
58 COMMUNICATIONS OF THE ACM | FEBRUARY 2017 | VOL. 60 | NO. 2

practice

BY ALL ACCOUNTS, today’s Internet is not moving data
as well as it should. Most of the world’s cellular users
experience delays of seconds to minutes; public Wi-Fi in
airports and conference venues is often worse. Physics
and climate researchers need to exchange petabytes of
data with global collaborators but find their carefully
engineered multi-Gbps infrastructure often delivers at
only a few Mbps over intercontinental distances.6

These problems result from a design choice made
when TCP congestion control was created in the
1980s—interpreting packet loss as “congestion.”13
This equivalence was true at the time but was because
of technology limitations, not first principles. As
NICs (network interface controllers) evolved from
Mbps to Gbps and memory chips from KB to GB, the
relationship between packet loss and congestion
became more tenuous.

Today TCP’s loss-based congestion control—even
with the current best of breed, CUBIC11—is the primary

cause of these problems. When bottle-
neck buffers are large, loss-based con-
gestion control keeps them full, causing
bufferbloat. When bottleneck buffers
are small, loss-based congestion con-
trol misinterprets loss as a signal of
congestion, leading to low throughput.
Fixing these problems requires an alter-
native to loss-based congestion control.
Finding this alternative requires an un-
derstanding of where and how network
congestion originates.

Congestion and Bottlenecks
At any time, a (full-duplex) TCP connec-
tion has exactly one slowest link or bottle-
neck in each direction. The bottleneck is
important because:

˲˲ It determines the connection’s
maximum data-delivery rate. This is
a general property of incompressible
flow (for example, picture a six-lane
freeway at rush hour where an acci-
dent has reduced one short section to
a single lane. The traffic upstream of
the accident moves no faster than the
traffic through that lane).

˲˲ It is where persistent queues form.
Queues shrink only when a link’s de-
parture rate exceeds its arrival rate. For
a connection running at maximum de-
livery rate, all links upstream of the bot-
tleneck have a faster departure rate so
their queues migrate to the bottleneck.

Regardless of how many links a con-
nection traverses or what their individual
speeds are, from TCP’s viewpoint an ar-
bitrarily complex path behaves as a sin-
gle link with the same RTT (round-trip
time) and bottleneck rate. Two physical
constraints, RTprop (round-trip propaga-
tion time) and BtlBw (bottleneck band-
width), bound transport performance.
(If the network path were a physical pipe,
RTprop would be its length and BtlBw its
minimum diameter.)

Figure 1 shows RTT and delivery
rate variation with the amount of data
in flight (data sent but not yet acknowl-
edged). Blue lines show the RTprop
constraint, green lines the BtlBw con-
straint, and red lines the bottleneck
buffer. Operation in the shaded re-
gions is not possible since it would vio-

BBR:
Congestion-Based
Congestion Control

DOI:10.1145/3009824

 Article development led by
 queue.acm.org

Measuring bottleneck bandwidth
and round-trip propagation time.

BY NEAL CARDWELL, YUCHUNG CHENG, C. STEPHEN GUNN,
SOHEIL HASSAS YEGANEH, AND VAN JACOBSON

http://dx.doi.org/10.1145/3009824

FEBRUARY 2017 | VOL. 60 | NO. 2 | COMMUNICATIONS OF THE ACM 59

I
M

A
G

E
 F

R
O

M
 S

H
U

T
T

E
R

S
T

O
C

K
.C

O
M

late at least one constraint. Transitions
between constraints result in three
different regions (app-limited, band-
width-limited, and buffer-limited) with
qualitatively different behavior.

When there isn’t enough data in
flight to fill the pipe, RTprop deter-
mines behavior; otherwise, BtlBw
dominates. Constraint lines intersect
at inflight = BtlBw × RTprop, a.k.a. the
pipe’s BDP (bandwidth-delay product).
Since the pipe is full past this point,
the inflight–BDP excess creates a queue

at the bottleneck, which results in the
linear dependence of RTT on inflight
data shown in the upper graph. Pack-
ets are dropped when the excess ex-
ceeds the buffer capacity. Congestion is
just sustained operation to the right of
the BDP line, and congestion control is
some scheme to bound how far to the
right a connection operates on average.

Loss-based congestion control oper-
ates at the right edge of the bandwidth-
limited region, delivering full bottle-
neck bandwidth at the cost of high

delay and frequent packet loss. When
memory was expensive buffer sizes
were only slightly larger than the BDP,
which minimized loss-based conges-
tion control’s excess delay. Subsequent
memory price decreases resulted in
buffers orders of magnitude larger
than ISP link BDPs, and the resulting
bufferbloat yielded RTTs of seconds in-
stead of milliseconds.9

The left edge of the bandwidth-lim-
ited region is a better operating point
than the right. In 1979, Leonard Klein-

60 COMMUNICATIONS OF THE ACM | FEBRUARY 2017 | VOL. 60 | NO. 2

practice

protocol that reacts to actual conges-
tion, not packet loss or transient queue
delay, and converges with high proba-
bility to Kleinrock’s optimal operating
point. Thus began our three-year quest
to create a congestion control based
on measuring the two parameters that
characterize a path: bottleneck band-
width and round-trip propagation
time, or BBR.

