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BY ALL ACCOUNTS, today’s Internet is not moving data 
as well as it should. Most of the world’s cellular users 
experience delays of seconds to minutes; public Wi-Fi in 
airports and conference venues is often worse. Physics 
and climate researchers need to exchange petabytes of 
data with global collaborators but find their carefully 
engineered multi-Gbps infrastructure often delivers at 
only a few Mbps over intercontinental distances.6 

These problems result from a design choice made 
when TCP congestion control was created in the 
1980s—interpreting packet loss as “congestion.”13 
This equivalence was true at the time but was because 
of technology limitations, not first principles. As 
NICs (network interface controllers) evolved from 
Mbps to Gbps and memory chips from KB to GB, the 
relationship between packet loss and congestion 
became more tenuous. 

Today TCP’s loss-based congestion control—even 
with the current best of breed, CUBIC11—is the primary 

cause of these problems. When bottle-
neck buffers are large, loss-based con-
gestion control keeps them full, causing 
bufferbloat. When bottleneck buffers 
are small, loss-based congestion con-
trol misinterprets loss as a signal of 
congestion, leading to low throughput. 
Fixing these problems requires an alter-
native to loss-based congestion control. 
Finding this alternative requires an un-
derstanding of where and how network 
congestion originates.

Congestion and Bottlenecks
At any time, a (full-duplex) TCP connec-
tion has exactly one slowest link or bottle-
neck in each direction. The bottleneck is 
important because:

˲˲ It determines the connection’s 
maximum data-delivery rate. This is 
a general property of incompressible 
flow (for example, picture a six-lane 
freeway at rush hour where an acci-
dent has reduced one short section to 
a single lane. The traffic upstream of 
the accident moves no faster than the 
traffic through that lane).

˲˲ It is where persistent queues form. 
Queues shrink only when a link’s de-
parture rate exceeds its arrival rate. For 
a connection running at maximum de-
livery rate, all links upstream of the bot-
tleneck have a faster departure rate so 
their queues migrate to the bottleneck.

Regardless of how many links a con-
nection traverses or what their individual 
speeds are, from TCP’s viewpoint an ar-
bitrarily complex path behaves as a sin-
gle link with the same RTT (round-trip 
time) and bottleneck rate. Two physical 
constraints, RTprop (round-trip propaga-
tion time) and BtlBw (bottleneck band-
width), bound transport performance. 
(If the network path were a physical pipe, 
RTprop would be its length and BtlBw its 
minimum diameter.)

Figure 1 shows RTT and delivery 
rate variation with the amount of data 
in flight (data sent but not yet acknowl-
edged). Blue lines show the RTprop 
constraint, green lines the BtlBw con-
straint, and red lines the bottleneck 
buffer. Operation in the shaded re-
gions is not possible since it would vio-
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late at least one constraint. Transitions 
between constraints result in three 
different regions (app-limited, band-
width-limited, and buffer-limited) with 
qualitatively different behavior. 

When there isn’t enough data in 
flight to fill the pipe, RTprop deter-
mines behavior; otherwise, BtlBw 
dominates. Constraint lines intersect 
at inflight = BtlBw × RTprop, a.k.a. the 
pipe’s BDP (bandwidth-delay product). 
Since the pipe is full past this point, 
the inflight–BDP excess creates a queue 

at the bottleneck, which results in the 
linear dependence of RTT on inflight 
data shown in the upper graph. Pack-
ets are dropped when the excess ex-
ceeds the buffer capacity. Congestion is 
just sustained operation to the right of 
the BDP line, and congestion control is 
some scheme to bound how far to the 
right a connection operates on average.

Loss-based congestion control oper-
ates at the right edge of the bandwidth-
limited region, delivering full bottle-
neck bandwidth at the cost of high 

delay and frequent packet loss. When 
memory was expensive buffer sizes 
were only slightly larger than the BDP, 
which minimized loss-based conges-
tion control’s excess delay. Subsequent 
memory price decreases resulted in 
buffers orders of magnitude larger 
than ISP link BDPs, and the resulting 
bufferbloat yielded RTTs of seconds in-
stead of milliseconds.9

The left edge of the bandwidth-lim-
ited region is a better operating point 
than the right. In 1979, Leonard Klein-
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protocol that reacts to actual conges-
tion, not packet loss or transient queue 
delay, and converges with high proba-
bility to Kleinrock’s optimal operating 
point. Thus began our three-year quest 
to create a congestion control based 
on measuring the two parameters that 
characterize a path: bottleneck band-
width and round-trip propagation 
time, or BBR.

