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A Reliable Multicast Framework for Light-Weight
Sessions and Application Level Framing

Sally Floyd, Van Jacobson, Ching-Gung Liu, Steven McCanne, and Lixia Zhang

Abstract—This paper describes Scalable Reliable Multicast
(SRM), a reliable multicast framework for light-weight sessions
and application level framing. The algorithms of this framework
are efficient, robust, and scale well to both very large networks
and very large sessions. The SRM framework has been proto-
typed in wb, a distributed whiteboard application, which has
been used on a global scale with sessions ranging from a few to a
few hundred participants. The paper describes the principles that
have guided the SRM design, including the IP multicast group
delivery model, an end-to-end, receiver-based model of reliability,
and the application level framing protocol model. As with unicast
communications, the performance of a reliable multicast delivery
algorithm depends on the underlying topology and operational
environment. We investigate that dependence via analysis and
simulation, and demonstrate an adaptive algorithm that uses
the results of previous loss recovery events to adapt the control
parameters used for future loss recovery. With the adaptive
algorithm, our reliable multicast delivery algorithm provides
good performance over a wide range of underlying topologies.

Index Terms—Computer networks, computer network perfor-
mance, Internetworking.

I. INTRODUCTION

SEVERAL researchers have proposed generic reliable mul-
ticast protocols, much as TCP is a generic transport

protocol for reliable unicast transmission. In this paper we take
a different view: unlike the unicast case where requirements
for reliable, sequenced data delivery are fairly general, differ-
ent multicast applications have widely different requirements
for reliability. For example, some applications require that
delivery obey a total ordering while many others do not.
Some applications have many or all the members sending data
while others have only one data source. Some applications
have replicated data, for example in an-redundant file
store, so several members are capable of transmitting a data
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item while for others all data originates at a single source.
These differences all affect the design of a reliable multicast
protocol. Although one could design a protocol for the worst-
case requirements, e.g., guaranteeing totally ordered delivery
of replicated data from a large number of sources, such
an approach results in substantial overhead for applications
with more modest requirements. One cannot make a single
reliable multicast delivery scheme that optimally meets the
functionality, scalability, and efficiency requirements of all
applications.

The weakness of “one size fits all” protocols has long been
recognized. In 1990 Clark and Tennenhouse proposed a new
protocol model called Application Level Framing (ALF) which
explicitly includes an application’s semantics in the design
of that application’s protocol [6]. ALF was later elaborated
with a light-weight rendezvous mechanism based on the IP
multicast distribution model, and with a notion of receiver-
based adaptation for unreliable, real-time applications such as
audio and video conferencing. The result, known as Light-
Weight Sessions (LWS) [18], has been very successful in the
design of wide-area, large-scale, conferencing applications.
This paper further evolves the principles of ALF and LWS
to add a framework for Scalable Reliable Multicast (SRM).

ALF says that the best way to meet diverse application
requirements is to leave as much functionality and flexibility as
possible to the application. Therefore SRM is designed to meet
only the minimal definition of reliable multicast, i.e., eventual
delivery of all the data to all the group members, without
enforcing any particular delivery order. We believe that if the
need arises, machinery to enforce a particular delivery order
can be easily added on top of this reliable delivery service.

It has been argued [32], [34], that a single dynamically
configurable protocol should be used to accommodate different
application requirements. The ALF argument is even stronger:
not only do different applications require different types of
error recovery, flow control, and rate control mechanisms,
but further, these mechanisms must explicitly account for the
structure of the underlying application data itself.

SRM is also heavily based on the group delivery model
that is the centerpiece of the IP multicast protocol [8]. In IP
multicast, data sources simply send to the group’s multicast
address (a normal IP address chosen from a reserved range
of addresses) without needing any advance knowledge of the
group membership. To receive any data sent to the group,
receivers simply announce that they are interested (via a “join”
message multicast on the local subnet)—no knowledge of
the group membership or active senders is required. Each
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receiver joins and leaves the group individually, without
affecting the data transmission to any other member. SRM
further enhances the multicast group concept by maximizing
information and data sharing among all the members, and
strengthens the individuality of membership by making each
member responsible for its own correct reception of all the
data.

Finally, SRM attempts to follow the core design principles
of TCP/IP. First, SRM requires only the basic IP delivery
model—best-effort with possible duplication and reordering
of packets—and builds reliability on an end-to-end basis. No
change or special support is required from the underlying
IP network. Second, in a fashion similar to TCP adaptively
setting timers or congestion control windows, the algorithms
in SRM dynamically adjust their control parameters based
on the observed performance within a session. This allows
applications using the SRM framework to adapt to a wide
range of group sizes, topologies and link bandwidths while
maintaining robust and high performance.

Wb, the distributed whiteboard tool designed and imple-
mented by McCanne and Jacobson [16], [22], is the first
application based on the SRM framework. In this paper we
discuss wb in some detail, to illustrate the use of SRM in a
specific application.

The paper proceeds as follows: Section II discusses general
issues for reliable multicast delivery. Section III describes the
SRM framework, and discusses the wb instantiation of this
framework. Section IV discusses the performance of SRM in
simple topologies such as chains, stars, and bounded-degree
trees, and Section V presents simulation results from more
complex topologies. Section VI examines the behavior of
the loss recovery algorithm in SRM as a function of the
timer parameters. Section VII discusses extensions to the basic
reliable multicast framework, such as adaptive algorithms
for adjusting the timer parameters and algorithms for local
recovery. Section VIII discusses related work on reliable
multicast. Section IX discusses future work on SRM.

II. THE DESIGN OF RELIABLE MULTICAST

A. Reliable Data Delivery: Adding the Word “Multicast”

The problem of reliable unicast data delivery is well un-
derstood and a variety of well-tested solutions are available.
However, for the reliable transmission of data to a potentially
large group of receivers, multicast transmission offers the most
promising approach. If a sender were to open N separate
unicast TCP connections to N different receivers, then N
copies of each packet might have to be sent over links close
to the sender, making poor use of the available bandwidth. In
addition, the sender would have to keep track of the status
of each of the N receivers. Multicast delivery permits a much
more efficient use of the available bandwidth, with at most
one copy of each packet sent over each link in the absence of
dropped packets. In addition, IP multicast allows the sender to
send to a group without having to have any knowledge of the
group membership. At the same time, adding “multicast” to

the data transport problem significantly changes the solution
set for reliable delivery.