Characterizing the Bottleneck
A connection runs with the highest
throughput and lowest delay when
(rate balance) the bottleneck packet
arrival rate equals BtlBw and (full pipe)
the total data in flight is equal to the
BDP (= BtlBw × RTprop).

The first condition guarantees that
the bottleneck can run at 100% utili-
zation. The second guarantees there
is enough data to prevent bottleneck
starvation but not overfill the pipe.
The rate balance condition alone does
not ensure there is no queue, only that
it cannot change size (for example,
if a connection starts by sending its
10-packet Initial Window into a five-
packet BDP, then runs at exactly the
bottleneck rate, five of the 10 initial
packets fill the pipe so the excess forms
a standing queue at the bottleneck that
cannot dissipate). Similarly, the full
pipe condition does not guarantee
there is no queue (for example, a con-
nection sending a BDP in BDP/2 bursts
gets full bottleneck utilization, but
with an average queue of BDP/4). The
only way to minimize the queue at the
bottleneck and all along the path is to
meet both conditions simultaneously.

BtlBw and RTprop vary over the life of
a connection, so they must be continu-
ously estimated. TCP currently tracks
RTT (the time interval from sending a
data packet until it is acknowledged)
since it is required for loss detection.
At any time t,

RTTt = RTpropt + ηt

where η ≥ 0 represents the “noise” in-
troduced by queues along the path,
the receiver’s delayed ack strategy, ack
aggregation, and so on. RTprop is a
physical property of the connection’s
path and changes only when the path
changes. Since path changes happen
on time scales » RTprop, an unbiased,
efficient estimator at time T is

rock16 showed this operating point was
optimal, maximizing delivered band-
width while minimizing delay and loss,
both for individual connections and
for the network as a whole8. Unfortu-
nately, around the same time Jeffrey M.
Jaffe14 proved it was impossible to cre-
ate a distributed algorithm that con-
verged to this operating point. This re-
sult changed the direction of research
from finding a distributed algorithm
that achieved Kleinrock’s optimal op-
erating point to investigating different
approaches to congestion control.

Our group at Google spends hours
each day examining TCP packet head-
er captures from all over the world,
making sense of behavior anomalies
and pathologies. Our usual first step is
finding the essential path characteris-

tics, RTprop and BtlBw. That these can
be inferred from traces suggests that
Jaffe’s result might not be as limiting
as it once appeared. His result rests on
fundamental measurement ambigui-
ties (For example, whether a measured
RTT increase is caused by a path-
length change, bottleneck bandwidth
decrease, or queuing delay increase
from another connection’s traffic).
Although it is impossible to disam-
biguate any single measurement, a
connection’s behavior over time tells a
clearer story, suggesting the possibili-
ty of measurement strategies designed
to resolve ambiguity.

Combining these measurements
with a robust servo loop using recent
control systems advances12 could re-
sult in a distributed congestion-control

Figure 1. Delivery rate and round-trip time vs. inflight.

RTprop

slo
pe = 1 / R

Tpro
p

R
o

u
n

d
-t

ri
p

 T
im

e

app limited bandwidth limited

slope = 1 / BtlBw

buffer
limited

BtlBw

loss-based
congestion

control
operates here

optimum
operating

point
is here

BDP
BDP+

BtlneckBufSize

Amount Inflight

D
el

iv
er

y
R

a
te

Figure 2. Ack-arrival half of the BBR algorithm.

function onAck(packet)
 rtt = now - packet.sendtime
 update_min_filter(RTpropFilter, rtt)
 delivered += packet.size
 delivered_time = now
 deliveryRate = (delivered - packet.delivered) /
 (delivered_time - packet.delivered_time)
 if (deliveryRate > BtlBwFilter.currentMax
 || ! packet.app_limited)
 update_max_filter(BtlBwFilter, deliveryRate)
 if (app_limited_until > 0)
 app_limited_until = app_limited_until - packet.size

FEBRUARY 2017 | VOL. 60 | NO. 2 | COMMUNICATIONS OF THE ACM 61

practice

RTprop = RTprop + min(ηt) =
	 min (RTTt) ∀t ∈ [T – WR, T]

(That is, a running min over time win-
dow WR (which is typically tens of sec-
onds to minutes).