Characterizing the Bottleneck
A connection runs with the highest 
throughput and lowest delay when 
(rate balance) the bottleneck packet 
arrival rate equals BtlBw and (full pipe) 
the total data in flight is equal to the 
BDP (= BtlBw × RTprop).

The first condition guarantees that 
the bottleneck can run at 100% utili-
zation. The second guarantees there 
is enough data to prevent bottleneck 
starvation but not overfill the pipe. 
The rate balance condition alone does 
not ensure there is no queue, only that 
it cannot change size (for example, 
if a connection starts by sending its 
10-packet Initial Window into a five-
packet BDP, then runs at exactly the 
bottleneck rate, five of the 10 initial 
packets fill the pipe so the excess forms 
a standing queue at the bottleneck that 
cannot dissipate). Similarly, the full 
pipe condition does not guarantee 
there is no queue (for example, a con-
nection sending a BDP in BDP/2 bursts 
gets full bottleneck utilization, but 
with an average queue of BDP/4). The 
only way to minimize the queue at the 
bottleneck and all along the path is to 
meet both conditions simultaneously.

BtlBw and RTprop vary over the life of 
a connection, so they must be continu-
ously estimated. TCP currently tracks 
RTT (the time interval from sending a 
data packet until it is acknowledged) 
since it is required for loss detection. 
At any time t,

RTTt = RTpropt + ηt

where η ≥ 0 represents the “noise” in-
troduced by queues along the path, 
the receiver’s delayed ack strategy, ack 
aggregation, and so on. RTprop is a 
physical property of the connection’s 
path and changes only when the path 
changes. Since path changes happen 
on time scales » RTprop, an unbiased, 
efficient estimator at time T is

rock16 showed this operating point was 
optimal, maximizing delivered band-
width while minimizing delay and loss, 
both for individual connections and 
for the network as a whole8. Unfortu-
nately, around the same time Jeffrey M. 
Jaffe14 proved it was impossible to cre-
ate a distributed algorithm that con-
verged to this operating point. This re-
sult changed the direction of research 
from finding a distributed algorithm 
that achieved Kleinrock’s optimal op-
erating point to investigating different 
approaches to congestion control.

Our group at Google spends hours 
each day examining TCP packet head-
er captures from all over the world, 
making sense of behavior anomalies 
and pathologies. Our usual first step is 
finding the essential path characteris-

tics, RTprop and BtlBw. That these can 
be inferred from traces suggests that 
Jaffe’s result might not be as limiting 
as it once appeared. His result rests on 
fundamental measurement ambigui-
ties (For example, whether a measured 
RTT increase is caused by a path-
length change, bottleneck bandwidth 
decrease, or queuing delay increase 
from another connection’s traffic). 
Although it is impossible to disam-
biguate any single measurement, a 
connection’s behavior over time tells a 
clearer story, suggesting the possibili-
ty of measurement strategies designed 
to resolve ambiguity. 

Combining these measurements 
with a robust servo loop using recent 
control systems advances12 could re-
sult in a distributed congestion-control 

Figure 1. Delivery rate and round-trip time vs. inflight.
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Figure 2. Ack-arrival half of the BBR algorithm.

function onAck(packet)
  rtt = now - packet.sendtime
  update_min_filter(RTpropFilter, rtt)
  delivered += packet.size
  delivered_time = now
  deliveryRate = (delivered - packet.delivered) /
                 (delivered_time - packet.delivered_time)
  if (deliveryRate > BtlBwFilter.currentMax
      || ! packet.app_limited)
      update_max_filter(BtlBwFilter, deliveryRate)
  if (app_limited_until > 0)
      app_limited_until = app_limited_until - packet.size
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RTprop = RTprop + min(ηt) = 
	 min (RTTt) ∀t ∈ [T – WR, T]

(That is, a running min over time win-
dow WR (which is typically tens of sec-
onds to minutes).

