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ABSTRACT

Named Data Networking (NDN) natively supports the mo-
bility of data consumers through its data-centric design and
stateful forwarding plane. However, the mobility support for
data producers remains open in the original proposal. In this
paper, we introduce Kite, a design of mobility support for
NDN. Kite leverages the state of the Pending Interest Table
(PIT) at each router to reach mobile nodes to make the loca-
tion of a mobile node transparent to other parties in commu-
nication with it. We describe how Kite can support typical
scenarios including group communication among mobiles.
Our preliminary evaluation shows that Kite outperforms the
mapping-based mobility solutions in terms of path stretch
and mobile delay, with similar signaling overhead in the case
of high-frequent movement. We also discuss security con-
siderations and architectural implications on NDN.

1. INTRODUCTION

Lacking native support of mobility is a marked pain
point of IP architecture confronted with the tremendous
explosion of mobile devices in the Internet. Therefore, a
plethora of endeavors have been made to affix mobility
support onto the Internet, to answer the same question:
where is (how to reach) a moving destination? To solve
that problem as well as other issues with IP in a unified
way, Information-Centric Networking (ICN) highlights
that the destinations should be data names rather than
machine addresses, so the question for ICN becomes
where is (how to retrieve) a piece of data?

Named Data Networking (NDN, aka CCN)[7, 19] has
mainly two features beneficial to mobility: the data-
centric nature and the stateful forwarding plane. First,
the data-centric communications are built directly upon
data names which are not necessarily bound to topo-
logical positions. Since each data is self-identified by
its unique name, there is no concept of TCP-like bit-
stream to count, nor host-connection to maintain in
NDN. Second, the states of data request, namely In-
terest (packets) in Pending Interest Tables (PITs), in
the forwarding plane enable the reverse path forward-
ing of Data, which makes both the location and identity
of data consumers transparent to the routing plane and
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data producers'. Thus, generally the mobility has no

impact on forwarding Data back to the consumers.

However, in the seminal paper of NDN[7], the mo-
bility support of producers was a missing piece. Es-
sentially, for NDN, the reachability of data is implied
by data names either directly in the routing plane or
indirectly via an intermedia mapping, such as CBIS|[6].
When the data producer is moving, some updating mes-
sages or operations on packets will be necessary in re-
sponse to such changes. Moreover, in some scenarios,
a producer may need to actively notify the mobile con-
sumer that new data is available before the consumer
fetches data from the producer. Furthermore, in the
case of distributed data production by multiple mobile
producers, it is even difficult to find out all of produc-
ers at the first place. Therefore, the mobility support
in NDN calls for further investigations.

In this paper we present Kite, a mobility support
scheme for NDN. Inspired by NDN’s Data forwarding,
the key idea of Kite is to fully exploit NDN’s forward-
ing states to keep track of moving nodes. Specifically,
an application can send an Interest to a routable anchor
to create the PIT entries as breadcrumbs (a hop-by-hop
trace) leading back to itself on demand. The mechanism
of Data forwarding is extended to Interest forwarding,
so the mobile node (MN) can be reached via the anchor
by Interests from correspondent nodes (CNs). This can
be described by analogy with flying a kite: a kite (like
an application) will be reachable along a string (like a
trace) from hands (like anchors).

Kite contributes two new features to the mobility sup-
port of NDN. 1) Locator-free: There is no explicit loca-
tor for MN which is implicitly addressed by hop-by-hop
states instead. Consequently, the topological locations
of MNs are transparent to routers, CNs, and even MNs
themselves?. 2) Scenario-aware: As traces are gener-
ated and utilized directly by application protocols, pro-
tocol developers are partially empowered to devise their

!This anonymity holds unless the consumer is the direct
neighbor of a router or the producer.

2The access point of MN may learn the location of MN, but
it is not necessary for Kite.



own designs of mobility support tailored to their scenar-
ios, rather than only counting on some middlewares or
the network layer.

We stress that Kite does not provide a one-size-fits-
all solution to all mobility issues. First, Kite only aims
to mobility over a stable network infrastructure, not for
wireless mobile ad-hoc networking, because trace setup
and maintenance depends on stable underlying rout-
ing. Second, we consider Kite an alternative to, not a
replacement of, those mapping-based schemes with ex-
plicit locators. Particularly, Kite is not suitable for the
long-term relocation of data producers.

The rest of paper is organized as follows: Section 2
describes problems and challenges. The Kite scheme is
articulated in Section 3. Section 4 presents the mobile
application protocols powered by Kite. Section 5 shows
the evaluation. The related work is briefly reviewed in
Section 6. We make discussion in Section 7 and con-
clude the paper in Section 8.