Unlike RTT, nothing in the TCP spec
requires implementations to track
bottleneck bandwidth, but a good es-
timate results from tracking delivery
rate. When the ack for some packet ar-
rives back at the sender, it conveys that
packet’s RTT and announces the deliv-
ery of data inflight when that packet de-
parted. Average delivery rate between
send and ack is the ratio of data deliv-
ered to time elapsed: deliveryRate
= Δdelivered/Δt. This rate must be ≤ the
bottleneck rate (the arrival amount is
known exactly so all the uncertainty is
in the Δt, which must be ≥ the true ar-
rival interval; thus, the ratio must be ≤
the true delivery rate, which is, in turn,
upper-bounded by the bottleneck ca-
pacity). Therefore, a windowed-max of
delivery rate is an efficient, unbiased
estimator of BtlBw:

BtlBw = �max(deliveryRatet)
∀t ∈ [T – WB,T]

where the time window WB is typically
six to 10 RTTs.

TCP must record the departure time
of each packet to compute RTT. BBR
augments that record with the total
data delivered so each ack arrival yields
both an RTT and a delivery rate mea-
surement that the filters convert to RT-
prop and BtlBw estimates.

Note that these values are completely
independent: RTprop can change (for
example, on a route change) but still
have the same bottleneck, or BtlBw
can change (for example, when a wire-
less link changes rate) without the path
changing. (This independence is why
both constraints have to be known to
match sending behavior to delivery
path.) Since RTprop is visible only to the
left of BDP and BtlBw only to the right in
Figure 1, they obey an uncertainty prin-
ciple: whenever one can be measured,
the other cannot. Intuitively, this is be-
cause the pipe has to be overfilled to
find its capacity, which creates a queue
that obscures the length of the pipe.
For example, an application running a
request/response protocol might never
send enough data to fill the pipe and

observe BtlBw. A multi-hour bulk data
transfer might spend its entire lifetime
in the bandwidth-limited region and
have only a single sample of RTprop
from the first packet’s RTT. This intrin-
sic uncertainty means that in addition
to estimators to recover the two path pa-
rameters, there must be states that track
both what can be learned at the current
operating point and, as information be-
comes stale, how to get to an operating
point where it can be relearned.

Matching the Packet Flow
to the Delivery Path
The core BBR algorithm has two parts:

When an ack is received. Each ack
provides new RTT and delivery rate
measurements that update the RTprop
and BtlBw estimates, as illustrated in
Figure 2.

The if checks address the uncer-
tainty issue described in the last para-
graph: senders can be application lim-
ited, meaning the application runs out
of data to fill the network. This is quite
common because of request/response
traffic. When there is a send opportu-
nity but no data to send, BBR marks the
corresponding bandwidth sample(s)
as application limited (see send()
pseudocode to follow). The code here
decides which samples to include in
the bandwidth model so it reflects net-
work, not application, limits. BtlBw is a
hard upper bound on the delivery rate
so a measured delivery rate larger than
the current BtlBw estimate must mean
the estimate is too low, whether or not
the sample was app-limited. Other-
wise, application-limited samples are
discarded. (Figure 1 shows that in the
app-limited region deliveryRate
underestimates, BtlBw. These checks
prevent filling the BtlBw filter with un-
derestimates that would cause data to
be sent too slowly.)

When data is sent. To match the
packet-arrival rate to the bottleneck
link’s departure rate, BBR paces ev-
ery data packet. BBR must match the
bottleneck rate, which means pacing is
integral to the design and fundamental
to operation—pacing_rate is BBR’s pri-
mary control parameter. A secondary
parameter, cwnd_gain, bounds inflight
to a small multiple of the BDP to han-
dle common network and receiver pa-
thologies (as we will discuss). Concep-
tually, the TCP send routine looks like

Our group at Google
spends hours each
day examining
TCP packet header
captures from all
over the world,
making sense of
behavior anomolies
and pathologies.
Our usual first
step is finding the
essential path
characteristics,
RTprop and BtlBw.

62 COMMUNICATIONS OF THE ACM | FEBRUARY 2017 | VOL. 60 | NO. 2

practice

for each part of the cycle is shown time-
aligned with the data it influenced. The
gain is applied an RTT earlier, when
the data is sent. This is indicated by the
horizontal jog in the event sequence
description running up the left side.

BBR minimizes delay by spending
most of its time with one BDP in flight,
paced at the BtlBw estimate. This
moves the bottleneck to the sender so it
cannot observe BtlBw increases. Con-
sequently, BBR periodically spends an
RTprop interval at a pacing_gain > 1,
which increases the sending rate and
inflight. If BtlBw hasn’t changed, then
a queue is created at the bottleneck,
increasing RTT, which keeps deliv-
eryRate constant. (This queue is re-
moved by sending at a compensating
pacing_gain < 1 for the next RTprop.) If
BtlBw has increased, deliveryRate
increases and the new max immedi-
ately increases the BtlBw filter output,
increasing the base pacing rate. Thus,
BBR converges to the new bottleneck
rate exponentially fast. Figure 5 shows
the effect on a 10Mbps, 40ms flow of
BtlBw abruptly doubling to 20Mbps af-
ter 20 seconds of steady operation (top
graph) then dropping to 10Mbps after
another 20 seconds of steady operation
at 20Mbps (bottom graph).