Unlike RTT, nothing in the TCP spec 
requires implementations to track 
bottleneck bandwidth, but a good es-
timate results from tracking delivery 
rate. When the ack for some packet ar-
rives back at the sender, it conveys that 
packet’s RTT and announces the deliv-
ery of data inflight when that packet de-
parted. Average delivery rate between 
send and ack is the ratio of data deliv-
ered to time elapsed: deliveryRate 
= Δdelivered/Δt. This rate must be ≤ the 
bottleneck rate (the arrival amount is 
known exactly so all the uncertainty is 
in the Δt, which must be ≥ the true ar-
rival interval; thus, the ratio must be ≤ 
the true delivery rate, which is, in turn, 
upper-bounded by the bottleneck ca-
pacity). Therefore, a windowed-max of 
delivery rate is an efficient, unbiased 
estimator of BtlBw:

BtlBw = �max(deliveryRatet)  
∀t ∈ [T – WB,T]

where the time window WB is typically 
six to 10 RTTs.

TCP must record the departure time 
of each packet to compute RTT. BBR 
augments that record with the total 
data delivered so each ack arrival yields 
both an RTT and a delivery rate mea-
surement that the filters convert to RT-
prop and BtlBw estimates.

Note that these values are completely 
independent: RTprop can change (for 
example, on a route change) but still 
have the same bottleneck, or BtlBw 
can change (for example, when a wire-
less link changes rate) without the path 
changing. (This independence is why 
both constraints have to be known to 
match sending behavior to delivery 
path.) Since RTprop is visible only to the 
left of BDP and BtlBw only to the right in 
Figure 1, they obey an uncertainty prin-
ciple: whenever one can be measured, 
the other cannot. Intuitively, this is be-
cause the pipe has to be overfilled to 
find its capacity, which creates a queue 
that obscures the length of the pipe. 
For example, an application running a 
request/response protocol might never 
send enough data to fill the pipe and 

observe BtlBw. A multi-hour bulk data 
transfer might spend its entire lifetime 
in the bandwidth-limited region and 
have only a single sample of RTprop 
from the first packet’s RTT. This intrin-
sic uncertainty means that in addition 
to estimators to recover the two path pa-
rameters, there must be states that track 
both what can be learned at the current 
operating point and, as information be-
comes stale, how to get to an operating 
point where it can be relearned.

Matching the Packet Flow 
to the Delivery Path
The core BBR algorithm has two parts:

When an ack is received. Each ack 
provides new RTT and delivery rate 
measurements that update the RTprop 
and BtlBw estimates, as illustrated in 
Figure 2.

The if checks address the uncer-
tainty issue described in the last para-
graph: senders can be application lim-
ited, meaning the application runs out 
of data to fill the network. This is quite 
common because of request/response 
traffic. When there is a send opportu-
nity but no data to send, BBR marks the 
corresponding bandwidth sample(s) 
as application limited (see send() 
pseudocode to follow). The code here 
decides which samples to include in 
the bandwidth model so it reflects net-
work, not application, limits. BtlBw is a 
hard upper bound on the delivery rate 
so a measured delivery rate larger than 
the current BtlBw estimate must mean 
the estimate is too low, whether or not 
the sample was app-limited. Other-
wise, application-limited samples are 
discarded. (Figure 1 shows that in the 
app-limited region deliveryRate 
underestimates, BtlBw. These checks 
prevent filling the BtlBw filter with un-
derestimates that would cause data to 
be sent too slowly.)

When data is sent. To match the 
packet-arrival rate to the bottleneck 
link’s departure rate, BBR paces ev-
ery data packet. BBR must match the 
bottleneck rate, which means pacing is 
integral to the design and fundamental 
to operation—pacing_rate is BBR’s pri-
mary control parameter. A secondary 
parameter, cwnd_gain, bounds inflight 
to a small multiple of the BDP to han-
dle common network and receiver pa-
thologies (as we will discuss). Concep-
tually, the TCP send routine looks like 

Our group at Google 
spends hours each 
day examining 
TCP packet header 
captures from all 
over the world, 
making sense of 
behavior anomolies 
and pathologies. 
Our usual first 
step is finding the 
essential path 
characteristics, 
RTprop and BtlBw. 
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for each part of the cycle is shown time-
aligned with the data it influenced. The 
gain is applied an RTT earlier, when 
the data is sent. This is indicated by the 
horizontal jog in the event sequence 
description running up the left side.