2. PROBLEMS AND CHALLENGES

2.1 Mobile Application Scenarios

This paper focuses on data-centric mobile applica-
tions which are expected to deliver data seamlessly when
the node is moving topologically in the Internet. All
NDN applications share the same receiver-driven com-
munication pattern: a consumer fetches a named Data
(packet) from producers or in-network caches by ex-
pressing an Interest (packet) with the data name. Thus
no Data will be sent out without a request of Interest.

The mobile application scenarios can be generally cat-
egorized according to the role of MN. 1) Is the MN a
consumer, a producer or both? The CN which com-
municates with the MN will play the opposite role. 2)
Is the MN the one who sends the first Interest to ini-
tialize an application? Usually, the purpose of the ac-
tive producer to express the first Interest is to notify
a passive consumer that the data is ready to fetch, so
the producer-issued Interest will trigger the consumer-
issued Interest. Note that a producer-initialized appli-
cation is still receiver-driven, as Data is still to be pulled
by the consumer.

By combining the answers, we have five categories of
scenarios, as listed in Table 1. If an MN, e.g., a smart
phone, is active, it may either 1) Upload: a photo to a
server; or 2) Download: a photo from a server. If the
immobile CN, e.g., a server, is active, it may either 3)
Pull: data from a phone; or 4) Push: data to a phone.
In the case of group communications among mobiles,
the MNs can 5) Share data, such as chat via phones
directly without a centric server.

2.2 Forwarding in NDN
Interests and Data are forwarded by NDN’s stateful

Table 1: Categories of application scenarios

Mobile Initialized by

Role mobile node | correspondent node
producer Upload Pull
consumer | Download Push

both Share among mobiles
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Figure 1: Interest forwarding process inside a
forwarder. ‘Y’ denotes a match, ‘N’ no match.

forwarding plane. In each NDN node, packets are pro-
cessed by an NDN forwarder which maintains three data
structures: Content Store (CS) to cache Data, Pending
Interest Table (PIT) to record Interests associated with
incoming interfaces, and Forwarding Information Base
(FIB) to store name prefixes associated with outgoing
interfaces to the next hop.

Inside forwarders, Interests and Data are forwarded
in two different ways: Interests are forwarded along
routes in FIBs set up by the routing plane; Data are
forwarded along traces in PITs set up by the Interests.
The process of forwarding an Interest is illustrated in
the upper half part of Figure 1. Upon receipt of an In-
terest, the forwarder searches its CS, PIT and FIB in
turn for the name of Interest in an if-then-else manner.
If there is no match in CS and PIT, but a match in
the FIB, the Interest will be stored into the PIT and be
forwarded to the next hop. When a Data comes back
and satisfies an Interest in the PIT, the Data will be
cached and sent back to the incoming interfaces of sat-
isfied Interests, and the corresponding PIT entry will
be removed. So an Interest and its corresponding Data
travel along the symmetric paths.

2.3 Opportunities and Challenges

Thanks to NDN’s data-centric nature and stateful
forwarding plane, the mobility has no effect on Data for-
warding, so the Download scenario is natively supported
in NDN without any additional mechanism. No matter
how the active mobile consumer is moving, the Inter-
est can reach the immobile producer along the routes in
FIBs. Afterwards, the Data will return along the trace
of the Interest. In the case of move-before-get, i.e., the
receiver moves before the return of packet, the Down-
load application on the consumer will detect the timeout
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Figure 2: Fetching Data if move-before-get

of Interest request, retransmit the Interest, and get the
Data from the CS of junctional router at the junction
of old and new paths towards the producer. As shown
in Figure 2, after relocation from Location 1 to Loca-
tion 2, the MN will fetch the Data from Router A by
expressing a new Interest. Therefore, no one is actually
aware of the movement of an active consumer during
the communication.

However, when the MN is either a producer in the
Upload and Pull scenarios, or a passive consumer wait-
ing for the notification from the producer in the Push
scenario, some Interests have to be sent to the MN. Be-
cause Interests are forwarded according to FIBs fed by
the routing plane, which is subject to the scalability
issue with the frequent updates, some additional mech-
anisms have to adopted to cope with the relocation of
MNs. Moreover, in the Share scenario, the participants
in a chatroom may not even know each other before-
hand, so some new schemes are desirable to let the MNs
share data mutually.