(BBR is a simple instance of a Max-
plus control system, a new approach to
control based on nonstandard algebra.12
This approach allows the adaptation rate
[controlled by the max gain] to be inde-
pendent of the queue growth [controlled
by the average gain]. Applied to this prob-
lem, it results in a simple, implicit con-
trol loop where the adaptation to physi-
cal constraint changes is automatically
handled by the filters representing those
constraints. A conventional control sys-
tem would require multiple loops con-
nected by a complex state machine to
accomplish the same result.)

Single BBR Flow Startup Behavior
Existing implementations handle
events such as startup, shutdown, and
loss recovery with event-specific algo-
rithms and many lines of code. BBR
uses the code detailed earlier for every-
thing, handling events by sequencing
through a set of “states” that are defined
by a table containing one or more fixed
gains and exit criteria. Most of the time
is spent in the ProbeBW state described
in the section on Steady-state Behavior.

the code in Figure 3. (In Linux, sending
uses the efficient FQ/pacing queuing
discipline,4 which gives BBR line-rate
single-connection performance on
multigigabit links and handles thou-
sands of lower-rate paced connections
with negligible CPU overhead.)

Steady-state behavior. The rate and
amount BBR sends is solely a function
of the estimated BtlBw and RTprop, so
the filters control adaptation in addi-

tion to estimating the bottleneck con-
straints. This creates the novel control
loop shown in Figure 4, which illus-
trates the RTT (blue), inflight (green)
and delivery rate (red) detail from
700ms of a 10Mbps, 40ms flow. The
thick gray line above the delivery-rate
data is the state of the BtlBw max filter.
The triangular structures result from
BBR cycling pacing_gain to determine
if BtlBw has increased. The gain used

Figure 4. RTT (blue), inflight (green), and delivery rate (red) detail.

1.00 1.00 1.00 1.00 1.00 1.25 0.75 1.00 1.00 1.00 1.00 1.00 1.00 1.25 0.75 1.00 1.00

cycle gain

gain > 1 so
inflight increases

pipe full so RTT
increases with inflight

(queue created)

3.8 4.0 4.2 4.4

Time (sec.)

B
W

 (
M

b
p

s)
in

fl
ig

h
t

(k
B

)
R

T
T

 (m
s)

ack arrival adds sample
to BtlBw max filter

ack from send upates filter one RTT later
 max BtlBw × cycle gain

used as sending rate

8.75

9.00

9.25

9.50

45

50

55

60

42.5

45.0

47.5

50.0

52.5

Figure 3. Packet-send half of the BBR algorithm.

function send(packet)
 bdp = BtlBwFilter.currentMax
 * RTpropFilter.currentMin
 if (inflight >= cwnd_gain * bdp)
 // wait for ack or retransmission timeout
 return
 if (now >= nextSendTime)
 packet = nextPacketToSend()
 if (! packet)
 app_limited_until = inflight
 return
 packet.app_limited = (app_limited_until > 0)
 packet.sendtime = now
 packet.delivered = delivered
 packet.delivered_time = delivered_time
 ship(packet)
 nextSendTime = now + packet.size /
 (pacing_gain * BtlBwFilter.currentMax)

 timerCallbackAt(send, nextSendTime)

FEBRUARY 2017 | VOL. 60 | NO. 2 | COMMUNICATIONS OF THE ACM 63

practice

The Startup and Drain states are used at
connection start (Figure 6). To handle
Internet link bandwidths spanning 12
orders of magnitude, Startup imple-
ments a binary search for BtlBw by us-
ing a gain of 2/ln2 to double the sending
rate while delivery rate is increasing.
This discovers BtlBw in log2BDP RTTs
but creates up to 2BDP excess queue in
the process. Once Startup finds BtlBw,
BBR transitions to Drain, which uses
the inverse of Startup’s gain to get rid
of the excess queue, then to ProbeBW
once the inflight drops to a BDP.

Figure 6 shows the first second of a
10Mbps, 40ms BBR flow. The time/se-
quence plot shows the sender (green)
and receiver (blue) progress vs. time.
The red line shows a CUBIC sender
under identical conditions. Vertical
gray lines mark BBR state transitions.
The lower figure shows the RTT of the
two connections vs. time. Note that the
time reference for this data is ack arrival
(blue) so, while they appear to be time
shifted, events are shown at the point
where BBR learns of them and acts.

The lower graph of Figure 6 con-
trasts BBR and CUBIC. Their initial be-
havior is similar, but BBR completely
drains its startup queue while CUBIC
can’t. Without a path model to tell it
how much of the inflight is excess, CU-
BIC makes inflight growth less aggres-
sive, but growth continues until either
the bottleneck buffer fills and drops a
packet or the receiver’s inflight limit
(TCP’s receive window) is reached.