For example, in any reliable protocol some party must
take responsibility for loss detection and recovery. Because
of the “fate-sharing” implicit in unicast communication, i.e.,
the data transmission fails if either of the two ends fails,
either the sender or receiver can take on this role. In TCP,
the sender times transmissions and keeps retransmitting until
an acknowledgment is received. NETBLT [7] uses the opposite
model and makes the receiver responsible for all loss detection
and recovery. Both approaches have been shown to work well
for unicast.

However, if a TCP-style, sender-based approach is applied
to multicast distribution, a number of problems occur. First,
because data packets trigger acknowledgments (positive or
negative) from all the receivers, the sender is subject to the
well-known ACK implosion effect [10]. Also, if the sender
is responsible for reliable delivery, it must continuously track
the changing set of active receivers and the reception state
of each. Since the IP multicast model deliberately imposes a
level of indirection between senders and receivers (i.e., data
is sent to the multicast group, not to the set of receivers),
the receiver set may be expensive or impossible to obtain.
Finally, the algorithms that are used to adapt to changing
network conditions tend to lose their meaning in the case
of multicast. For example, how should the round-trip time
estimate for a retransmit timer be computed when there may be
several orders of magnitude difference in propagation time to
different receivers? What is a congestion window if the delay-
bandwidth product to different receivers varies by orders of
magnitude? What self-clocking information exists in the ACK
stream(s) if some receivers share one bottleneck link and some
another?

These problems illustrate that single-point, sender-based
control does not adapt or scale well for multicast delivery.
Since members of a multicast group have different com-
munication paths and may come and go at any time, the
“fate-shared” coupling of sender and receiver in unicast trans-
missions does not generalize to multicast. Thus it is clear
that receiver-based reliability is a far better building block
for reliable multicast [31].

Another unicast convention that migrates poorly to multi-
cast has to do with the vocabulary used by the sender and
receiver(s) to describe the progress of their communication.
A receiver can request a retransmission either in application
data units (“sector 5 of file sigcomm-slides.ps”) or in terms
of the shared communication state (“sequence numbers 2560
to 3071 of this conversation”). Both models have been used
successfully (e.g., NFS uses the former and TCP the latter) but,
because the use of communication state for naming data allows
the protocol to be entirely independent of any application’s
namespace, it is by far the most popular approach for unicast
applications. However, since multicast transmission tends to
have much weaker and more diverse state synchronization than
does unicast, using shared communication state to name data
does not work well in the multicast case.

For example, if a receiver joins a conversation late and
receives sequence numbers 2560–3071, it has no idea of what’s
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been missed (since the sender’s starting number is arbitrary)
and so can neither do anything useful with the data nor make
an intelligent request for retransmission. If receivers hear from
a sender again after a lengthy network partition, they have no
way of knowing whether “2560” is a retransmission of data
they received before the partition or is completely new (due
to sequence number wrapping during the partition). Thus the
“naming in application data units (ADUs)” model works far
better for multicast.

Use of this model also has two beneficial side effects.
As Clark and Tennenhouse [6] point out, a separate protocol
namespace can impose delays and inefficiencies on an applica-
tion, e.g., TCP will only deliver data in sequence even though
a file transfer application might be perfectly happy to receive
sectors in any order. The ADU model eliminates this delay and
puts the application back in control. Also, since ADU names
can be made independent of the sending host, it is possible to
use the anonymity of IP multicast to exploit the redundancy
of multiple receivers. For example, if some receiver asks for a
retransmit of “sigcomm-slides.ps sector 5,” any member who
has a copy of the data, not just the original sender, can carry
out the retransmission.

B. Reliable Multicast Requirements

While the ALF model says that applications should be
actively involved in their communications and that com-
munication should be done in terms of ADUs rather than
some generic protocol namespace, we do not claim that
every application’s protocol must be completely different
from every other’s or that there can be no shared design or
code. A great deal of design commonality is imposed simply
because different applications are attempting to solve the same
problem: scalable, reliable, multipoint communication over
the Internet. As Section II-A pointed out, just going from
unicast to multicast greatly limits the viable protocol design
choices. In addition, experience with the Internet has shown
that successful protocols must accommodate many orders
of magnitude variation in every possible dimension. While
several algorithms meet the constraints of Section II-A, very
few of them continue to work if the delay, bandwidth and user
population are all varied by factors of 1000 or more.

In the end we believe the ALF model results in a frame-
work that is then filled in with application specific details.
Portions of the SRM framework are completely determined
by network dynamics and scaling considerations and apply
to any application. For example, the scalable request and
repair algorithms described in Sections III–VII are completely
generic and apply to a wide variety of reliable multicast
applications. Each different application supplies this reliability
framework with a namespace to talk about what data has
been sent and received; a policy and machinery to determine
how much bandwidth is available to the group as a whole;
a policy to determine how the available bandwidth should
be apportioned between the participants in the group; and
a local send policy that a participant uses to arbitrate the
different demands on its bandwidth (e.g., locally originated
data, requests and responses, etc.). It is the intent of this
paper to describe the framework common to scalable, reliable

multicast applications. In particular, this paper focuses on
reliability rather than on congestion control. We believe that
for multicast applications, the congestion control mechanisms
will have to take into account application-specific needs and
capabilities.

To make the SRM framework concrete, we first describe
a widely used application—wb, the LBNL network white-
board—that has been implemented according to the SRM
framework. One component of wb is an application-level reli-
able multicast protocol that is the precursor to SRM. However,
the goal of this paper is not to explore the specifics of wb,
but to use wb to illustrate the underlying reliable multicast
framework. After mentioning some details of wb’s operation
that are direct results of the design considerations outlined in
Section II-A, we then factor out the wb specifics to expose the
generic SRM framework underneath. The remaining sections
of this paper are an exploration of that framework.

C. Wb’s Assumptions about Reliable Multicast

This section briefly describes wb, a network conferencing
tool that provides a distributed whiteboard, and explores some
of the assumptions made in wb’s use of reliable multicast.

Wb separates the drawing into pages, where a new page
can correspond to a new viewgraph in a talk or the clearing
of the screen by a member of a meeting. Any member
can create a page and any member can draw on any page.
There are floor control mechanisms, largely external to wb,
that can be used if necessary to control who can create
or draw on pages. These can be combined with normal
Internet privacy mechanisms (e.g., symmetric-key encryption
of all the wb data) to limit participation to a particular
group and/or with normal authentication mechanisms (e.g.,
participants signing their drawing operations via public-key
encryption of a cryptographic hash over the data) [17], [23].