In summary, the mobility of active consumers is trans-
parent to networks and applications in the current NDN
design, but the mobility of producers and passive con-
sumers is not.> And for the group communication, the
MNs need to find each other in the first place. Essen-
tially, all those challenges point to the same question:
how to forward Interests to mobile applications?

3. THE KITE SCHEME

3.1 Framework of Kite

Inspired by Data forwarding process, Kite utilize the
traces of Interests left in the NDN’s stateful forwarding
plane. Specifically, the PIT entries created by an Inter-
est from an MN serves as a trace which leads back to
the MN. In other words, an Interest can be transmitted
along the trace left by another Interest, just like a Data,
which allows Interests and Data to share the same ad-
vantages of NDN on mobility support. Thus Interests
can be forwarded according to two types of information:
routes in FIBs fed by the routing plane, and traces in
PITs fed by applications.

3The in-network caches in CSes or replicas can make the
location of original producer obscure to the routing plane
and consumers probably, but not absolutely.
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Figure 3: Framework of Kite

Figure 3 shows the framework of Kite. The Interest
which leaves the trace back to a trace source, i.e., MN,
is called traced Interest, and the latter Interest traveling
along the trace of previous Interest is called tracing In-
terest. The trace source issues traced Interests, of which
the name prefix is called trace prefiz, to a trace anchor,
which is reachable by announcing the trace prefix into
the routing plane. Note that both traced and tracing
Interests are still Interests in a sense that they are the
requests for Data.

Kite supports the mobility in two ways. In direct
Kite, the MN as the trace source can set up a complete
trace by issuing a traced Interest to an immobile CN,
in turn which can send an Interest back along the trace.
In indirect Kite, the MN keeps sending the Interests to
an immobile trace anchor which is application-specific.
The CN, either immobile or mobile, can send tracing In-
terests towards the MN, optionally first along the route
in FIBs to the anchor, and then along the trace in PITs
to the MN. Therefore, the routing plane ensures the
reachability of anchor, while the forwarding plane takes
care of the reachability of MN.

3.2 Interest Trace Forwarding

To enable an Interest to travel along the trace, we
introduce a new forwarding mechanism, Interest trace
forwarding, into NDN’s forwarding plane by extending
the Interest packet format and the Interest forwarding
process. Three new optional fields are added into Inter-
ests:

e TraceName field indicates which Interest is to be
traced. The trace name in a tracing Interest should
be the exactly same with the name of traced one.

e TraceOnly flag indicates how to forward the Inter-
est. If the flag is unset by default, the Interest will
be delivered along both routes in FIBs and traces
in PITs in parallel. In the case that the flag is set,
the Interest will only follow the traces if there is a
match, otherwise follows the routes.

e Traceable flag indicates whether the Interest is
allowed to be traced by the others. If the flag is
set, it is allowed, otherwise disallowed. This flag
serves as an access control point.
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Two new tables are added into (and also implemented
inside) the PIT: Trace Forwarding Table (TFT) con-
tains all traced Interests with the Traceable flag. Trace
Name Table (TNT) is composed of all trace names of
tracing Interests associated with the corresponding PIT
entries. Tracing Interests will be forwarded according
to the TFT, while traced Interests will pull the corre-
sponding tracing Interests in the TNT.

The process of Interest trace forwarding is illustrated
in the lower part of Figure 1. For a tracing Interest, if
there is a match of its trace name in the TFT, it will be
sent via the incoming interfaces of matched TFT entry.
In the case of multiple incoming interfaces, the trac-
ing Interest will fan out to all. By default, the trace
forwarding and the route forwarding are processed sep-
arately in parallel. If the TraceOnly flag is set and there
is a match in the TF'T, the forwarding process via the
FIB will be skipped.

For a traced Interest, if there is a match of its data
name in the TNT, the matched tracing Interests will be
sent, like being pulled, to the incoming interface of the
traced Interest. For example in Figure 4, after issuing a
traced Interest, and before receiving the corresponding
tracing Interest, an MN moves from Location 1 to Lo-
cation 2. At Location 2, the MN sends another traced
Interest, which will pull the tracing Interest from the
junctional router A back to the phone, and also may be
suppressed at Router A.

3.3 Trace Setup and Maintenance

Essentially, from the perspective of network layer,
there is no difference between a traced Interest in Kite
and an Interest for Data. The network layer, where
Kite lies, does not guarantee the reliable transmission
of traced Interests, while applications are responsible
for the setup and maintenance of traces, because there
is no separate transport layer in NDN. A simple and
general method to set up and maintain traces is to send
a traced Interest periodically as if the Interest has not
yet been satisfied. The retransmission timer, T, serves
as a knob to make a tradeoff between signaling overhead
and reliability.