Figure 7 shows RTT behavior during
the first eight seconds of the connec-
tions shown in Figure 6. CUBIC (red)
fills the available buffer, then cycles
from 70% to 100% full every few sec-
onds. After startup, BBR (green) runs
with essentially no queue.

Behavior of Multiple BBR
Flows Sharing a Bottleneck
Figure 8 shows how individual through-
puts for several BBR flows sharing a
100Mbps/10ms bottleneck converge
to a fair share. The downward facing
triangular structures are connection
ProbeRTT states whose self-synchro-
nization accelerates final convergence.

ProbeBW gain cycling (Figure 4)
causes bigger flows to yield bandwidth
to smaller flows, resulting in each
learning its fair share. This happens
fairly quickly (a few ProbeBW cycles),

though unfairness can persist when
late starters overestimate RTprop as a
result of starting when other flows have
(temporarily) created a queue.

To learn the true RTProp, a flow
moves to the left of BDP using

ProbeRTT state: when the RTProp
estimate has not been updated (that
is, by measuring a lower RTT) for
many seconds, BBR enters ProbeRTT,
which reduces the inflight to four
packets for at least one round trip,

Figure 5. Bandwidth change.

estimate
doubled and
pipe full

BtlBw doubled
to 20Mbps

BW estim
ate

increases 1.95x

(=1.25
3) in

 3 cycles

BtlBw halved;
inflight doesn’t
fit in pipe,
increasing RTT

inflight increases,
pushing up RTT, until
clamped by cwnd_gain

20Mbps BtlBw
times out of filter

inflight reduction lowers
RTT which lowers inflight…

until optimum regained

In
fl

ig
h

t
(K

b)

 R
T

T
 (

M
s)

In
fl

ig
h

t
(K

b)

 R
T

T
 (

M
s)

Time (Sec.)
40 41 42 43 44

19 20 21 22

50

100

150

200

40

60

80

100

120
inflight
RTT

Time (sec.)

Figure 6. First second of a 10Mbps, 40ms BBR flow

CUBIC switches from
exponential to linear
inflight growth

BBR operating
at full BW with
no queue

cwnd_gain clamps
BBR inflight at 3 BDP

RTprop

startup drain probe BW

0 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00

D
a

ta
 S

en
t

O
r

A
ck

ed
 (

M
b)

0 0.25 0.50 0.75 1.00
Time (Sec.)

Time (sec.)

40
60
80

100
120

R
T

T
 (

M
s)

64 COMMUNICATIONS OF THE ACM | FEBRUARY 2017 | VOL. 60 | NO. 2

practice

ordination is the key to both fairness
and stability.

BBR synchronizes flows around the
desirable event of an empty bottleneck
queue. By contrast, loss-based conges-
tion control synchronizes around the
undesirable events of periodic queue
growth and overflow, amplifying delay
and packet loss.

Google B4 WAN
Deployment Experience
Google’s B4 network is a high-speed
WAN (wide-area network) built using
commodity switches.15 Losses on these
shallow-buffered switches result most-
ly from coincident arrivals of small
traffic bursts. In 2015, Google started
switching B4 production traffic from
CUBIC to BBR. No issues or regres-
sions were experienced, and since 2016
all B4 TCP traffic uses BBR. Figure 9
shows one reason for switching: BBR’s
throughput is consistently 2 to 25 times
greater than CUBIC’s. We had expected
even more improvement but discov-
ered that 75% of BBR connections were
limited by the kernel’s TCP receive
buffer, which the network operations
team had deliberately set low (8MB)
to prevent CUBIC flooding the net-
work with megabytes of excess inflight
(8MB/200ms intercontinental RTT ⇒
335Mbps max throughput). Manually
raising the receive buffer on one U.S.-
Europe path caused BBR immediately
to reach 2Gbps, while CUBIC remained
at 15Mbps—the 133x relative improve-
ment predicted by Mathis et al.17

Figure 9 shows BBR vs. CUBIC rela-
tive throughput improvement; the in-
set shows throughput CDFs (cumula-
tive distribution functions). Measures
are from an active prober service that
opens persistent BBR and CUBIC con-
nections to remote datacenters, then
transfers 8MB of data every minute.
Probers communicate via many B4
paths within and between North Amer-
ica, Europe, and Asia.

The huge improvement is a direct
consequence of BBR not using loss
as a congestion indicator. To achieve
full bandwidth, existing loss-based
congestion controls require the
loss rate to be less than the inverse
square of the BDP17 (for example, <
one loss per 30 million packets for a
10Gbps/100ms path). Figure 10 com-
pares measured goodput at various

then returns to the previous state.
Large flows entering ProbeRTT drain
many packets from the queue, so sev-
eral flows see a new RTprop (new min-
imum RTT). This makes their RTprop

estimates expire at the same time, so
they enter ProbeRTT together, which
makes the total queue dip larger and
causes more flows to see a new RT-
prop, and so on. This distributed co-

Figure 8. Throughputs of five BBR flows sharing a bottleneck

fair
share

0 10 20 4030 50

Time (sec.)