Each member is identified by a globally unique identifier,
the Source-ID, and each page is identified by a Page-ID
consisting of the Source-ID of the initiator of the page and
a page number locally unique to that initiator. Each member
drawing on the whiteboard produces a stream of drawing
operations, or “drawops,” that are timestamped and assigned
sequence numbers, relative to the sender. Each sequence of
drawops is sent with the Page-ID of the relevant page. An
example would be a drawop to draw a blue line at a particular
set of coordinates on a page.

Wb has no requirement for ordered delivery because most
drawing operations are idempotent and are rendered immedi-
ately upon receipt; out of order drawops are sorted upon arrival
according to their timestamps. Each member’s graphics stream
is thus independent from that of other sites. Operations that
are not strictly idempotent, such as a “delete” that references
an earlier drawop, can be patched after the fact, when the
missing data arrives.

The following assumptions are made in wb’s reliable mul-
ticast design:

• All data has a unique, persistent name.
This global name consists of the end host’s Source-ID
and a locally-unique sequence number.
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• The name always refers to the same data.
It is impossible to achieve consistency among different
receivers in the face of late arrivals and network partitions
if, say, drawop “floyd:5” initially means to draw a blue
line and later means to draw a red circle. This does not
mean that the drawing can’t change, only that drawops
must effect the change. For example, to change a blue
line to a red circle, a “delete” drawop for “floyd:5” is
sent, then a drawop for the circle is sent.

• Source-ID’s are persistent.
A user will often quit a session and later re-join, obtaining
the session’s history from the network. By ensuring
that Source-ID’s are persistent across invocations of the
application, the user maintains ownership of any data
created before quitting.

• IP multicast datagram delivery is available.
• All participants join the same multicast group; there is no

distinction between senders and receivers.

III. T HE SRM FRAMEWORK

SRM is the reliable multicast framework intended for a
range of applications that share wb’s assumptions above,
including that of IP multicast datagram delivery. One assump-
tion central to SRM is that the data has unique, persistent
names. An open research challenge is to design a data naming
scheme that reflects the flexibility of ALF yet allows the SRM
framework to manipulate names in a generic fashion. A second
assumption is that the application naming conventions allow us
to impose a hierarchy over the name space. For the rest of this
paper, we assume that the data space is subdivided into groups
or containers that we call “pages,” and that the locally unique
name is a simple sequence number with sufficient precision to
never wrap. (The term “page” refers to a general concept even
though it reflects our whiteboard-biased design.)

Whenever a member generates new data, the data is multi-
cast to the group. Each member of the group is individually
responsible for detecting loss, generally by detecting a gap in
the sequence space, and requesting retransmission. However,
since it is possible that the last object of a sequence is dropped,
each member multicasts low-rate, periodic, session messages
that announce the highest sequence number received from
every member for the current page. In addition to the reception
state, the session messages contain timestamps that are used
to estimate the distance (in time) from each member to every
other (described in Section III-A).

To prevent the implosion of control packets sent from re-
ceivers in a multicast group, receivers in the Xpress Transport
Protocol (XTP) design [34] multicast control packets to the
entire group. Using the slotting and damping mechanisms
in the XTP design, receivers wait for a random time before
sending a control packet, and refrain from sending a control
packet if they see a control packet from another receiver with
the same information. SRM uses similar mechanisms to control
the sending of request and repair packets, with the addition that
in the SRM design, the random delay before sending a request
or repair packet is a function of that member’s distance in

seconds from the node that triggered the request or repair.
The timer calculations are described in detail in Section III-B.

As with the original data, repair requests and retransmissions
are always multicast to the whole group. Thus, although a
number of hosts may all miss the same packet, a host close to
the point of failure is likely to timeout first and multicast the
request. Other hosts that are also missing the data hear that
request and suppress their own request. Any host that has a
copy of the requested data can answer a request. It will set a
repair timer, and multicast the repair when the timer goes off.
Other hosts that had the data and scheduled repairs will cancel
their repair timers when they hear the multicast from the first
host. This does not require that all session members keep all
of the data all of the time; reliable data delivery is ensured as
long as each data item is available from at least one member.
Ideally, a lost packet triggers only a single request from a host
just downstream of the point of failure and a single repair
from a host just upstream of the point of failure. Section V
explores in more detail the number of requests and repairs in
different topologies.

A. Session Messages

In SRM, each member multicasts periodic session messages
that report the sequence number state for active sources. Ses-
sion messages for reliable multicast [10] have been previously
proposed to enable receivers to detect the loss of the last
packet in a burst, and to enable the sender to monitor the
status of receivers. Members can also use session messages in
SRM to determine the current participants of the session. The
average bandwidth consumed by session messages is limited
to a small fraction (e.g., 5%) of the aggregate data bandwidth,
whether pre-allocated by a reservation protocol or measured
adaptively by a congestion control algorithm. SRM members
use the algorithm developed for vat and described in [30] for
dynamically adjusting the generation rate of session messages
in proportion to the multicast group size.

In a large, long-lived session, the state would become
unmanageable if each receiver had to report the sequence
numbers of everyone who had ever sent data to the group.
To prevent this explosion, we impose hierarchy on the data by
partitioning the state space into “pages.” Each member only
reports the state of the page it is currently viewing. A receiver
browsing over previous pages may issuepage requeststo learn
the sequence number state for that page. If a receiver joins late,
it may issue page requests to learn the existence of previous
pages. We omit the details of the page state recovery protocol
as it is almost identical to the repair request/response protocol
for data.

In addition to state exchange, receivers use the session
messages to estimate the one-way distance between nodes.
All packets for that group, including session packets, include
a Source-ID and a timestamp. The session packet timestamps
are used to estimate the host-to-host distances needed by the
repair algorithm.

The timestamps are used in a highly simplified version of the
NTP time synchronization algorithm [25]. Assume that host A
sends a session packet at time and host B receives
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at time . At some later time, , host B generates a session
packet , marked with where (time
is included in to make the algorithm robust to lost session
packets). Upon receiving at time , host can estimate
the latency from host B to host as , or
equivalently, as . Note that while this
estimate does not assume synchronized clocks, it does assume
that paths are roughly symmetric. We have not yet explored
the performance of these algorithms in topologies with strong
asymmetry in the one-way delays of forward and reverse paths.

