by using the & opera-
tor. The expression el & e2 returns the result {V(e~),
V(ee)}. The signal components of el and e2 are ignored.

2.2 Control Expressions
Programming languages typically provide control

structures in the form of statements, such as the familiar
if-then-else construct. In SL5 control operations are han-
dled by expressions, which are referred to as "control
expressions" since their primary purpose is to control
program execution. Although SL5 control expressions
generally resemble control structures in other languages,
they are driven by signals, rather than by boolean values.
An example is

if e, then e2 e l se e.~

The expression el is evaluated first. If the resulting signal
is 1, e2 is evaluated. Otherwise, e3 is evaluated. For
example, in

if x > y then x := x - y e l se y .---- y - x

i f x is greater thany, the difference o f x a n d y is assigned

3 9 3

to x. Otherwise, the difference o f y and x is assigned to
y. The if-then-else construct is itself an expression and
returns a result, which is the result (value and signal) of
e2 or e3 depending on the signal of el.

SL5 has a large repertoire of control expressions in
order to facilitate programming. The following control
expressions are representative:

while ej do e2

unless e~ do e2

c a s e e of fi:e,; ... ln:e.; de fau l t : e~+j end
repeat e

ej and e2

el o r e2

{el; ... ; en)

The while and unless expressions have conventional
interpretations consistent with the signaling mechanism.
In the case expression, II In can be any literals
(strings, integers, and so on). The repeat expression
evaluates e repeatedly until e signals failure. In the
expression el or e2, el is evaluated first. If el succeeds, its
result becomes the result of the control expression. Oth-
erwise, e2 is evaluated and its result becomes the result
of the control expression. The and expression is comple-
mentary; if the evaluation of el succeeds, e2 is evaluated
and its result is the result of the control expression. If
evaluation of el fails, the result of the and expression is
the result of el. The braces enclose a sequence of expres-
sions. The result of this control expression is the result of
the last expression in the sequence.

3. Procedure Creation

In SL5, procedures are data objects. A procedure is
created by the expression

procedure ({ id) l , (id)2 (i d)n) (d e c l a r a t i o n s) (b o d y) end

where (id)l through (id), are the formal arguments,
(declarations) are of the form given below, and (body)
is a sequence of expressions separated by semicolons.
For example,

g c d := p r o c e d u r e (x, y)

while x - = y do
if x > y then x .--- x - y e l se y .--- y - x;

return x

end;

assigns to gcd a procedure that computes the greatest
common divisor of its arguments. Procedures can be
created at any time during program execution and can
be manipulated as values throughout the program.

4. Decomposition of Procedure Activation

In most programming languages, the invocation of a
procedure is considered to be an atomic operation. In
SL5, the invocation of a procedure is decomposed into

C o m m u n i c a t i o n s M a y 1978

o f V o l u m e 21
t he A C M N u m b e r 5

three distinct components that are available to the pro-
grammer at the source-language level. This decomposi-
tion provides the linguistic mechanism for SL5 proce-
dures to be used as recursive functions or as coroutines.
The steps in this decomposition are: create--creat ion
of an environment for the procedure; with--bind-
ing of the actual arguments to an environment;
resume--resumption of the execution of the procedure
for an environment.

4.1 Environment Creation
The expression

e .---- create p

creates an environment for the procedure p and assigns
this environment to e. An environment for a procedure
contains the storage for variables corresponding to the
identifiers appearing in the procedure. An environment
also contains the procedure continuation point, which
indicates where execution is to begin when the environ-
ment is activated. When an environment for a procedure
is created, the continuation point is at the beginning of
the procedure. When a procedure returns, the continua-
tion point is set to the position following the point of
return. An environment is a source-language data object
that can be manipulated as such.

The environment in which the create p is executed is
called the creator for that environment. Each environ-
ment contains information identifying its creator.

4.2 Argument Binding
The binding of the actual arguments to an environ-

ment is accomplished by the with expression. The expres-
sion

e with (a b a~ an)

transmits the actual arguments, a l through an, to the
environment e and returns that environment as its value.
The methods by which the actual arguments are trans-
mitted to the environment are controlled by the argu-
ment transmitters associated with the procedure for
which e is an environment. This mechanism is described
in Section 6. In the absence of any explicit specification
of transmitters, arguments are transmitted by value, that
is, the expressions al through a,, are evaluated and the V
components of their results are assigned to the formal
arguments for that environment. If the evaluation of any
of the argument expressions fails, the with expression is
aborted and fails.