A trace is soft-state. The time for which an Interest
will stay in the PIT is indicated by the Lifetime field
in the packet. To prolong the lifetime, more traced In-
terests may be resent. Assume the remaining lifetime

of an Interest in the PIT is t,. Let the lifetime of a new
incoming Interest with the same name be t,. If t, > t,,
t, will be prolonged to t,,, and the new Interest will for-
warded to the next hop, and so on. Otherwise ¢, < t,,
the Interest will be suppressed.

Thanks to the locator-freeness of Kite, the movement
of MN is transparent to applications. So the new life-
time t,, will be set constantly the retransmission timer
T. To set up the new trace upon relocation of MN, the
forwarder may (or may not) automatically re-express
unsatisfied (traced) Interests with their remaining life-
time T).. There are two other topics related to the op-
timization to be handled by applications.

Dynamic timer T: After the new trace is set up and
before the old trace expires, the tracing Interests will fan
out along both traces as if there are two trace sources
at both old and new locations. To keep the current
trace alive and to clean up old traces quickly, the life-
time of new Interest should be dynamically adjusted to
the expected period for which the node will stay before
moving, e.g., the average period of past several stays.

Feedback packet: A traced Interest may be dropped
due to congestion, and the existing trace may be broken
due to the overload of PITs or the change of underlying
topology. Besides periodical retransmission, the appli-
cation may need a feedback (acknowledgement) packet,
which can be a tracing Interest from the CN or the an-
chor. In the case that a PIT entry is removed due to
PIT overload, the forwarder may or may not return a
NACK message to notify the trace source.

3.4 Path Optimization

The path may not be optimal when the messages be-
tween two nodes go through the anchor rather than
along the shortest direct path. However, we consider
such non-optimal stretch the expected expense of trans-
parency to the routing plane and locator-freeness. There-
fore, the design of Kite does not aim to produce optimal
paths. One can add some optimization methods trans-
parent to Kite, such as to relocate the anchor towards
the MN, or to deploy multiple topologically-distributed
anchors. But Kite can reduce stretches by itself in two
ways as follows:.

Path shortcut is a path to the MN not through the
anchor, which will occur if the MN and the CN are on
the same branch of shortest-path tree sourced from the
anchor. The tracing Interest will run into the traced
Interest at the lowest common ancestor on the tree. By
setting the TraceOnly flag, the tracing Interest will only
go via the shortcut. Therefore, by path shortcut, Kite
remit one of the worst cases that the path between two
nearby nodes is stretched to the anchor. In other words,
if the MN and the CN are in the same domain, path
shortcut keeps the communication local even if the an-
chor is outside of the domain.



Path migration is to migrate the communication from
a longer path into a shorter path. In general, a com-
munication in NDN is composed of two phases: 1) to
learn the data name, and 2) to transmit the data by
Interest-Data exchange. In Section 4, we will show that
in the case of immobile CN, Phase 1 is via the indirect
trace, while Phase 2 can be along the shortest path.

4. SCENARIO-AWARE PROTOCOL DESIGN

With Kite in hand, we demonstrate the scenario-
aware design of application protocols for the scenarios
in Section 2.1. For the sake of simplicity, for each sce-
nario we select a typical instance of application which
is to deliver only a single Data. Those protocols sat-
isfying the basic functional requirement of applications
are only for conceptual demonstration, not for practical
implementation.

4.1 Upload

The Upload scenario can be simply supported by di-
rect Kite. For instance, Alice wants to upload her selfie
from her phone to a Facebook server. The trace anchor
is the immobile consumer, i.e., a Facebook server, and
the trace prefix is the name prefix of the consumer, i.e.,
/Facebook. The trace source is the mobile producer,
i.e., Alice’s phone.

The messages are exchanged as shown in Figure 5 (a).
First, the phone sends an Interest 1 with the Tracable
flag to the server to set up the direct trace inbetween
and to notify the server of the name of data to be up-
loaded. Then the server can fetch Data with a tracing
Interest 2, of which the name is derived from Interest 1.
The TraceName is the same name of Interest 1, and the
TraceOnly flag is set. When the phone is moving with
Alice, Interest 2 may not reach the phone in the case of
move-before-get. When the application issues another
traced Interest 1, Interest 2 will be pulled back to the
phone, just as shown in Figure 4. After the upload is
completed, there is an additional step, which is skipped
in Figure 5 (a), that the server can rely to Interest 1
with a Data, which functions as both an acknowledge-
ment to the MN and the eraser to clean the trace.