B. Loss Recovery

This section describes SRM’s loss recovery algorithm,
which provides the foundation for reliable delivery. Section
VII-A describes a modified version of this algorithm with an
adaptive adjustment of the timer parameters. Section VII-B
discusses the local recovery algorithms that would be a critical
component of SRM for efficient operation in large multicast
groups in a congested environment.

In SRM, members who detect a loss wait a random time and
then multicast their repair request, to suppress requests from
other members sharing that loss. Theserepair requestsdiffer
from traditional negative acknowledgment (NACKs) in two
respects: they are not addressed to a specific sender, and they
request data by its unique, persistent name. When a host A
detects a loss, it schedules a repair request for a random time
in the future. When the request timer expires, host A multicasts
a request for the missing data, and doubles the request timer
to wait for the repair.

In SRM, the interval over which the request timer is set is
a function of the member’s estimated distance to the source
of the packet. The request timer is chosen from the uniform
distribution on seconds, where
is host A’s estimate of the one-way delay to the original source

of the missing data. The numbers and are parameters
of the request algorithm that are discussed at length later in
the paper.

If host A receives a request for the missing data before its
own request timer for that data expires, then host A does a
(random) exponential backoff, and resets its request timer.1

That is, if the current timer had been chosen from the uniform
distribution on

then the backed-off timer is randomly chosen from the uniform
distribution on

1Some care is required in deciding when to back-off an already backed-off
timer. In our simulator, we use a heuristic to detect requests that belong to the
same iteration of loss recovery. When member A backs-off the request timer,
then member A sets anignore-backoffvariable to a time halfway between the
current time and the expiration time, and ignores additional duplicate requests
until ignore-backofftime. Requests received before the ignore-backoff time
are assumed to belong to the same iteration of the loss recovery as the request
that resulted in the most recent backoff. A request received after the ignore-
backoff time is assumed to belong to the next iteration, and causes member
A to again back-off its request timer.

When some other host B (where B may be the original
source ) receives a request from A that host B is capable
of answering, host B sets a repair timer to a value from the
uniform distribution on

seconds, where is host B’s estimate of the one-way delay
to host A, and the numbers and are parameters of
the repair algorithm discussed later in the paper. If host B
receives a repair for the missing data before its repair timer
expires, then host B cancels its repair timer. Otherwise, when
host B’s repair timer expires host B multicasts the repair. In
keeping with the philosophy that the receiver is responsible
for ensuring its own correct reception of the data, host B does
not verify whether host A actually receives the repair.

Due to the probabilistic nature of these algorithms, it is not
unusual for a dropped packet to be followed by more than one
request. When two or more hosts generate a request for the
same data at roughly the same time, we have redundant control
traffic (i.e., wasted bandwidth) and the colliding participants
should increase the spread in their retransmission distribution
to avoid similar collisions in the future.

Because there can be more than one request, a host could
receive a duplicate request immediately after sending a repair,
or immediately after receiving a repair in response to its
own earlier request. In order to prevent duplicate requests
from triggering a responding set of duplicate repairs, host B
ignores requests for data for seconds after sending
or receiving a repair for that data, where host S is either the
original source of data or the source of the first request.

C. Congestion Control

The simplest congestion control mechanism for SRM would
be for all members of the multicast group to assume a fixed
bandwidth constraint over the aggregate session. This would
be appropriate, for example, if members of the multicast
group used an out-of-band mechanism (e.g., explicit bandwidth
reservations, or the informal, consensus-based procedures of
the current Mbone) to verify bandwidth availability. How-
ever, different congestion control mechanisms are likely to
be required for different applications and different contexts.
Congestion control mechanisms for SRM are discussed further
in Section IX-C.

Because data represents idempotent operations, loss recov-
ery can proceed independently from the transmission of new
data. Similarly, recovery for losses from two different sources
can also proceed independently. Since transmission bandwidth
is often limited, a single transmission rate is allocated to
control the throughput across all these different modes of
operation, while the application determines the order of packet
transmission according to their relative importance.

D. Network Partitioning and Other Concerns

Because SRM relies on the underlying concept of an IP
multicast group, where members can arrive and depart inde-
pendently, SRM does not distinguish a network partition from
a normal departure of members from the multicast session.
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During a partition, members can continue to send data in the
connected components of the partitions. After recovery all data
will still have unique names and the repair mechanism will
distribute any new state throughout the entire group.

For applications that may require partial or total data or-
dering, the SRM framework could be used to reliably deliver
the data to all group members, and a partial or total ordering
protocol could be built on top that is specifically tailored to
the ordering needs of that application. Ordering is further
complicated by disagreements about how the ordering itself
should be defined: Cheriton and Skeen [5] have argued (and
Birman [1] has rebutted) that for applications with ordering
requirements, preserving the ordering of messages as they
appear in the network can be an expensive and inadequate sub-
stitute for preserving the “semantic ordering” of the messages
appropriate for the application.

Potential applications for SRM other than wb, including
routing protocol updates, Usenet news, and adaptive web
caches, are discussed briefly in [11], [12].

E. Wb’s Instantiation of SRM

This section describes both the design and the current
state of the implementation of reliable multicast for wb. As
discussed below, the rate-control mechanism and the estimates
of one-way delay are key aspects of the design that are not
yet included in the current implementation of wb.

In the present implementation of wb (version 1.59), mem-
bers set a request timer to a random value from the interval [,

], where is set to a fixed value of 30 ms. The estimation
of the distance to other members has not yet been included in
the current implementation. Similarly, after receiving a request
members set a repair timer to a random value from the interval
[ , ]. For the original source of the data, is set to a
fixed value of 100 ms, and for other members is set to
200 ms. These fixed values for and were chosen after
examinations of traces taken over several typical wide-area
wb sessions. The current values forand are sufficiently
large to ensure that there is generally only one request and one
repair. When the original source of the data is still on-line, the
repair generally comes from that original source.

The current implementation of wb relies on the informal,
consensus-based “admissions-control procedure” of the current
Mbone. The congestion control mechanism in the design
for wb assumes a fixed maximum bandwidth allocation for
each session. In this design, each wb session would have
a sender bandwidth limit advertised as part of the session
announcement, and individual members would use a token
bucket rate limiter to enforce this peak rate on transmissions.
As of the writing of this paper, this rate control mechanism has
not yet been added to the wb implementation. In practice, wb
sessions generally use considerably less average bandwidth
than their accompanying audio sessions. However, the need
for this rate control can at times be made painfully obvious,
for example, when new members join a session and ask for
back history.