BBR minimizes delay by spending 
most of its time with one BDP in flight, 
paced at the BtlBw estimate. This 
moves the bottleneck to the sender so it 
cannot observe BtlBw increases. Con-
sequently, BBR periodically spends an 
RTprop interval at a pacing_gain > 1, 
which increases the sending rate and 
inflight. If BtlBw hasn’t changed, then 
a queue is created at the bottleneck, 
increasing RTT, which keeps deliv-
eryRate constant. (This queue is re-
moved by sending at a compensating 
pacing_gain < 1 for the next RTprop.) If 
BtlBw has increased, deliveryRate 
increases and the new max immedi-
ately increases the BtlBw filter output, 
increasing the base pacing rate. Thus, 
BBR converges to the new bottleneck 
rate exponentially fast. Figure 5 shows 
the effect on a 10Mbps, 40ms flow of 
BtlBw abruptly doubling to 20Mbps af-
ter 20 seconds of steady operation (top 
graph) then dropping to 10Mbps after 
another 20 seconds of steady operation 
at 20Mbps (bottom graph).

(BBR is a simple instance of a Max-
plus control system, a new approach to 
control based on nonstandard algebra.12 
This approach allows the adaptation rate 
[controlled by the max gain] to be inde-
pendent of the queue growth [controlled 
by the average gain]. Applied to this prob-
lem, it results in a simple, implicit con-
trol loop where the adaptation to physi-
cal constraint changes is automatically 
handled by the filters representing those 
constraints. A conventional control sys-
tem would require multiple loops con-
nected by a complex state machine to 
accomplish the same result.)

Single BBR Flow Startup Behavior
Existing implementations handle 
events such as startup, shutdown, and 
loss recovery with event-specific algo-
rithms and many lines of code. BBR 
uses the code detailed earlier for every-
thing, handling events by sequencing 
through a set of “states” that are defined 
by a table containing one or more fixed 
gains and exit criteria. Most of the time 
is spent in the ProbeBW state described 
in the section on Steady-state Behavior. 

the code in Figure 3. (In Linux, sending 
uses the efficient FQ/pacing queuing 
discipline,4 which gives BBR line-rate 
single-connection performance on 
multigigabit links and handles thou-
sands of lower-rate paced connections 
with negligible CPU overhead.)

Steady-state behavior. The rate and 
amount BBR sends is solely a function 
of the estimated BtlBw and RTprop, so 
the filters control adaptation in addi-

tion to estimating the bottleneck con-
straints. This creates the novel control 
loop shown in Figure 4, which illus-
trates the RTT (blue), inflight (green) 
and delivery rate (red) detail from 
700ms of a 10Mbps, 40ms flow. The 
thick gray line above the delivery-rate 
data is the state of the BtlBw max filter. 
The triangular structures result from 
BBR cycling pacing_gain to determine 
if BtlBw has increased. The gain used 

Figure 4. RTT (blue), inflight (green), and delivery rate (red) detail.
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Figure 3. Packet-send half of the BBR algorithm.

function send(packet)
    bdp = BtlBwFilter.currentMax
          * RTpropFilter.currentMin
    if (inflight >= cwnd_gain * bdp)
        // wait for ack or retransmission timeout
        return
    if (now >= nextSendTime)
        packet = nextPacketToSend()
        if (! packet)
            app_limited_until = inflight
            return
        packet.app_limited = (app_limited_until > 0)
        packet.sendtime = now
        packet.delivered = delivered
        packet.delivered_time = delivered_time
        ship(packet)
        nextSendTime = now + packet.size /
               (pacing_gain * BtlBwFilter.currentMax)

    timerCallbackAt(send, nextSendTime)



FEBRUARY 2017  |   VOL.  60  |   NO.  2  |   COMMUNICATIONS OF THE ACM     63

practice

The Startup and Drain states are used at 
connection start (Figure 6). To handle 
Internet link bandwidths spanning 12 
orders of magnitude, Startup imple-
ments a binary search for BtlBw by us-
ing a gain of 2/ln2 to double the sending 
rate while delivery rate is increasing. 
This discovers BtlBw in log2BDP RTTs 
but creates up to 2BDP excess queue in 
the process. Once Startup finds BtlBw, 
BBR transitions to Drain, which uses 
the inverse of Startup’s gain to get rid 
of the excess queue, then to ProbeBW 
once the inflight drops to a BDP.