4.3 Procedure Resumption
A procedure is activated by the resume expression.

In its simplest form, the resume expression is written

resume e

where e is an environment. In the discussion that follows,
this operation is referred to as "resuming e."

The resume expression causes the execution of the
current procedure to be suspended and e to be resumed.

3 9 4

The current procedure is suspended within the resume
expression itself. When the environment is subsequently
reactivated, the resume expression produces the result
that is provided by the environment causing the subse-
quent reactivation.

The general form of the resume expression is

resume (e, r)

This expression suspends the current environment, re-
sumes e, and transmits the result of interpreting r to e.

The resume expression also establishes the resumer
for an environment-- the environment that caused its
most recent resumption via the resume expression. Note
that an environment's resumer changes during the course
of program execution, whereas the creator, defined
above, remains constant, since an environment is created
only once.

4.4 Procedure Returns
The resume expression provides one method for com-

municating results among procedures. The other method
is by the return expression. While the resume expression
requires an explicit indication of the environment to
which control should be transferred, the return expres-
sion returns control to the resumer of the current envi-
ronment. The expression

return r

returns the result of interpreting r. If r is omitted in
return, the null string is assumed. Like resume, the return
expression causes the current procedure to be suspended.
When the procedure is subsequently reactivated, the
result transmitted becomes the result of the return
expression.

The important difference between return and resume
is that return does not establish a new resumer for the
environment to which control is returned. Only an ex-
plicit resume establishes a resumer.

Since the signals success and failure are used so
frequently in SL5, the expressions

succeed r and fail r

are provided as equivalents, respectively, to

return r & I an d re tu rn r & 0

Note that a value is returned even if the signal is failure.
I f r is omitted, the null string is assumed.

4.5 Functional Notation
The abbreviated notationf~ el, e2 e.) may be used

for the usual recursive function invocation. This form of
procedure invocation is equivalent to

resume (e r e a t e f w i t h (el, e2 e n d

Note that the functional notation results in the in-
vocation of the procedure that is the current value o f f ,
not a procedure namedf . This feature permits functional
composition since procedures are data objects. For ex-
ample, f l x) (a , b) first invokes the procedure given by

C o m m u n i c a t i o n s M a y 1978
o f V o l u m e 21
the A C M N u m b e r 5

the value o f f with the argument x. Assuming that f
returns a procedure as its result, that procedure is then
invoked with the arguments a and b.

4.6 Two Simple Examples
Assuming that gcd has been assigned the procedure

given in Section 3, the conventional function invocation
of gcd

z := gcd(45, 27);

results in z being assigned 9 and is equivalent to the
decomposition

c ~ c r e a t e gcd;
c ~ c wi th (45, 27);

z := resume c;

Note that the expression return x in gcd transmits the
result {9, success}, which in turn becomes the result of
the expression resume c. The V component of that result
is then assigned to z. The procedure gcd is not written to
be used as a coroutine, and resumption of c after it has
returned would be a programming error.

To illustrate a simple application of coroutine usage,
consider a label generator for generating a series of
labels:

genlab .--- procedure (prefix, n, limit)
repeat

i fn < limit then {succeed pref ix II n; n ~ n + i}
else fail

end;

(The operator II denotes string concatenation as in PL/I .)
The arguments prefix, n, and limit indicate the prefix for
the labels, the initial label number, and the maximum
label number, respectively. For example,

t e n .--- c r e a t e genlab with (" L " , 10,100);

assigns to ten an environment that generates the label
sequence L10, LI 1 LI00. To obtain the next label in
this sequence, ten is resumed:

x .--- resume gen;

After the label L100 has been generated, subsequent
resumptions of ten result in failure. The sequence may
be reinitialized by retransmitting the arguments. For
example,

t e n with (" L " , 10,1000);

resets ten with the same prefix, the original value of n,
and a limit of 1000.