One application-specific issue concerns the relative priori-
ties between sending new data, requests, and repairs. When a

member of a wb session is able to send a packet, the highest
priority goes to requests or repairs for the current page, middle
priority to new data, and lowest priority to requests or repairs
for previous pages.

One issue that has been made obvious from implementation
experience has been the persistence of the data. Wb does
not necessarily store all of the data on backup storage on a
disk; data for current pages is kept only in memory. If data
somehow becomes corrupt—either due to internal application
bugs or because of external system failures—it can spread like
a virus throughout the wb session. When the corrupted data is
used to answer repair requests, the corrupted data is distributed
throughout the multicast group, and persists for the life of the
session. To avoid this, each piece of data can be accompanied
by a tag that not only authenticates the source of the data but
also verifies its integrity.

IV. REQUEST/REPAIR ALGORITHMS FORSIMPLE TOPOLOGIES

We now turn to a more detailed investigation of the loss
recovery algorithms in SRM. Because multiple hosts may
detect the same losses, and multiple hosts may attempt to
handle the same repair request, the goal of the request/repair
timer algorithms is to de-synchronize host actions to keep
the number of duplicates low. Among hosts that have diverse
delays to other hosts in the same group, this difference in delay
can be used to differentiate hosts; for hosts that have similar
delays to reach others, we can only rely on randomization to
de-synchronize their actions.

This section discusses a few simple, yet representative,
topologies, namely chain, star, and tree topologies, to provide
a foundation for understanding the loss recovery algorithms in
more complex environments. For a chain the essential feature
of a loss recovery algorithm is that the timer value is a function
of distance. For a star topology the essential feature of the
loss recovery algorithm is the randomization used to reduce
implosion. Request/repair algorithms in a tree combine both
the randomization and the setting of the timer as a function
of distance. This section shows that the performance of the
loss recovery algorithms depends on the underlying network
topology.

A. Chains

Fig. 1 shows a chain topology where all nodes in the
chain are members of the multicast session. Each node in
the underlying multicast tree has degree at most two. The
chain is an extreme topology where a simple deterministic loss
recovery algorithm suffices. In this section we assume that the
timer parameters and are set to 1, and that and
are set to 0. This results in request timers set deterministically
to , and repair timers set to .

For the chain, as in most of the other scenarios in this paper,
link distance and delay are both normalized. We assume that
packets take one unit of time to travel each link, i.e., all links
have distance of 1.

In Fig. 1 the nodes in the chain are labeled as either to the
right or to the left of the congested link. Assume that source

multicasts a packet that is subsequently dropped on link
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Fig. 1. A chain topology.

( , ), and that the second packet sent from sourceis
not dropped. We call the edge that dropped the packet, whether
due to congestion or to other problems, thecongestedlink. Let
the right-hand nodes each detect the failure when they receive
the second packet from .

Let node first detect the loss at time, and let each link
have distance 1. Then node multicasts a request at time

. Node receives the request at time and
multicasts a repair at time . Node receives the
repair at time .

Note that all nodes to the right of node receive the
request from before their own request timers expire. We
call this deterministic suppression. The reader can verify that,
due to deterministic suppression, there will be only one request
and one repair. For example, node detects the loss at time

, sets its request timer for time
, and receives the request from node at time

, well before its own request timer expires.
Had the loss repair been done by unicast, i.e., nodesent

a unicast request to the source as soon as it detected the
failure and sent a unicast repair to as soon as it received
the request, node would not receive the repair until time

. Thus, with a chain and with a simple deterministic
loss recovery algorithm, the furthest node receives the repair
sooner than it would if it had to rely on its own unicast
communication with the original source, because both the
request and the repair come from nodes immediately adjacent
to the congested link.

B. Stars

For the star topology in Fig. 2 we assume that all links
are identical and that the center node is not a member of the
multicast group. For a star topology, setting the request timer
as a function of the distance from the source is not an essential
feature, as all nodes detect a loss at exactly the same time.
Instead, the essential feature of the loss recovery algorithm in
a star is the randomization used to reduce implosion; we call
this probabilistic suppression.

For the star topology in Fig. 2 assume that the first packet
from node is dropped on the adjacent link. There are

members of the multicast session, and the other members
detect the loss at exactly the same time. For the discussion
of this topology we assume that the timer parametersand

are set to 0; because all nodes detect losses and receive
requests at the same time, and are not needed to amplify
differences in delay. For a star topology, the only benefits in
setting greater than 0 are to avoid unnecessary requests

Fig. 2. A star topology.

from out-of-order packets and to ensure a minimum delay
when a request timer is backed-off.

If is at most 1, then there will always be requests.
Increasing reduces the expected number of requests but
increases the expected time until the first request is sent.
For , the expected number of requests is roughly

, and the expected delay until the first timer
expires is s (where one unit of time is one second).2

For example, if is set to , then the expected number
of requests is roughly , and the expected delay until the
first timer expires is s.

Note that if was the source of the dropped packet, then
would be the only node to send a request, and the other

session members would receive the request at the same time.
The same remarks as above would then apply to with
respect to repairs.

C. Bounded-Degree Trees

The loss recovery performance in a tree topology uses both
the deterministic suppression described for chain topologies
and the probabilistic suppression described for star topologies.
Consider a network topology of a bounded-degree tree with

nodes where interior nodes have degree. A tree topology
combines aspects of both chains and stars. The timer value
should be a function of distance, to enable requests and
repairs to suppress request and repair timers at nodes further
down in the tree. In addition, randomization is needed to
reduce request/repair implosion from nodes that are at an equal
distance from the source (of the dropped packet, or of the first
request). In this section, we show that the behavior of the
request algorithms in a tree topology depends principally on
the distance of the sender from the congested link, and on the
ratio between the timer parameters and .