4.2 Pull

The Pull scenario can be supported by indirect Kite.
For instance, with Alice’s permission, a Facebook server

wants to pull Alice’s geolocation data from Alice’s phone.

The trace anchor will be Alice’s home anchor (HA)
where the traced Interests from Alice meets the trac-
ing Interests from Facebook. The trace prefix is the
name prefix of the mobile producer, i.e., /Alice, which
should be announced into the routing plane by the HA.
Note that the HA only serves as a fixed anchor, and will
not take part in the communication.

The messages are exchanged as shown in Figure 5

(b). To maintain the reachability, the phone period-
ically sends Interest 1 back to the HA. To fetch Data
from the phone, the server will issue Interest 2 following
Interest 1. Interest 2 will first follow the route to the HA
by the data name, and later travel along the trace to the
phone by the trace name. Because the TraceOnly flag
is set, after arriving at the anchor, Interest 2 will only
be forwarded along the trace. Upon receipt of Interest
2, the phone will reply with a Data.

The path stretch can simply be reduced by path mi-
gration. The method is to append the immobile con-
sumer’s name Facebook on Interest 2 whose new name
becomes /Alice/geoloc.data/Facebook. And then
the data is delivered with the Upload protocol along
the shortest path.

4.3 Push

The Push scenario can be supported by indirect Kite
with a push service anchor. For instance, a Facebook
server wants to push a new message to Alice’s phone.
The trace anchor can be provided by a third-party alert
service provider, and the trace prefix /Alert is an-
nounced by the anchor.

The messages are exchanged as shown in Figure 5
(c). The phone periodically sends Interest 1 to register
in the alert service and to set up the trace. To notify
the phone of new message, the server will issue a trac-
ing Interest 2 of which the name contains the name of
server, i.e., /Facebook/. Upon receipt of Interest 2, the
phone will directly download the Data from the server
by expressing Interest 3 with a data name derived from
Interest 2.

4.4 Share

In the Share scenario, a group of MNs have the com-
mon interest to share data with each other. Every node
is both producer and consumer. Kite supports this sce-
nario by building a bidirectional (shared) tree rooted at
a trace anchor. For simplicity, we first consider the case
of two nodes. For instance, Alice and Bob chat with
each other via their phones in a virtual chatroom. The
trace anchor will be the chatroom’s rendezvous anchor
(RA), and the trace prefix is /Chatroom announced by
the RA. Note that the RA like the HA will not take
part in the communications.

The message exchanges are shown in Figure 5 (d).
First, every member in the chatroom should issue the
same join Interest to the RA. In the join Interest, the
trace name is the same with the data name. When
the join Interests 1 and 2 from Alice and Bob meet at
the RA, Interest 2 will trace Interest 1 to Alice, and
also Interest 1 will be pulled towards Bob. As a result,
a bidirectional trace between Alice and Bob is set up.
With this trace, Alice and Bob can request for the next
messages from each other by expressing Interests. For
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example, Alice sends the Interest 3 to Bob, and then
Bob can send his chat message as a Data to Alice. For
details on how the chat protocol works, refer to the real-
world protocol for serverless chatroom, ChronoSync[21].

There are three paths between two MNs via either
the RA, or the two HAs of MNs. Phase 1 may be over
the path via the RA, while Phase 2 can migrate to the
shortest among the three paths, and the data will be
delivered with the Pull or Push protocols.

In the case of more than two members in the group,
the join Interests from each member will construct a
bidirectional tree which is rooted at the RP and con-
nects all MNs as the leaves. Figure 6 illustrates how a
tree spanning a group of three nodes is built up. Three
phones will issue join Interests one by one. First, the
join Interest 1 from Phone 1 leaves a trace between
Phone 1 and the RP. Then the join Interest 2 from
Phone 2 meets Interest 1 at Router A. Because the
TraceOnly flag is unset, the join Interests will be for-
warded along both the routes to the RA and the traces
to the Phones. Therefore, Interest 2 is delivered to

Phone 1, and Interest 1 is pulled to Phone 2. At last,
Interest 3 issued by Phone 3 will be forwarded to the
RA, then follow the trace of Interest 1, and finally be
suppressed at Router A. At the same time, Interest 1
at the RA will be pulled back to Phone 3. Once this
tree has been built, there exists a bidirectional trace
between any pair of MNs, so every Interest tracing the
join Interests from any MN will be multicasted to all of
others.