4.7 Generalized Transfer of Control
As illustrated by the examples above, coroutine pro-

gramming follows naturally from the treatment of envi-
ronments as data objects and the decomposition of pro-
cedure invocation. While experience indicates that the
implicit updating of the resumer that is performed by the
resume operation is usually desirable, there are situations
in which it is necessary to resume an environment with-
out changing the resumer.

3 9 5

This kind of resumption is accomplished by a more
general form of the return expression. In most circum-
stances, the return expression is used to return from an
environment to its resumer. The return expression also
may be used to return to an arbitrary environment. The
return expression is used in this fashion to resume an
environment without changing the resumer.

The general form of the return expression is

r e t u r n r to e

This expression suspends the current environment, re-
sumes the execution of e, and transmits the result of
interpreting r to e. If r is omitted, the null string is
assumed.

To facilitate the construction of general control re-
lationships, the built-in functions creator(e) and resu-
mer(e) are provided to specify the creator and resumer
of e, respectively. If e is omitted, the current environment
is assumed. Thus, the return expression

return r

is equivalent to

return r to resumer ()

5. The Interpretation of Identifiers

In search and backtrack algorithms, the relationships
between procedures often are most conveniently derived
from data. This motivates a procedure mechanism in
which the binding of identifiers is dynamic (during pro-
gram execution), rather than static (during program com-
pilation).

Declarations in SL5 procedures are used to determine
the scope of identifiers. The scoping conventions in SL5
are similar to the dynamic scoping conventions [7] used
in SNOBOL4 and LISP.

An identifier may be declared either public or private
in declarations having the form

public (id) j , (id)2 (id)n
private (id)l , (id)2 (id)n

An identifier that does not appear in any of the decla-
rations for the procedure in which it is used is termed
nonlocal.

5.1 Private Identifiers
The scope of a private identifier is restricted to the

procedure, and only the procedure, in which it is de-
clared. Private identifiers are used for data that is local
to a particular environment for a procedure. For exam-
ple, when a procedure is used as a coroutine, private
identifiers can be used to "remember" information from
one resumption to the next. This type of facility is useful
when procedures are used for goal-oriented program-
ming involving backtracking. Unless otherwise declared,
the formal argument identifiers for a procedure are
considered to be private identifiers.

C o m m u n i c a t i o n s M a y 1978
o f V o l u m e 21
the A C M N u m b e r 5

5.2 Public and Nonlocal Identifiers
Public identifiers provide the principal means of inter-

procedure communication. Public declarations provide
the information that is necessary to determine the scope
of nonlocal identifiers. This determination is guided by
the way in which environments are connected to each
other, namely, as descendants. An environment is the
descendant of its creator. Descendants of an environment
possess the same transitive closure property that descen-
dants shown in lineal charts do, that is, an environment
is a descendant of its creator, its creator's creator, and so
o n .

The scope of nonlocal identifiers is determined when
an environment for the procedure is created, and is
obtained by examining the creation history. For each
nonlocal identifier in a newly created environment, a
search is performed by examining each successive creator
until an environment containing a public identifier by
the same name is found. If the search is successful, the
nonlocal identifier henceforth refers to that public iden-
tifier. I f this search fails, the nonlocal identifier is consid-
ered to be erroneous.

These conventions give SL5 aspects of both dynamic
and static scope. The initial interpretation is dynamic
and is made at the time of creation. Once an environment
is created, the interpretation of nonlocal identifiers re-
mains static throughout the lifetime of the environment.
As a result, environments are similar to lambda closures
(FUNARGS) in LISP [21]. One of the important differences
between lambda closures and environments is that en-
vironments include an implicit indication of their exe-
cution state, which is used to continue execution upon
resumption. Implementation of a similar mechanism
using lambda closures requires that each execution state
be represented explicitly by a separate lambda closure
[24].

5.3 Accessing Identifiers in Environments
The identifiers in an environment are attributes of that

environment. They may be accessed from outside the
environment by using the environment reference opera-
tor, which is indicated by an infix dot. The expression e.i
refers to the identifier i in the environment e. The
environment reference operator provides an external
means of fetching and setting the values of identifiers in
inactive environments. For example, the sequence num-
ber in the label generator described in Section 4 can be
reset as follows:

gen.n ~ m;

6. Argument Binding and Transmission

The with operator is used to bind the actual arguments
to an environment. The method by which this is done is
determined by the argument transmitters associated with
the arguments. Transmitters may be built-in or program-
mer-defined procedures or environments.