We assume that node S in the tree is the source of the
dropped packet, and that link (B, A) drops a packet from
source . We call nodes on the source’s side of the congested
link (including node B)good nodes, and nodes on the other
side of the congested link (including node A)badnodes. Node
A detects the dropped packet at time, when it receives the
next packet from node S. We designate node A as alevel-0
node, and we call a bad node alevel-i node if it is at distance

from node A.
2TheG� 1 nodes all detect the failure at the same time, and all set their

timers to a uniform value in an interval of width2C2. If the first timer expires
at timet, then the otherG�2 receivers receive that first request at timet+2.
So the expected number of duplicate requests is equal to the expected number
of timers that expire in the interval [t, t+ 2].
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Assume that the source of the dropped packet is at distance
from node A. Node A’s request timer expires at time

where denotes a uniform random variable between 0
and . Assuming that node A’s request is not suppressed, a
level- node receives node A’s request at time

Node B receives node A’s repair request at time

A bad level- node detects the loss at time , and such
a node’s request timer expires at some time

Note that regardless of the values of and , a
level- node receives node A’s request by time
and a level- node’s request timer expires no sooner than

If

that is, if

then the level-node’s request timer will always be suppressed
by the request from the level-0 node. Thus, the smaller the ratio

, the fewer the number of levels that could be involved
in duplicate requests. This relation also demonstrates why the
number of duplicate requests or repairs is smaller when the
source (of the dropped packet, or of the request) is close to
the congested link.

Note that the parameter serves two different functions.
A smaller value for gives a smaller delay for node B to
receive the first request. At the same time, for nodes further
away from the congested link, a larger value forcontributes
to suppressing additional levels of request timers. A similar
tradeoff occurs with the parameter . A smaller value for

gives a smaller delay for node B to receive the first
repair request. At the same time, for topologies such as star
topologies, a larger value for helps to prevent duplicate
requests from session members at the same distance from the
congested link. Similar remarks apply to the functions of
and in the repair timer algorithm.

V. SIMULATIONS OF THE REQUEST AND REPAIR ALGORITHMS

For a given underlying network, set of session members,
session sources, and congested link, it should be feasible to
analyze the behavior of the repair and request algorithms with
fixed timer parameters , , , and . However, we
are interested in the repair and request algorithms across a
wide range of topologies and scenarios. We use simulations
to examine the performance of the loss recovery algorithms
for individual packet drops in random and bounded-degree
trees. We do not claim to be presenting realistic topologies or
typical patterns of packet loss.

We define thedensityof a session as the fraction of nodes
in the underlying network that are members of the multicast
session. The simulations in this section show that the loss
recovery algorithms with fixed timer parameters perform well
in a random or bounded-degree tree fordensesessions, where
many of the nodes in the underlying tree are members of
the multicast session. The loss recovery algorithms perform
somewhat less well for asparsesession, where the session size
is small relative to the size of the underlying network, and the
members might be scattered throughout the net. This motivates
the development on the adaptive loss recovery algorithm in
Section VII-A, where the timer parameters , , , and

are adjusted in response to past performance.
In these simulations the fixed timer parameters are set as

follows: , and , where is the
number of members in the same multicast session. The choice
of for and is not critical, but gives slightly
better performance than for large .

Each simulation constructs either a random tree or a
bounded degree tree with nodes as the network topology.
Next, of the nodes are randomly chosen to be session
members; these session members are not necessarily leaf nodes
in the network topology. Finally, a source is randomly
chosen from the session members.

We assume that messages are multicast to members of the
multicast group along a shortest-path tree from the source of
the message. In each simulation we randomly choose a link

on the shortest-path tree from sourceto the members
of the multicast group. We assume that the first packet from
source is dropped by link , and that receivers detect this
loss when they receive the subsequent packet from source.

Reference [12] discusses the tools that we used to verify
that our simulator is correctly implementing the loss recovery
algorithms. The simulator that we used for the simulations
in this paper is not publicly available. However, much of the
same functionality has been implemented in the ns-2 simulator
[27]. Further progress will be reported on the SRM web page
[36].

A. Simulations on Random Trees

In this section we consider networks of random labeled
trees, where all nodes in the networks are session members.
The next section considers large networks with nodes of degree
four, where only a fraction of the nodes are members of the
multicast group.

For the simulations on random labeled trees ofnodes, the
random labeled trees are constructed according to the labeling
algorithm in [28, p. 99]. These trees have unbounded degree,
but for large , the probability that a particular vertex in
a random labeled tree has degree at most four approaches
(approximately) 0.98 [28, p. 114]. Fig. 3 shows simulations of
the loss recovery algorithm for this case, where allnodes in
the tree are members of the multicast session (that is, ).
For each graph the-axis shows the session size; twenty
simulations were run for each value of. For each simulation,
a new random tree was constructed, and session members,
a source, and a congested link were randomly chosen. Each
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(a)

(b)

(c)

Fig. 3. Random trees with a random congested link and a single packet loss, where all nodes are members of the multicast session.

simulation is represented by ajittered dot,3 and the median
from the twenty simulations is shown by a solid line. The
two dotted lines mark the upper and lower quartiles; thus, the
results from half of the simulations lie between the two dotted
lines. While there are not enough simulations to make accurate
predictions of the behavior of the loss recovery algorithms, the
simulations do illustrate the loss recovery algorithms under a
range of circumstances.

The top two graphs in Fig. 3 show the number of requests
and repairs to recover from a single loss. In these graphs the
median, lower quartile, and upper quartile lines are the same;
the -axis was chosen for an easy visual comparison with
other simulations later in the paper.

For each member affected by the loss, we define theloss
recovery delayas the time from when the member first detects
the loss until the member first receives a repair. For each
simulation, there is a dot in the bottom graph in Fig. 3
showing the loss recovery delay for the last member of the
multicast session to receive the repair. This loss recovery delay
is given as a multiple of the RTT, the roundtrip time from that
member to the original source of the dropped packet. While
this member has the largest loss recovery delay in absolute

3A jittered dot is a dot for which some small random jitter has been added
to thex andy coordinates. In this way, the reader can differentiate between
a single dot, and multiple dots all with the same coordinates.

terms, this member generally does not have the largest delay
when expressed in units of its own RTT.

Note that with unicast communications the ratio of loss
recovery delay to RTT is at least one. For a unicast receiver
that detects a packet loss by waiting for a retransmit timer to
time out, the typical ratio of delay to RTT is closer to 2. With
multicast loss recovery algorithms the ratio of delay to RTT
can be less than one, because the request and repair could each
come from a node close to the point of failure.