0

20

40

60

80

T
h

ro
u

g
h

p
u

t
(M

b
p

s)

Figure 7. First eight seconds of 10Mbps, 40ms cubic and BBR flows.

packet loss and
recovery episodes

bottleneck’s 250ms
buffer limit

RTprop

0 2 4 6 8

Time (sec.)

100

200

300

400

500

R
T

T
 (m

s)

Figure 9. BBR vs. CUBIC relative throughput improvement.

○

○

○

○
○
○
○
○
○○○

○○○○○○○○○○○○○○○○
○○
○○○ ○

○ ○ ○ ○
○

2x Improvement

5 20 5010 200100 500 20001000 5000

CUBIC Throughput (Mbps) – Log Scale

0

51 20 100 500 5000
Throughput (Mbps) – Log Scale

4

2

6

8

12

10

20

18

16

1.00

0.75

0.50

0.25

BBR
CUBIC

0

14

B
B

R
 T

h
ro

u
g

h
p

u
t

/
C

U
B

IC
 T

h
ro

u
g

h
p

u
t

C
u

m
u

la
ti

ve
 P

ro
b

ab
il

it
y

FEBRUARY 2017 | VOL. 60 | NO. 2 | COMMUNICATIONS OF THE ACM 65

practice

loss rates. CUBIC’s loss tolerance is a
structural property of the algorithm,
while BBR’s is a configuration param-
eter. As BBR’s loss rate approaches the
ProbeBW peak gain, the probability of
measuring a delivery rate of the true
BtlBw drops sharply, causing the max
filter to underestimate.

Figure 10 shows BBR vs. CUBIC
goodput for 60-second flows on a
100Mbps/100ms link with 0.001 to
50% random loss. CUBIC’s throughput
decreases by 10 times at 0.1% loss and
totally stalls above 1%. The maximum
possible throughput is the link rate
times fraction delivered (= 1 – lossRate).
BBR meets this limit up to a 5% loss
and is close up to 15%.

YouTube Edge
Deployment Experience
BBR is being deployed on Google.com
and YouTube video servers. Google
is running small-scale experiments
in which a small percentage of users
are randomly assigned either BBR or
CUBIC. Playbacks using BBR show
significant improvement in all of
YouTube’s quality-of-experience met-
rics, possibly because BBR’s behavior
is more consistent and predictable.
BBR only slightly improves connec-
tion throughput because YouTube
already adapts the server’s streaming
rate to well below BtlBw to minimize
bufferbloat and rebuffer events. Even
so, BBR reduces median RTT by 53%
on average globally and by more than
80% in the developing world. Figure
11 shows BBR vs. CUBIC median RTT
improvement from more than 200
million YouTube playback connec-
tions measured on five continents
over a week.

More than half of the world’s seven
billion mobile Internet subscriptions
connect via 8kbps to 114kbps 2.5G sys-
tems,5 which suffer well-documented
problems because of loss-based con-
gestion control’s buffer-filling pro-
pensities.3 The bottleneck link for
these systems is usually between the
SGSN (serving GPRS support node)18
and mobile device. SGSN software
runs on a standard PC platform with
ample memory, so there are frequent-
ly megabytes of buffer between the
Internet and mobile device. Figure 12
compares (emulated) SGSN Internet-
to-mobile delay for BBR and CUBIC.

The horizontal lines mark one of the
more serious consequences: TCP
adapts to long RTT delay except on
the connection initiation SYN pack-
et, which has an OS-dependent fixed
timeout. When the mobile device is
receiving bulk data (for example, from
automatic app updates) via a large-
buffered SGSN, the device cannot con-
nect to anything on the Internet until
the queue empties (the SYN ACK ac-

cept packet is delayed for longer than
the fixed SYN timeout).

Figure 12 shows steady-state me-
dian RTT variation with link buffer
size on a 128Kbps/40ms link with eight
BBR (green) or CUBIC (red) flows. BBR
keeps the queue near its minimum, in-
dependent of both bottleneck buffer
size and number of active flows. CUBIC
flows always fill the buffer, so the delay
grows linearly with buffer size.

Figure 10. BBR vs. CUBIC goodput under loss.

0.001 0.01 0.1 1 2 5 10 20 30 50
Loss Rate (%) – Log Scale

0

25

50

75

100

T
h

ro
u

g
h

p
u

t
(M

b
p

s)

Figure 11. BBR vs. CUBIC median RTT improvement.

0 21 3 4 5 6 7 8 9 10
CUBIC RTT (sec.)