396

Transmitters are specified when a procedure is created.
For example,

gcd := procedure (x:val, y:val) ... end;

creates a procedure with two arguments, x and y, each
of which has the transmitter that is the value of the
identifier val. In general, a formal argument of a proce-
dure has the form

[(scope)] (id) [: (exp)]

where (scope) is either public or private, (id) is the
formal argument, and the value of (exp) is the transmit-
ter for that argument. The transmitter expression (exp)
is evaluated when the procedure is created.

For example, the procedure heading

procedure (i, public x:val, public y:val, private z:ref)

specifies a procedure with four arguments. The first
argument, i, has the default scope and transmitter--
private and val. The second and third arguments, x and
y, have the same transmitter and are declared public.
The fourth argument, z, is private and its transmitter is
ref, which transmits arguments by reference.

6.1 Transmission
When the with expression is invoked, either implicitly

or explicitly, each actual argument expression is passed
to the transmitter associated with the corresponding
formal argument for the procedure. The value returned
by the transmitter is established as the value of the
formal argument identifier. If any of the transmitters
fails, the with expression fails, and any remaining argu-
ments are not transmitted.

If the number of actual arguments exceeds the number
of formal arguments, the excess argument expressions
are ignored and are not evaluated. If there are fewer
actual arguments than formal arguments, null strings are
provided for the omitted arguments. In this case, the
transmitter for an omitted argument is invoked with the
null string as argument.

6.2 Built-in Transmitters
The value of val is a built-in transmitter that transmits

arguments by value. In this case, the actual argument
expression is evaluated and, provided that evaluation is
successful, the value component of the result is estab-
lished as the value of the associated formal argument.
The signal component of the result is discarded. If the
evaluation fails, the argument transmission fails.

The value of refis a built-in transmitter that transmits
arguments by reference. The actual argument expression
is interpreted. If the actual argument is a variable, assign-
ments and references to the formal argument refer to the
actual argument that is passed. For example, if the gcd
procedure given in Section 3 is defined by using the
procedure heading

gcd := procedure (x:ref, y:ref) ... end;

the expressions

Communications May 1978
of Volume 21
the ACM Number 5

a := 45;
b := 27;
c .'=- gcd(a, b);

result in the values of a, b, and c being changed to 9.
Since argument binding is a separate operation and is

not a part of procedure resumption, transmission by
reference can be used to pass arguments before their
intended values are assigned. For example, the sequence

e :=- create gcd with (a, b);
a .---- 45;
b := 27;
c .'= resume e;

has the same effect as above; the formal arguments x
and y refer to a and b in the calling procedure, not just
to their values.

The value of exp is a built-in transmitter that transmits
arguments by expression, which is similar to transmission
by name in Algol 60. The actual argument expression is
interpreted at each reference to the corresponding formal
argument in the procedure. This interpretation is per-
formed in the environment in Which the argument trans-
mission occurred.

6.3 Programmer-Defined Argument Transmitters
A transmitter may be a built-in procedure, a program-

mer-defined procedure, or an environment. Program-
mer-defined transmitters can be used to perform data-
type checking, tracing, or common preprocessing of ar-
guments. For example,

integerval := procedure (x)
if ident(datatype(x), "integer") then

succeed x;
out ~ "integer argument expected";
fail

end;

assigns to integerval a procedure that checks the datatype
of its argument. If the argument is not an integer, an
error message will then be issued and transmission fails.
If one wishes to use integerval as the transmitter for the
arguments to gcd, the following procedure heading may
be employed:

gcd := procedure (x:integerval, y:integerval)

Since procedures are data objects, it is possible to
provide transmitters such as integerval for documentation
and debugging purposes and then to change their values
in order to dispense with the time-consuming type check-
ing after the program is working. For example, the
assignment

integerval := val;

changes integerval to the default value transmission
transmitter.

Like other identifiers in the language, the values of the
identifiers val and ref may be changed. For example, by
changing the value of val, it is possible to change the
default argument transmitter for subsequently created
procedures. Further details concerning argument trans-
mitters are given in [15].