Figure 6 shows the first second of a 
10Mbps, 40ms BBR flow. The time/se-
quence plot shows the sender (green) 
and receiver (blue) progress vs. time. 
The red line shows a CUBIC sender 
under identical conditions. Vertical 
gray lines mark BBR state transitions. 
The lower figure shows the RTT of the 
two connections vs. time. Note that the 
time reference for this data is ack arrival 
(blue) so, while they appear to be time 
shifted, events are shown at the point 
where BBR learns of them and acts.

The lower graph of Figure 6 con-
trasts BBR and CUBIC. Their initial be-
havior is similar, but BBR completely 
drains its startup queue while CUBIC 
can’t. Without a path model to tell it 
how much of the inflight is excess, CU-
BIC makes inflight growth less aggres-
sive, but growth continues until either 
the bottleneck buffer fills and drops a 
packet or the receiver’s inflight limit 
(TCP’s receive window) is reached.

Figure 7 shows RTT behavior during 
the first eight seconds of the connec-
tions shown in Figure 6. CUBIC (red) 
fills the available buffer, then cycles 
from 70% to 100% full every few sec-
onds. After startup, BBR (green) runs 
with essentially no queue. 

Behavior of Multiple BBR 
Flows Sharing a Bottleneck
Figure 8 shows how individual through-
puts for several BBR flows sharing a 
100Mbps/10ms bottleneck converge 
to a fair share. The downward facing 
triangular structures are connection 
ProbeRTT states whose self-synchro-
nization accelerates final convergence. 

ProbeBW gain cycling (Figure 4) 
causes bigger flows to yield bandwidth 
to smaller flows, resulting in each 
learning its fair share. This happens 
fairly quickly (a few ProbeBW cycles), 

though unfairness can persist when 
late starters overestimate RTprop as a 
result of starting when other flows have 
(temporarily) created a queue.

To learn the true RTProp, a flow 
moves to the left of BDP using 

ProbeRTT state: when the RTProp 
estimate has not been updated (that 
is, by measuring a lower RTT) for 
many seconds, BBR enters ProbeRTT, 
which reduces the inflight to four 
packets for at least one round trip, 

Figure 5.  Bandwidth change.
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ordination is the key to both fairness 
and stability.

BBR synchronizes flows around the 
desirable event of an empty bottleneck 
queue. By contrast, loss-based conges-
tion control synchronizes around the 
undesirable events of periodic queue 
growth and overflow, amplifying delay 
and packet loss.

Google B4 WAN  
Deployment Experience
Google’s B4 network is a high-speed 
WAN (wide-area network) built using 
commodity switches.15 Losses on these 
shallow-buffered switches result most-
ly from coincident arrivals of small 
traffic bursts. In 2015, Google started 
switching B4 production traffic from 
CUBIC to BBR. No issues or regres-
sions were experienced, and since 2016 
all B4 TCP traffic uses BBR. Figure 9 
shows one reason for switching: BBR’s 
throughput is consistently 2 to 25 times 
greater than CUBIC’s. We had expected 
even more improvement but discov-
ered that 75% of BBR connections were 
limited by the kernel’s TCP receive 
buffer, which the network operations 
team had deliberately set low (8MB) 
to prevent CUBIC flooding the net-
work with megabytes of excess inflight 
(8MB/200ms intercontinental RTT ⇒ 
335Mbps max throughput). Manually 
raising the receive buffer on one U.S.-
Europe path caused BBR immediately 
to reach 2Gbps, while CUBIC remained 
at 15Mbps—the 133x relative improve-
ment predicted by Mathis et al.17

Figure 9 shows BBR vs. CUBIC rela-
tive throughput improvement; the in-
set shows throughput CDFs (cumula-
tive distribution functions). Measures 
are from an active prober service that 
opens persistent BBR and CUBIC con-
nections to remote datacenters, then 
transfers 8MB of data every minute. 
Probers communicate via many B4 
paths within and between North Amer-
ica, Europe, and Asia. 