1

2

3

4

5

C
U

B
IC

 R
T

T
 /

 B
B

R
 R

T
T

Figure 12. Steady-state median RTT variation with link buffer size

750150 1500

new connections fail in Linux / Android

new connections fail in Windows / Mac OS / iOS

3000 6000 9750
Buffer (KB)

0

200

400

600

L
a

te
n

cy
 (

S
ec

.)

66 COMMUNICATIONS OF THE ACM | FEBRUARY 2017 | VOL. 60 | NO. 2

practice

 Related articles
 on queue.acm.org

Sender-side Buffers and the Case
for Multimedia Adaptation
Aiman Erbad and Charles “Buck” Krasic
http://queue.acm.org/detail.cfm?id=2381998

You Don’t Know Jack
about Network Performance
Kevin Fall and Steve McCanne
http://queue.acm.org/detail.cfm?id=1066069

A Guided Tour through
Data-center Networking
Dennis Abts and Bob Felderman
http://quue.acm.org/detail.cfm?id=2208919

References
1.	 Abrahamsson, M. TCP ACK suppression. IETF AQM

mailing list, 2015; https://www.ietf.org/mail-archive/
web/aqm/current/msg01480.html.

2.	 Brakmo, L.S., Peterson, L.L. TCP Vegas: End-to-end
congestion avoidance on a global Internet. IEEE J.
Selected Areas in Communications 13, 8 (1995), 1465–1480.

3.	 Chakravorty, R., Cartwright, J., Pratt, I. Practical
experience with TCP over GPRS. IEEE GLOBECOM, 2002.

4.	 Corbet, J. TSO sizing and the FQ scheduler. LWN.net,
2013; https://lwn.net/Articles/564978/.

5.	 Ericsson. Ericsson Mobility Report (June), 2015;
https://www.ericsson.com/res/docs/2015/ericsson-
mobility-report-june-2015.pdf.

6.	 ESnet. Application tuning to optimize international
astronomy workflow from NERSC to LFI-DPC at
INAF-OATs; http://fasterdata.es.net/data-transfer-
tools/case-studies/nersc-astronomy/.

7.	 Flach, T. et al. An Internet-wide analysis of traffic
policing. SIGCOMM, 2016, 468–482.

8.	 Gail, R., Kleinrock, L. An invariant property of
computer network power. In Proceedings of the
International Conference on Communications 63, 1
(1981),1-63.1.5.

9.	 Gettys, J., Nichols, K. Bufferbloat: Dark buffers in the
Internet. acmqueue 9, 11 (2011); http://queue.acm.
org/detail.cfm?id=2071893.

10.	 Ha, S., Rhee, I. 2011. Taming the elephants: new TCP
slow start. Computer Networks 55, 9 (2011), 2092–2110.

11.	 Ha, S., Rhee, I., Xu, L. CUBIC: a new TCP-friendly
high-speed TCP variant. ACM SIGOPS Operating
Systems Review 42, 5 (2008), 64–74.

12.	 Heidergott, B., Olsder, G. J., Van Der Woude, J. Max
Plus at Work: Modeling and Analysis of Synchronized
Systems: a Course on Max-Plus Algebra and its
Applications. Princeton University Press, 2014.

13.	 Jacobson, V. Congestion avoidance and control. ACM
SIGCOMM Computer Communication Review 18, 4
(1988): 314–329.

14.	 Jaffe, J. Flow control power is nondecentralizable.
IEEE Transactions on Communications 29, 9 (1981),
1301–1306.

15.	 Jain, S. et al. B4: experience with a globally-deployed
software defined WAN. ACM SIGCOMM Computer
Communication Review 43, 4 (2013), 3–14.

16.	 Kleinrock, L. 1979. Power and deterministic rules
of thumb for probabilistic problems in computer
communications. In Proceedings of the International
Conference on Communications (1979), 43.1.1-43.1.10.

17.	 Mathis, M., Semke, J., Mahdavi, J., Ott, T. The
macroscopic behavior of the TCP congestion
avoidance algorithm. ACM SIGCOMM Computer
Communication Review 27, 3 (1997), 67–82.

18.	 Wikipedia. GPRS core network serving GPRS support
node; https://en.wikipedia.org/wiki/GPRS_core_
network#Serving_GPRS_support_node_.28SGSN.29.

Neal Cardwell, Yuchung Cheng, C. Stephen Gunn,
Soheil Hassas Yeganeh, and Van Jacobson are members
of Google’s make-tcp-fast project, whose goal is to evolve
Internet transport via fundamental research and open
source software. Project contributions include TFO (TCP
Fast Open), TLP (Tail Loss Probe), RACK loss recovery,
fq/pacing, and a large fraction of the git commits to the
Linux kernel TCP code for the past five years. They can be
contacted at https://googlegroups.com/d/forum/bbr-dev.

Copyright held by owners/authors.