3 9 7

7. Examples

7.1 A Generator of Random Number Generators
The values of private identifiers in an environment for

a procedure partly characterize the state of that instance
of the procedure. As such, they provide a mechanism for
the parameterization of a given environment for a pro-
cedure. For example, consider the procedure rangen
defined as follows.

rangen .--- procedure (s, p, c, m, n)
repeat {

s .--- remdr(s*p + c, m);
succeed s*n /m + l;
}

end;

The procedure rangen computes a sequence of pseu-
dorandom numbers using the linear congruence method
[18]. An environment for rangen computes the next
number within the range 1 to n in the sequence defined
by the parameters s, p, c, and m. An environment for
rangen is parameterized by the values of the arguments
to rangen and generates the next number from an inde-
pendent sequence every time it is resumed. For example,

rg .--- create rangen with (0, 12621, 21131, 100000, 100);

assigns to rg an environment for rangen. To obtain the
next number in the sequence, rg is resumed:

x := resume rg;

The sequence of pseudorandom numbers may be re-
started by retransmitting the arguments, as was done for
the label generator, or by simply resetting the seed s to
its original value:

rg.s ~ O

Since it is the environments for rangen that constitute the
generators, any number of generators can be created by
using the single common procedure rangen. For instance,
the expressions

rg2 .--- create rangen with (0, 12641, 11241, 10000, 10);
rg3 .--- create rangen with (111, 12321, 12231, 100000, 50);

assign two separate environments for rangen to rg2 and
rg3. Each generator, rg, rg2, and rg3, generates an inde-
pendent sequence of pseudorandom numbers.

This approach to independent generators differs from
the usual methods that require extraneous data structures
or the creation of separate procedures for each generator.
Here, there is only a single procedure, with separate
environments for each generator. With this approach, it
becomes natural to conceptualize program organization
in terms of environments, rather than procedures. Thus
the creation of appropriate environments is of more
concern than the procedures that these environments
use .

7.2 Sentence Generation
A less familiar application of coroutine programming

is illustrated by the problem of systematically generating
the sentences of the language described by a context-free

Communications May 1978
of Volume 2 !
the ACM Number 5

grammar. The approach is to construct an environment
for each symbol of the grammar. Each time such an
environment is resumed, it generates a sentence of the
language it describes.

The form of environment for a terminal symbol is very
simple and has the procedure

t e r m i n a l ~ procedure (s)
return s;
fail

end;

For example,

A ~ c r ea t e t e r m i n a l with "A";

creates an environment for the terminal symbol A.
When the environment for a terminal symbol is re-

sumed, it returns that symbol. On the next resumption it
fails, since there are no other sentences for this symbol.
By convention, a generating environment is not resumed
after it has signaled failure.

In a BNF-like grammar, nonterminal symbols are
defined in terms of the alternation and concatenation of
other symbols. These relations correspond to environ-
ments that control the resumption of their arguments.
The alternative of two symbols is represented by an
environment for

ni t .--- procedure (el , e2) private s;

el .--- c opy (e l);
while s := resume el do succeed s;

e2 ~ copy(e2);
while s .--- resume e2 do succeed s;
fail

end;

The copy operations in this procedure make fresh copies
of el and e2 to avoid possible interference from other
resumptions of these environments. The first environ-
ment is repeatedly resumed until it fails, thus yielding all
the sentences of el. Next all the sentences of e2 are
generated.

The concatenation of two symbols is represented by
an environment for

cat ~ procedure (el , e~) pr ivate Sl, ,~2;

el .---- copy (e l);
while Sl .--- r esume e~ do {

e2 .'= copy(e2);
while s2 .--- r esume e2 do succeed s~ [] s2
};

fail
end;

In this case, every sentence of e2 is concatenated onto
each sentence of el.