Fig. 3 shows that the repair/request algorithm with fixed
timer parameters works well for a tree topology where all
nodes of the tree are members of the multicast session. There
is usually only one request and one repair. (Some lack of
symmetry results from the fact that the original source of
the dropped packet might be far from the point of failure,
while the first request comes from a node close to the point
of failure.) The average recovery delay for the farthest node is
less than 2 RTT, competitive with the average delay available
from a unicast algorithm such as TCP. The results are similar
in simulations where the congested link is chosen adjacent
to the source of the dropped packet, and for simulations on
a bounded-degree tree of size where interior nodes
have degree four. (We do not claim that this is the average
degree for a router in the Internet, in the current Mbone, or in
the likely multicast backbone of the foreseeable future. From
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(c)

Fig. 4. Bounded-degree tree, degree 4, 1000 nodes, with a random congested
link.

looking at a map of the current Mbone topology, choosing a
degree of four seemed as reasonable a choice as any other
that we might have made.)

B. Simulations on Large Bounded-Degree Trees

The loss recovery algorithms with fixed timer parameters
perform less well for a sparse session in a large bounded-
degree tree. The underlying topology for the simulations in this
section is a balanced bounded-degree tree of nodes,
with interior nodes of degree four. In these simulations the
session size is significantly less than . For a session that
is sparse relative to the underlying network, the nodes close
to the congested link might not be members of the session.

As Fig. 4 shows, the average number of repairs for each
loss is somewhat high. In simulations shown in [12] where the
congested link is always adjacent to the source, the number of
repairs is low but the average number of requests is high.

The performance of the loss recovery algorithm on a range
of topologies is shown in [12]. These include topologies where
each of the nodes in the underlying network is a router
with an adjacent Ethernet with 5 workstations, point-to-point
topologies where the edges have a range of propagation delays,
and topologies where the underlying network is more dense
than a tree. None of these variations that we have explored

have significantly affected the performance of the loss recovery
algorithms with fixed timer parameters.

VI. EXPLORING THE PARAMETER SPACE

As the previous section showed, a particular set of values for
the timer parameters , , , and that performs well
in one scenario might not perform well in another scenario. In
this section we choose a few simple topologies, and explore
the behavior of the request/repair algorithms as a function of
the request timer parameter . In the following section we
discuss adaptive algorithms where the timer parameters are
adjusted as a function of the past performance of the loss
recovery algorithms.

The results in this section can be briefly summarized as
follows. The only simulations in this section that give un-
acceptably large numbers of requests are those with small
values for on stars or for sparse sessions on trees. For
these scenarios, increasing reduces the number of duplicate
requests, accompanied by moderate increases in the loss recov-
ery delay. For a star topology, there is a clear tradeoff between
the delay and the number of duplicates. In contrast, with a
chain topology, setting to zero gives the optimal behavior
both in terms of delay and in the number of duplicates. For a
dense session in a tree topology, a small value forgives
good performance in terms of both delay and duplicates.

For the simulations in this section, is set to 2. As Section
IV-A showed, for a chain with a deterministic loss recovery
algorithm, it is sufficient to set to 1. However, for a chain
with a randomized loss recovery algorithm, a higher value
of is needed to ensure that members further from the
congested link receive a request before their own request timer
expires.

Fig. 5 shows the tradeoffs between delay and duplicates
in a star topology of size 100, where the congested link is
adjacent to the source of the dropped packet. We define the
request delayfor a session member as the delay from when
the request timer is set until a request was either sent by that
member or received from another member. The top graph in
Fig. 5 contains a dot for each integer value of from 0–100,
for the star topology described in Section IV-B. For each dot,
the -coordinate is the expected request delay for that value of

, and the -coordinate is the expected number of requests.
More precisely, the -coordinate is given by the expected

request delay for the bad member closest to the source of the
dropped packet, expressed as a multiple of the roundtrip time
from that member to the source of the dropped packet. When
there is not a unique bad member at the minimum distance
from the source, as in a star topology, then the-axis shows
the expected smallest request delay from those members at
the minimum distance from the source. For a star topology
this is the request delay for that member whose request timer
expires first.

From the heuristic analysis in Section IV-B, the expected
request delay (in units of the RTT of ) is as follows:
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(a)

(b)

Fig. 5. Tradeoff between delay and duplicates in a star topology.

where is the distance in seconds from the source to a session
member. From Section IV-B, the expected number of requests
is estimated as . The “x” in Fig. 5 shows
the results for , and the circle shows the results for

. Thus the top graph of Fig. 5 shows that increasing
in a star topology increases the expected request delay

slightly while significantly decreasing the expected number of
requests.

The bottom graph in Fig. 5 shows the results from simula-
tions, which concur with the analytical results in the top graph.
For each integer value of from 0–100, twenty simulations
are run, and the request delay and total number of requests is
calculated for each simulation. Each simulation is represented
by a jittered dot, and the line shows the average for each value
of . For example, for set to one hundred the average
number of requests is 1.5 and the average request delay, as a
multiple of the RTT, is 1.42. The minimum request delay of
1 comes from the fixed value of 2 for request parameter.

These results generally concur with those of [29], which
investigates the relative benefits of using unicast or multicast
NACKs. La Porta and Schwartz [29] conclude that for a
scenario similar to our star topology, where a message sent
by any member is received by all other members exactly
seconds later, and for a multicast group with ten members,
the random interval over which NACK timers were set would
have to be at least 10 timesfor the multicasting of NACKs
to result in bandwidth savings over a scheme of unicasting
NACKs to the source. La Porta and Schwartz [29] conclude
that unicasting NACKs would be desirable in some scenarios,
but for multicast groups that could have hundreds of members,
and for multicast groups where the receivers were somewhat
tolerant of delay, multicasting NACKs would be quite effective
in reducing the unnecessary use of bandwidth.

Fig. 6 shows the results from the chain topology discussed
in Section IV-A. For a chain, with set to zero there will be

Fig. 6. Tradeoff between delay and duplicates in a chain topology.

exactly one request, with request delay . Increasing
can increase both the expected request delay and the

expected number of duplicates. The four lines in Fig. 6 show
the results for a chain topology with a failed edge 1, 2, 5, or 10
hops, respectively, from the source of the dropped packet. For
the simulations with a failed edge one hop from the source, the
individual simulations are shown by a dot. For each scenario

ranges from 0 to 10 in increments of 1, and then from
10–100 in increments of 10. While increasing can increase
the number of duplicates, the magnitude of the increase is
quite small.