5. EVALUATION

We evaluated Kite in two ways: first, we benchmarked
Kite against a conceptual scheme; second, we imple-
mented Kite and protocols as a proof of concept.

5.1 Benchmarking

5.1.1 Methodology

From the previous works (see the related work in
Section 6), we abstract a conceptual scheme, Mapping-
based Mobility Support (MMS), as the benchmark scheme.
MMS uses explicit locators and the name-to-locator map-
ping. In MMS, an MN learns and reports its current
routable location to a stationary anchor by sending a
location update message. According to the role of an-
chor, there are two versions of MMS. 1) MMS-PX: the
anchor serves as a proxy to redirect the Interests from
the CN to the MN; 2) MMS-NS: the anchor serves as
a name resolution server to tell the CN the location of
MN. In both versions, the location information of MN
in the anchor is hard-state.
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The router-level network topologies are built from the
measurement results of Rocketfuel[16]. For each topol-
ogy, we run 0.1 x N? experiments, where N is the num-
ber of nodes. In each run, the access routers of MN, CN
and anchor are chosen independently and uniformly at
random.

5.1.2  Path Stretch

Path stretch is the length ratio of the actual path
to the shortest path between the MN and the CN. We
only compare the stretch of indirect Kite with that of
MMS-PX, as the stretch in both direct Kite and MMS-
NS is obviously 1. For the topologies of nine ISPs, the
average lengths of shortest paths are 5.28~7.03. As
shown in Figure 7, the average stretches of indirect Kite
are 1.26~1.46, about 20% shorter than those of MMS-
PX around 1.67~1.80. This result is expected, because
indirect Kite can take advantage of path shortcut, while
MMS-PX cannot.

In addition, the results also show that path short-
cut can remit the worst cases that the path between
two nearby nodes is stretched to the anchor. For exam-
ple, for 86~98% of cases with stretch greater than 3 in
MMS-PX, path shortcut can help to reduce the aver-
age stretch from 3.72~4.04 to about half (1.48~2.17).
Moreover, indirect Kite has more chances to obtain the
shortest path than MMS-PX. For example, in AS1239,
the number of cases with the shortest path in indirect
Kite is 10 times of that in MMS-PX.

5.1.3 Mobile Delay

Mobile delay is the amount of time it takes for the
MN to receive the missed Interest due to move-before-
get after the MN gets network access at the new loca-
tion. In Kite, the missed traced Interests can be pulled
before expiring, as shown in Figure 4, while in MMS,
the missed cannot be retrieved, and should be resent.
For MMS, in the best case, upon receipt of update mes-
sage from the MN, the anchor can immediately notify
the CN to resend the missed Interest.
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So when the anchor and the CN are fixed, the minimal
delay in Kite depends on how far the MN move (the
position of junctional router depends on both the old
and new locations), while the minimal delay in MMS
depends on where the MN move to (the new location
of MN). We assume that the MN moves to a random
new location independent from the old location, which
is the worst case for Kite and has no impact on MMS.

Figure 8 shows that Kite has the smallest average
minimal delay. Specifically, the average minimal de-
lay in Kite is 7.58~9.87 times of link latency, which is
38~43% of that in MMS-NS and 47~53% of that in
MMS-PX. Note that those results are the worst case of
Kite and the best case of MMS.

5.1.4 Signaling Overhead

Signaling overhead comprises the packets to signal
the location of MN. Ideally, every time the MN relocates
during communication, one packet is necessarily sent to
set up a new trace in Kite, or to update the location
binding at the anchor in MMS. MMS-NS needs at least
one more packet to notify the CN of the new locator.
In Kite, when staying in the same location, the MN still
keeps sending Interests to prolong the trace.

Figure 9 shows the rate of signaling packets as the
function of the frequency of relocations, where the life-
time of traced Interest is constantly 1/50 time unit.
When the MN is relatively stable, i.e., the lifetime is
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Figure 10: Uploading rate vs. Speed

much shorter than the duration of stay at the same
location, the overhead of Kite is higher than that of
MMS. If the MN moves so fast, or the lifetime is so
long, that no overhead is needed to prolong the trace,
then Kite costs the same overhead as MMS-PX, and
less than MMS-NS. This result reflects a typical differ-
ence between soft state and hard state. We prefers the
simplicity of soft state to the performance of hard state
in the case of slowly moving MNs.

5.2 The Proof-of-Concept Implementation

To proof the concept, we implemented Kite and two
instances of Upload and Share scenarios in ndnSIM[2].
The source code of simulation is available at [1].