The huge improvement is a direct 
consequence of BBR not using loss 
as a congestion indicator. To achieve 
full bandwidth, existing loss-based 
congestion controls require the 
loss rate to be less than the inverse 
square of the BDP17 (for example, < 
one loss per 30 million packets for a 
10Gbps/100ms path). Figure 10 com-
pares measured goodput at various 

then returns to the previous state. 
Large flows entering ProbeRTT drain 
many packets from the queue, so sev-
eral flows see a new RTprop (new min-
imum RTT). This makes their RTprop 

estimates expire at the same time, so 
they enter ProbeRTT together, which 
makes the total queue dip larger and 
causes more flows to see a new RT-
prop, and so on. This distributed co-

Figure 8. Throughputs of five BBR flows sharing a bottleneck
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loss rates. CUBIC’s loss tolerance is a 
structural property of the algorithm, 
while BBR’s is a configuration param-
eter. As BBR’s loss rate approaches the 
ProbeBW peak gain, the probability of 
measuring a delivery rate of the true 
BtlBw drops sharply, causing the max 
filter to underestimate.

Figure 10 shows BBR vs. CUBIC 
goodput for 60-second flows on a 
100Mbps/100ms link with 0.001 to 
50% random loss. CUBIC’s throughput 
decreases by 10 times at 0.1% loss and 
totally stalls above 1%. The maximum 
possible throughput is the link rate 
times fraction delivered (= 1 – lossRate). 
BBR meets this limit up to a 5% loss 
and is close up to 15%.

YouTube Edge  
Deployment Experience
BBR is being deployed on Google.com 
and YouTube video servers. Google 
is running small-scale experiments 
in which a small percentage of users 
are randomly assigned either BBR or 
CUBIC. Playbacks using BBR show 
significant improvement in all of 
YouTube’s quality-of-experience met-
rics, possibly because BBR’s behavior 
is more consistent and predictable. 
BBR only slightly improves connec-
tion throughput because YouTube 
already adapts the server’s streaming 
rate to well below BtlBw to minimize 
bufferbloat and rebuffer events. Even 
so, BBR reduces median RTT by 53% 
on average globally and by more than 
80% in the developing world. Figure 
11 shows BBR vs. CUBIC median RTT 
improvement from more than 200 
million YouTube playback connec-
tions measured on five continents 
over a week. 

More than half of the world’s seven 
billion mobile Internet subscriptions 
connect via 8kbps to 114kbps 2.5G sys-
tems,5 which suffer well-documented 
problems because of loss-based con-
gestion control’s buffer-filling pro-
pensities.3 The bottleneck link for 
these systems is usually between the 
SGSN (serving GPRS support node)18 
and mobile device. SGSN software 
runs on a standard PC platform with 
ample memory, so there are frequent-
ly megabytes of buffer between the 
Internet and mobile device. Figure 12 
compares (emulated) SGSN Internet-
to-mobile delay for BBR and CUBIC. 

The horizontal lines mark one of the 
more serious consequences: TCP 
adapts to long RTT delay except on 
the connection initiation SYN pack-
et, which has an OS-dependent fixed 
timeout. When the mobile device is 
receiving bulk data (for example, from 
automatic app updates) via a large-
buffered SGSN, the device cannot con-
nect to anything on the Internet until 
the queue empties (the SYN ACK ac-

cept packet is delayed for longer than 
the fixed SYN timeout).

Figure 12 shows steady-state me-
dian RTT variation with link buffer 
size on a 128Kbps/40ms link with eight 
BBR (green) or CUBIC (red) flows. BBR 
keeps the queue near its minimum, in-
dependent of both bottleneck buffer 
size and number of active flows. CUBIC 
flows always fill the buffer, so the delay 
grows linearly with buffer size. 