Environments for the alternation of symbols are cre-
ated by

a l t s y m .--- procedure (el : genenv , e2 : g e n e n v)

re tu rn c r ea t e al t with (e l , e2)
end;

A procedure, catsym, for creating environments for con-
catenation is similar. The transmitter, genenv, is used to
coerce terminal symbols to corresponding generating
environments and is given by

3 9 8

g e n e n v ~ procedure (x)
case d a t a t y p e (x) of

"env i ronmen t " : r e tu rn x;

"s t r ing": return create t e r m i n a l with x;
defaul t : fail

end
end;

SL5 permits the association of procedures with oper-
ator symbols (see [11] for the method). This allows a
syntax for the construction of generators that approxi-
mates the notation of BNF. For example, if the infix
operators I and - - are chosen for altsym and catsym,
respectively, the generators for the BNF grammar

(D) : := d[.d.
(G O A L) : := a l b (D)

are constructed by the SL5 expressions

D .--- " d " l " . d . " ;
G O A L ~ " a " [(" b " - - D);

The sentences for GOAL are generated by

repeat ou t :=- resume G O A L ;

which produces

a

bd
b.d.

Other generators can be added to extend the basic set
given above. For example, recursive references to non-
terminal symbols can be handled by an environment
that defers the evaluation of the nonterminal symbol
until it is needed during generation. It should be noted
that unless the first argument to alt (el) and the second
argument to cat (e2) generate finite sublanguages, there
are portions of the entire language that are never
reached. This problem can be avoided by more sophis-
ticated versions of nit and cat that use a scheme similar
to the method for enumerating the union of two denu-
merable sets.

Enhancements to the somewhat barren descriptive
power of BNF are easily provided. Of course, there is no
barrier to extensions beyond the domain of context-free
languages since any type of computation can be incor-
porated in a generator.

It should be noted that the conventions used above for
generation of successive sentences on successive resump-
tions and the use of the failure signal to signal the end of
a language comprise a sort of communication protocol.
The synthetic process of generation is, in fact, closely
related to the analytic process of pattern matching. Pat-
tern matching requires a somewhat more complicated
communication protocol because of the backtracking
required. See [11] for a description of the process.

8. Comparison with Other Mechanisms

Coroutines have been proposed or have appeared in
other programming languages in various forms. One of
the earliest proposals was made by Mcllroy [19], who

C o m m u n i c a t i o n s M a y 1978
o f Vo lume 21
the A C M N u m b e r 5

suggested linguistic mechanisms for defining coroutines
and for connecting coroutines together in various control
relationships. That proposal, like several others, requires
that the identity of coroutines connected together be
known to each other. The equivalent of the SL5 return
expression was not included. Such control relationships
can be implemented in SL5 by assigning the environ-
ments of interest to public variables or by using the
environment reference operator, described in Section 5.3,
to make connections between environments.

The asymmetry of the SL5 operations of resume and
return permits the realization of many control relation-
ships without having to know the identity of all of the
environments involved. This is a result of using a decom-
position of procedure invocation as the basis for the
semantics of the resume and return expressions. The
return to expression can be used for those situations
where the resume and return expressions do not match
the desired relationship well.

Another approach, used in connection with LISP sys-
tems, is to use lambda closures as environments, passing
them to other functions as explicit continuation param-
eters [4, 23]. Instead of returning, the functions "resume"
their continuations. Coroutines can therefore be imple-
mented by constructing appropriate continuations.

While this approach, based on the lambda calculus,
is mathematically elegant, it is somewhat clumsy in
practice. The problem is that the programmer must be
too explicit. In effect, these languages do not include
coroutines as an integral component of the language, but
rather provide facilities that permit the programmer to
implement coroutines. For example, the programmer
must explicitly save the continuation point of a coroutine
in some form, depending on the particular implementa-
tion scheme that is used. This is accomplished by the
construction of a continuation, for instance. In SL5, these
kinds of operations are implicit, permitting the program-
mer to work in terms of control relationships instead of
their implementation.

Similar comments apply to schemes for including
backtracking mechanisms in programming languages by
permitting the explicit manipulation of stack frames [3,
22]. This approach has been used, for example, in cow-
NIVER [25]. Using this approach, the programmer must
think in terms of "reactivating" stack frames, and con-
tinuation points for a coroutine must be indicated ex-
plicitly. In addition, the coroutines that correspond to
the SL5 notions of creator and resumer must be explicitly
indicated when transferring control. The explicit manip-
ulation of stack frames is similar to the use of so-called
"label variables" [9], which are used to "capture" the
bindings associated with a particular program block. By
transferring to a label of this kind, the saved bindings
are "reinstated" and execution continues. This technique
is used in GEDANKEN [23] to implement coroutines.