Mobile Cellular
Adaptive Bandwidth
Cellular systems adapt per-subscrib-
er bandwidth based partly on a de-
mand estimate that uses the queue of
packets destined for the subscriber.
Early versions of BBR were tuned to
create very small queues, resulting
in connections getting stuck at low
rates. Raising the peak ProbeBW
pacing_gain to create bigger queues
resulted in fewer stuck connections,
indicating it is possible to be too nice
to some networks. With the current
1.25 × BtlBw peak gain, no degrada-
tion is apparent compared with CU-
BIC on any network.

Delayed and stretched aks. Cel-
lular, Wi-Fi, and cable broadband
networks often delay and aggregate
ACKs.1 When inflight is limited to
one BDP, this results in throughput-
reducing stalls. Raising ProbeBW’s
cwnd_gain to two allowed BBR to
continue sending smoothly at the es-
timated delivery rate, even when ACKs
are delayed by up to one RTT. This
largely avoids stalls.

Token-bucket policers. BBR’s ini-
tial YouTube deployment revealed
that most of the world’s ISPs mangle
traffic with token-bucket policers.7
The bucket is typically full at connec-
tion startup so BBR learns the un-
derlying network’s BtlBw, but once
the bucket empties, all packets sent
faster than the (much lower than
BtlBw) bucket fill rate are dropped.
BBR eventually learns this new deliv-
ery rate, but the ProbeBW gain cycle
results in continuous moderate loss-
es. To minimize the upstream band-
width waste and application latency
increase from these losses, we added
policer detection and an explicit po-
licer model to BBR. We are also ac-
tively researching better ways to miti-
gate the policer damage.

Competition with loss-based con-
gestion control. BBR converges to-
ward a fair share of the bottleneck
bandwidth whether competing with
other BBR flows or with loss-based
congestion control. Even as loss-
based congestion control fills the
available buffer, ProbeBW still ro-
bustly moves the BtlBw estimate
toward the flow’s fair share, and
ProbeRTT finds an RTProp estimate
just high enough for tit-for-tat con-

vergence to a fair share. Unmanaged
router buffers exceeding several
BDPs, however, cause long-lived loss-
based competitors to bloat the queue
and grab more than their fair share.
Mitigating this is another area of ac-
tive research.

Conclusion
Rethinking congestion control pays
big dividends. Rather than using
events such as loss or buffer occupan-
cy, which are only weakly correlated
with congestion, BBR starts from
Kleinrock’s formal model of conges-
tion and its associated optimal oper-
ating point. A pesky “impossibility”
result that the crucial parameters
of delay and bandwidth cannot be
determined simultaneously is side-
stepped by observing they can be esti-
mated sequentially. Recent advances
in control and estimation theory are
then used to create a simple distrib-
uted control loop that verges on the
optimum, fully utilizing the network
while maintaining a small queue.
Google’s BBR implementation is
available in the open source Linux
kernel TCP.

BBR is deployed on Google’s B4
backbone, improving throughput by
orders of magnitude compared with
CUBIC. It is also being deployed on
Google and YouTube Web servers, sub-
stantially reducing latency on all five
continents tested to date, most dra-
matically in developing regions. BBR
runs purely on the sender and does
not require changes to the protocol,
receiver, or network, making it incre-
mentally deployable. It depends only
on RTT and packet-delivery acknowl-
edgment, so can be implemented for
most Internet transport protocols.

Acknowledgments
Thanks to Len Kleinrock for pointing
out the right way to do congestion con-
trol and Larry Brakmo for pioneering
work on Vegas2 and New Vegas con-
gestion control that presaged many
elements of BBR, and for advice and
guidance during BBR’s early develop-
ment. We also thank Eric Dumazet,
Nandita Dukkipati, Jana Iyengar, Ian
Swett, M. Fitz Nowlan, David Wether-
all, Leonidas Kontothanassis, Amin
Vahdat, and the Google BwE and You-
Tube infrastructure teams.	

https://www.ietf.org/mail-archive/web/aqm/current/msg01480.html
https://www.ietf.org/mail-archive/web/aqm/current/msg01480.html
https://lwn.net/Articles/564978/
https://www.ericsson.com/res/docs/2015/ericsson-mobility-report-june-2015.pdf
https://www.ericsson.com/res/docs/2015/ericsson-mobility-report-june-2015.pdf
http://fasterdata.es.net/data-transfer-tools/case-studies/nersc-astronomy/
http://fasterdata.es.net/data-transfer-tools/case-studies/nersc-astronomy/
http://queue.acm.org/detail.cfm?id=2071893
http://queue.acm.org/detail.cfm?id=2071893
https://en.wikipedia.org/wiki/GPRS_core_network#Serving_GPRS_support_node_.28SGSN.29
https://en.wikipedia.org/wiki/GPRS_core_network#Serving_GPRS_support_node_.28SGSN.29
https://googlegroups.com/d/forum/bbr-dev