5.2.1 Upload

We simulated the Upload scenario wherein an MN
continually uploads data to a fixed CN, i.e., the server.
We compared Kite and MMS in terms of uploading rate
when the MN moves at different constant speeds. Due
to space limitation, refer to [1] for the simulation setup.

Figure 10 shows the average uploading rate with the
maximum and the minimum. As expected, the upload-
ing rate decreases when the MN speeds up. Kite can
help the MN to upload data faster than MMS, and the
average uploading rate of Kite is up to 1.54 times of
that of MMS. This is because Kite has smaller delay
than MMS by pulling the missed Interests from junc-
tional routers instead of the CN, which has been demon-
strated in Section 5.1.3. Particularly, if the MN moves
faster, the chance of move-before-get will be greater,
and the advantage of Kite will be more obvious.

5.2.2 Share

We applied the Share protocol to ChronoSync [21],
a real-world NDN protocol for decentralized data syn-
chronization. Kite’s bidirectional tree solution can im-
prove the scalability of ChronoSync by multicasting In-
terests within mobile group members instead of flooding
Interests over the whole network. To evaluate how much
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volume of traffic Kite can save compared to flooding, we
measured the total number of Interest/Data transmit-
ted by routers and MNs. Due to space limitation, refer
to [1] for the simulation setup.

Figure 11 shows the average number of packets with
the maximum and the minimum. Compared to flood-
ing, Kite can help ChronoSync to reduce the total num-
ber of packets to 17~31% according to the averages.
As the number of MNs increases, the ratio of reduc-
tion decreases, while the size of reduction increases. For
the same number of MNs, the total number of packets
generated by flooding ranges more widely than that in
Kite, which means the ratio of reduction also depends
on some factors other than the number of MNs. We
leave this to our future work.

6. RELATED WORK

Prior work is organized into three domains in a specific-
to-general order.

1) NDN/CCN mobility: CBIS[6] introduced custo-
dian entities as intermediary between name prefixes and
communication endpoints. The mobility of custodian is
supported directly by updating Custodian-to-Endpoint
table (CET), or indirectly by underlying mechanisms,
such as SIP[15] for NDN-over-IP. Kite and CBIS are
beneficial mutually: Steady custodians in CBIS can
serve as trace anchors in Kite, and Kite can reduce the
CET updates for mobile custodians.

In both [5] and [11], each MN obtains an explicit loca-
tor and updates its location binding at its home agent,
which will redirect the Interests to the MN by either ap-
pending the locator in front of the original data name
[11] or inserting the locator as a separate field into In-
terests [5]. On the contrary, Kite is locator-free and
needs neither any separate locator nor any touch on the
packets.

In [9], an MN issues a special Interest to its previ-
ous location (or an equivalent of home agent) to set up
an on-demand reverse path by creating the FIB entries
pointing back to the MN. Instead of making change of



FIBs which are fed by the routing plane, Kite utilizes
the states in PITs fed by applications, and separates
traces in the forwarding plane from routes in the rout-
ing plane by using explicit trace names.

2) ICN mobility: [17] has surveyed mobility support
in various ICN designs. We stress that in most designs
for future Internet architecture (not limited to ICN),
the data consumers are addressed by explicit locators
or equivalents (e.g., source routing in LIPSIN]8]), while
in NDN the consumers are anonymously addressed by
the trace of hop-by-hop states. Consequently, in NDN
the mobility of active consumers is transparent to pro-
ducers, routers and even consumers themselves. Kite
just extents that locator-free feature further to the mo-
bility support of producers and passive consumers in a
scenario-aware manner.

3) Internet mobility: The long and fruitful progress of
mobility support research has been reviewed in [10, 20].
As indirection points, trace anchors in Kite are similar
to home agents in Mobile IP[13], but trace anchors do
not change packets, nor participate in communications,
and even may be bypassed in the case of path shortcut.

Cellular IP[18], HAWAII[14] and TIMIP[3] share the
similar idea with Kite to set up hop-by-hop reverse
paths back to MNs, but they were designed for IP and
are not scenario-aware. Moreover, as they are not archi-
tecturally built-in, they only support the micro-mobility
within a local domain. By contraries, Kite leverages the
native feature of NDN to provide a unified solution to
both micro- and macro-mobility.

MSM-IP[12] pointed out that supporting multicast is
kin to supporting mobility, so it is not surprising that
Kite’s soft relocation is almost identical to multicast,
and Kite’s bidirectional-tree-based Share protocol looks
like BIDIR-PIM[4] 4. Both BIDIR-PIM and the Share
protocol are independent from any specific underlying
unicast routing and scale well with a single shared tree
in the case of many sources, while they are oriented
to different architectures. Furthermore, since NDN’s
stateful forwarding can naturally ensure loop-free for-
warding, it is not necessary for Kite to do designated
forwarder election or check reverse path forwarding like
BIDRI-PIM.