The class mechanism of Simula 67 [1, 5] is, in some
respects, similar to the SL5 procedure mechanism. In
Simula 67, an instance of a block may outlive its calling

399

statement. Block instances of this kind are called classes.
Classes are used mainly for data structures, but they

also can be used as coroutines. The basic similarities
between SL5 environments and Simula 67 classes are
that they are both data objects and both may be used as
coroutines. One difference is that there is no way in
Simula 67 to transmit values to a class when it is resumed,
except through global variables. The principal differ-
ences between SL5 and Simula 67, however, lie in the
operations that govern the transfer of control among
environments in SL5 and classes in Simula 67.

SL5 permits procedure decomposition at the source-
language level. Simula 67 does provide an operation
similar to the resume expression for use with classes, but
does not permit a general decomposition of recursive
function invocation. As a result, recursive functions and
coroutines are treated as linguistically different concepts
in Simula 67, whereas they are treated as variations of
the same linguistic concept in SL5.

The difference between procedures and classes in
Simula 67 can be understood by examining the subtle
subordinate relationship that classes have to procedures.
In Simula 67, classes are said to be "attached" to a
procedure instance. This attachment is made when the
class is created and can be changed by the primitive
call(x), which causes class x to be attached to the current
procedure instance and the execution of x to be resumed.
This operation is similar to the SL5 expression resume
when the resumer is viewed as the means of attachment.
A class can "detach" itself and return control to the
procedure to which it is attached by executing the prim-
itive detach. This is similar to the return expression in
SL5. In addition, a class can pass control to another class
using the primitive resume(y), which causes the execu-
tion of class y to continue. This primitive also causes y to
become attached to whatever procedure instance x is
attached. Hence the execution of a detach in y causes a
return to that procedure, not a return to x at the point of
the resume(y) primitive.

A subordinate relationship is imposed by the restric-
tion that classes can be attached only to procedure
instances; a class cannot be attached to another class. In
addition, the detach and resume primitives can be exe-
cuted only from within a class. The SL5 mechanism was
designed specifically to avoid these kinds of subordinate
relationships. While it is possible to devise schemes that
favor each mechanism, initial experience with SL5 sug-
gests that the treatment of functions and coroutines as
alternative ways of using a general procedure mechanism
is more flexible.

9. Conclus ions

Experience in using SL5 has shown it to be a good
vehicle for coroutine programming. In addition to the
classical problems [16], it has been used to implement, at
the source-language level, the built-in pattern-matching

Communications May 1978
of Volume 2 I
the ACM Number 5

mechanism of SNOBOL4 and the more extensive string
analysis and synthesis facility that is built into SL5 [11].
SL5 appears to be well suited for" the kinds of goal-
oriented programming problems that arise so frequently
in artificial intelligence applications and around which
AI languages proliferate [2]. In addition, the procedure
mechanism is the basis for the SL5 data structuring
facility [14] and for a facility that enables an environment
to be connected to a variable for filtering assignment and
value fetching [15].

While a number of programming languages have
coroutine mechanisms, the distinguishing characteristic
of SL5 is the incorporation of these facilities as a natural
part of the procedure mechanism of the language. In
practice, the utility of these features seems to derive
largely from the decomposition of procedure activation
into more primitive components and the consequent
characterization of coroutines as an integral part of the
procedure mechanism, instead of their being a separate
ad hoc mechanism. An additional advantage is gained
by the ability to manipulate procedures and environ-
ments as source-language data objects, which allows the
programmer to control processes that are traditionally
hidden in the implementation.

Acknowledgments. SL5 is the result of the work of
several persons and synthesizes results from related re-
search. In particular, we would like to express our grat-
itude to Dianne E. Britton, Frederick C. Druseikis, and
John T. Korb for their contributions to SL5 and its
implementation. We would also like to thank Drew V.
McDermott for his helpful suggestions concerning the
preparation of this paper.