Figure 10. BBR vs. CUBIC goodput under loss.
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Figure 11. BBR vs. CUBIC median RTT improvement.
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  Related articles  
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Sender-side Buffers and the Case  
for Multimedia Adaptation
Aiman Erbad and Charles “Buck” Krasic
http://queue.acm.org/detail.cfm?id=2381998

You Don’t Know Jack  
about Network Performance
Kevin Fall and Steve McCanne
http://queue.acm.org/detail.cfm?id=1066069

A Guided Tour through  
Data-center Networking
Dennis Abts and Bob Felderman
http://quue.acm.org/detail.cfm?id=2208919
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Mobile Cellular  
Adaptive Bandwidth
Cellular systems adapt per-subscrib-
er bandwidth based partly on a de-
mand estimate that uses the queue of 
packets destined for the subscriber. 
Early versions of BBR were tuned to 
create very small queues, resulting 
in connections getting stuck at low 
rates. Raising the peak ProbeBW  
pacing_gain to create bigger queues 
resulted in fewer stuck connections, 
indicating it is possible to be too nice 
to some networks. With the current 
1.25 × BtlBw peak gain, no degrada-
tion is apparent compared with CU-
BIC on any network.

Delayed and stretched aks. Cel-
lular, Wi-Fi, and cable broadband 
networks often delay and aggregate 
ACKs.1 When inflight is limited to 
one BDP, this results in throughput-
reducing stalls. Raising ProbeBW’s 
cwnd_gain to two allowed BBR to 
continue sending smoothly at the es-
timated delivery rate, even when ACKs 
are delayed by up to one RTT. This 
largely avoids stalls.

Token-bucket policers. BBR’s ini-
tial YouTube deployment revealed 
that most of the world’s ISPs mangle 
traffic with token-bucket policers.7 
The bucket is typically full at connec-
tion startup so BBR learns the un-
derlying network’s BtlBw, but once 
the bucket empties, all packets sent 
faster than the (much lower than 
BtlBw) bucket fill rate are dropped. 
BBR eventually learns this new deliv-
ery rate, but the ProbeBW gain cycle 
results in continuous moderate loss-
es. To minimize the upstream band-
width waste and application latency 
increase from these losses, we added 
policer detection and an explicit po-
licer model to BBR. We are also ac-
tively researching better ways to miti-
gate the policer damage.

Competition with loss-based con-
gestion control. BBR converges to-
ward a fair share of the bottleneck 
bandwidth whether competing with 
other BBR flows or with loss-based 
congestion control. Even as loss-
based congestion control fills the 
available buffer, ProbeBW still ro-
bustly moves the BtlBw estimate 
toward the flow’s fair share, and 
ProbeRTT finds an RTProp estimate 
just high enough for tit-for-tat con-

vergence to a fair share. Unmanaged 
router buffers exceeding several 
BDPs, however, cause long-lived loss-
based competitors to bloat the queue 
and grab more than their fair share. 
Mitigating this is another area of ac-
tive research.

Conclusion
Rethinking congestion control pays 
big dividends. Rather than using 
events such as loss or buffer occupan-
cy, which are only weakly correlated 
with congestion, BBR starts from 
Kleinrock’s formal model of conges-
tion and its associated optimal oper-
ating point. A pesky “impossibility” 
result that the crucial parameters 
of delay and bandwidth cannot be 
determined simultaneously is side-
stepped by observing they can be esti-
mated sequentially. Recent advances 
in control and estimation theory are 
then used to create a simple distrib-
uted control loop that verges on the 
optimum, fully utilizing the network 
while maintaining a small queue. 
Google’s BBR implementation is 
available in the open source Linux 
kernel TCP.

BBR is deployed on Google’s B4 
backbone, improving throughput by 
orders of magnitude compared with 
CUBIC. It is also being deployed on 
Google and YouTube Web servers, sub-
stantially reducing latency on all five 
continents tested to date, most dra-
matically in developing regions. BBR 
runs purely on the sender and does 
not require changes to the protocol, 
receiver, or network, making it incre-
mentally deployable. It depends only 
on RTT and packet-delivery acknowl-
edgment, so can be implemented for 
most Internet transport protocols.
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