In summary, the combination of data-centricity, state-
ful forwarding, locator-freeness and scenario-awareness
distinguishes Kite from those explicitly making use of
separate locators, encap/decap tunnels, or global names-
pace mapping.

7. DISCUSSION

7.1 Security Considerations

4 Actually, the idea of Kite emerged when we tried to design
an Interest multicast protocol.

The main security concern with Kite is bogus traced
Interests. We briefly discuss some potential threats to
investigate in the future work.

As a traced Interest indicates where the data is, at-
tackers can pretend to be the victim, i.e., data producer,
by expressing a bogus traced Interest to anchors. Then
the attacker can poison caches and eavesdrop Interests
to the victim. A countermeasure is Interest signature:
The sender should sign traced Interests, and unless In-
terests are verified, tracing Interest will not be sent.
And the signature scheme should also be secure under
replay attack. Moreover, the node which detects the bo-
gus Interest 1 may send a counterattack Data to remove
the trace of Interest 1.

The verification of Interest signatures may be by-
passed by attackers. For example, after sending a signed
Interest, the mobile victim may move away, but the at-
tacker may move in and disguise as the victim. And
in the case of path shortcut, tracing Interests will by-
pass the anchor and follow the bogus trace towards the
attacker. If the attacker behaves as a black hole, the
routers on the trace will learn that there is no data
from the interface towards the attacker, and may try
other interfaces. If the attacker replies to consumers,
fake data will be detected by consumers as all data are
supposed to be authenticated, which is the bottom line
of security in NDN.

A collusion attack can conduct cache poisoning by
bypassing Interest authentication. For example, in the
Upload scenario, the attacker can send a normal Inter-
est 1 with the name prefix of a colluder node, and in
turn the colluder returns Interest 2 with the name of vic-
tim to the attacker along the trace of Interest 1. Then
the fake data can be sent out to poison the caches on
the trace. One countermeasure can be to publicly spec-
ify the policy of binding between data name and trace
name of tracing Interest, just like the policy of bind-
ing between data name and KeyLocator name. With a
simple policy, such as that data name and trace name
should have the common prefix, routers can determine
that Interest 2 is not legitimate and should be dropped.

7.2 Architectural Implications

Besides mobility support, Kite has mainly two im-
plications on the NDN architecture. First, Kite can
help to relieve the burden of routing plane by enhanc-
ing the forwarding plane. In Kite, the routing plane
only looks after steady anchors, while the forwarding
plane keeps track of MNs. The locator-free feature can
make the locations of active nodes completely transpar-
ent to the routing plane, which indirectly improves the
routing scalability. For example, in the Upload scenario
mobile producers which initialize application only ap-
pear on-demand on the paths rather than on the whole
routing system. Generally speaking, it is better to let
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the routing plane take care of long-term changes and
leave temporary high-frequent changes to the forward-
ing plane.

Second, Kite can help to further reduce the gap be-
tween application layer and network layer by empow-
ering applications to directly guide Interests. The rest
gap can be filled by the scenario-aware design of appli-
cation protocols. For example, in the Share scenario,
applications build up the multicast tree by themselves
directly over network layer without a separate multicast
protocol in the middle. More importantly, rather than
a black box opaque to applications, Kite serves as an
open platform for the innovation of applications, which
is also one of motivations of NDN.

8. CONCLUSION

To the question how to forward Interests to an MN,
Kite’s answer is to send Interests towards where the
trace of MN can be found. Inspired by Data forwarding,
Kite utilizes PITs as traces to reach MNs, and ensures
the reachability of MNs with routable anchors. Kite
provides the mobility support of NDN with two new
features: locator-freeness and scenario-awareness. The
former makes the movement of MN transparent to all
parties in communications, while the latter allows us to
design application protocols for various scenarios. Com-
pared to the mapping-based schemes, Kite has shorter
stretch, smaller delay, and similar overhead when the
MN moves frequently. Moreover, the simulations shown
that Kite improves the uploading rate in the Upload sce-
nario and reduces the traffic volume in the Share sce-
nario. In addition to supporting mobility, Kite opens a
new door to the design of NDN application protocols.
Hence we believe that Kite will be a promising building
block of NDN to further unleash the strength of stateful
forwarding plane.
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