Received October 1976; revised April 1977

Programming Language. Prentice-Hall, Englewood Cliffs, N. J.,
second ed., 1971.
14. Hanson, D.R. Data structures in SL5. To appear in J. Computer
Languages.
15. Hanson, D.R. Filters in SL5. To appear in Computer J.
16. Hanson, D.R. A procedure mechanism for backtrack
programming. Proc. ACM Annual Conf., Oct. 1976, pp. 401~t05.
17. Kiviat, P.J., Villanueva, R., and Markowitz, H.M. The
SIMSCR1PT 11 Programming Language. Prentice-Hall, Englewood
Cliffs, N.J., 1968.
18. Knuth, D. E., The Art of Computer Programming, Volume 2:
Seminumerical Algorithms. Addison-Wesley, Reading, Mass., 1969,
p. 9.
19. Mcllroy, M.D. Coroutines. Tech. Rep., Bell Labs., Murray Hill,
N.J., May 1968.
20. Melli, L.F. The 2.Pak language primitives for AI applications.
M.S. Th., Dept. Comptr. Sci., U. of Toronto, Toronto, Canada, Dec.
1974.
21. Moses, J. The function of FUNCTION in LISP. SIGSAM
Bulletin (ACM) 4 (July 1970), 13-27.
22. Prenner, C.J., Spitzen, J.M., and Wegbreit, B. An implementation
of backtracking for programming languages. Proc. ACM Annual
Conf., Aug. 1972, 763-771.
23. Reynolds, J.C. GEDANKEN--a simple typeless language based
on the principle of completeness and the reference concept. Comm.
ACM 13, 5 (May 1970), 308-319.
24. Reynolds, J.C. Definitional interpreters for higher-order
programming languages. Proc. ACM Annual Conf., Aug. 1972, pp.
717-739.
25. Sussman, G.J., and McDermott, D.V. From PLANNER to
CONNIVER--a genetic approach. Proc. AFIPS 1972 FJCC, Vol. 41,
AFIPS Press, Montvale, N.J., pp. i 171-1179.
26. VanLehn, K.A. SAIL user manual. Tech. Rep. STAN-CS-73-
373, Dept. Comptr. Sci., Stanford U., Stanford, Calif., July 1973.
27. Wegbreit, B., et al. ECL programmer's manual. Ctr. Res.
Comptg. Tech., Harvard U., Cambridge, Mass., 1970.
28. Wulf, W.A., Russell, D.B., and Habermann, A.N. BLISS: a
language for systems programming. Comm. ACM 14, 12 (Dec. 1971),
780-790.

References
1. Birtwistle, G.M., Dahl, O.-J., Myhrhaug, B., and Nygaard, K.
SIMULA Begin. Student Literature, Auerbach, Philadelphia, Pa.,
1973.
2. Bobrow, D.G., and Raphael, B. New programming languages for
artificial intelligence. Computing Surveys 6, 3 (Sept. 1974), 155-174.
3. Bobrow, D.G., and Wegbreit, B. A model and stack
implementation of multiple environments. Comm. A CM 16, 10 (Oct.
1973), 591-603.
4. Burge, W.H. Recursive Programming Techniques. Addison-
Wesley, Reading, Mass., 1975.
5. Dahl, O.-J., Dijkstra, E.W., and Hoare, C.A.R. Structured
Programming. Academic Press, London, 1972, Sect. III.
6. Dijkstra, E.W. The humble programmer. Comm. ACM 15, 10
(Oct. 1972), 859-866.
7. Dijkstra, E.W. Recursive programming. In Programming Systems
and Languages, S. Rosen, Ed., McGraw-Hill, New York, 1967.
8. Druseikis, F.C., and Doyle, J.N. A procedural approach to
pattern matching in SNOBOL4. Proc. ACM Annual Conf., Nov.
1974, pp. 311-317.
9. Fenichel, R. On the implementation of label variables. Comm.
ACM 14, 5 (May, 1971), 349-350.
10. Fisher, D.A. A survey of control structures in programming
languages. SIGPLAN Notices (ACM) 7, 11 (Nov. 1972), 1-13.
!1. Griswold, R.E. The SL5 programming language and its use for
goal-directed programming. Proc. Fifth Texas Conf. on Comptng.
Syst., Oct. 1976, pp. 1-5.
12. Griswold, R.E., and Hanson, D.R. An overview of SL5.
SIGPLAN Notices (ACM) 12, 5 (April 1977), 40-50.
13. Griswold, R.E., Poage, J.F., and Polonsky, I.P. The SNOBOL4

4 0 0 Communications May 1978
of Volume 21
the ACM Number 5