Figs. 7 and 8 show the results for a range of tree topologies.
Each line shows the results for a particular fixed scenario, as

varies from 0–100. In all of the scenarios the session size
is at least 100. In each graph, the lines represent scenarios
that differ only in the number of hops between the source and
the failed edge. The four lines represent scenarios with failed
edges that are one, two, three, or four hops, respectively, from
the source of the dropped packet. For all of the topologies, the
failed edge closest to the source gives the line with the worst-
case number of duplicate requests. For this line, the individual
simulations are each shown by a jittered dot. The graphs are
sized for easy comparisons, and do not necessarily show all
of the dots.

As an example, the top graph in Fig. 7 shows the results for
trees of density 1. For each of the lines the average number
of duplicates is minimized for , and maximized for an
intermediate value of .

VII. EXTENDING THE BASIC APPROACH

A. Adaptive Adjustment of Random Timer Algorithms

The results in the previous section suggest that the SRM
loss recovery algorithms with fixed timer parameters give
acceptable performance for sessions willing to tolerate a small
number of duplicate requests and repairs and willing to accept
a moderate request and repair delay (in terms of the roundtrip
times of the underlying multicast group). However, there is
not a single setting for the timer parameters that gives optimal
performance for all topologies, session memberships, and loss
patterns. For applications where it is desirable to optimize the
tradeoff between delay and the number of duplicate requests
and repairs, an adaptive algorithm can be used that adjusts the
timer parameters , , , and in response to the past
behavior of the loss recovery algorithms.
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(a)

(b)

Fig. 7. Tradeoff between delay and duplicates for dense sessions in tree
topologies.

Fig. 8. Tradeoff between delay and duplicates for sparse sessions in a tree
topology.

In this section we describe an adaptive algorithm that adjusts
the timer parameters as a function of both the delay and of
the number of duplicate requests and repairs in recent loss
recovery exchanges. A related strategy to minimize the number
of duplicate requests is to rely on deterministic suppression,
with members closest to the point of failure sending requests
first. The rest of Section VII-A describes the adaptive al-
gorithm for adjusting the timer parameters in some detail.
Section VII-B continues with a discussion of local recovery
mechanisms.

One mechanism for encouraging deterministic suppression
is for members to reduce after they send a request. Because
members who frequently send requests are likely to also be
members who are close to the point of failure, reducing

Fig. 9. Dynamic adjustment algorithm for request timer interval.

for those members aids the deterministic suppression. In a star
topology, where otherwise the loss recovery mechanisms rely
on probabilistic suppression, reducing in this fashion helps
to break symmetry, encouraging certain members to continue
sending requests early.

A second mechanism for encouraging deterministic sup-
pression is for members who have sent requests to reduce

if they have received duplicate requests from members
significantly further from the source of the failed packet.
This mechanism for requests requires that requests include the
requestor’s estimated distance from the original source of the
requested packet. The corresponding mechanism for replies
requires that replies include the replier’s estimated distance
from the source of the request.

Fig. 9 gives the outline of the dynamic adjustment algorithm
for adjusting the request timer parameters. A corresponding
algorithm applies for adjusting the reply timer parameters. This
adaptive algorithm combines the general adaptation performed
by all members when they set a request timer with more
specific adaptations performed only by members who have
recently sent requests. A member determines if the average
number of duplicate requests is “too high” by comparing the
observed average to a predefined threshold; in this paper the
predefined threshold is one duplicate request. If the average
number of duplicate requests is too high, then the adaptive
algorithm increases the request timer interval. Alternately, if
the average number of duplicates is okay but the average
delay in sending a request is too high, then the adaptive
algorithm decreases the request timer interval. In this fashion
the algorithm can adapt the timer parameters not only to fit the
generally-fixed underlying topology, but also to fit a changing
session membership and pattern of congestion.

First we describe how a session member measures the av-
erage delay and number of duplicate requests in previous loss
recovery rounds in which that member has been a participant.
A request periodbegins when a member first detects a loss
and sets a request timer, and ends when that member detects a
subsequent loss and begins a new request period. The variable
dup req keeps count of the number of duplicate requests
received during one request period; these could be duplicates
of the most recent request or of some previous request, but
do not include requests for data for which that member never
set a request timer. At the end of each request period, the
member updates avedup req, the average number of duplicate
requests per request period, before resetting dupreq to zero.
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The average is computed as an exponential-weighted moving
average,

avedup req avedup req dup req

with in our simulations. Thus, avedup req gives the
average number of duplicate requests for those request events
for which that member has actually set a request timer.

When a request timer either expires or is reset for the
first time, indicating that either this member or some other
member has sent a request for that data, the member computes
req delay, the delay from the time the request timer was first
set (following the detection of a loss) until a request was
sent (as indicated by the time that the request timer either
expired or was reset). The variable reqdelay expresses this
delay as a multiple of the roundtrip time to the source of
the missing data. The member computes the average request
delay, avereq delay.

In a similar fashion, arepair periodbegins when a member
receives a request and sets a repair timer, and ends when a
member receives a request and sets a repair timer for a different
data item. In computing duprep, the number of duplicate
repairs, the member considers only those repairs for which
that member at some point set a repair timer. At the end of
a repair period the member updates avedup rep, the average
number of duplicate repairs.

When a repair timer either expires or is cleared, indicating
that this member or some other member sent a repair for that
data, the member computes repdelay, the delay from the time
the repair timer was set (following the receipt of a request)
until a repair was sent (as indicated by the time that the repair
timer either expired or was cleared). As above, the variable
rep delay expresses this delay as a multiple of the roundtrip
time to the source of the missing data. The member computes
the average repair delay, averep delay.

Fig. 10 gives the adaptive adjustment algorithm used in
our simulator to adjust the request timer parametersand

. The adaptive algorithm is based on comparing the mea-
surements avedup req and avereq delay with AveDups and
AveDelay, the target bounds for the average number of dupli-
cates and the average delay. An identical adjustment algorithm
is used to adapt the repair timer parametersand , based
on the measurements avedup rep and averep delay. Fig. 11
gives the initial values used in our simulations for the timer
parameters. All four timer parameters are constrained to stay
within the minimum and maximum values in Fig. 11.

The numerical parameters in Fig. 10 of 0.05, 0.1, and 0.5
were chosen somewhat arbitrarily. While this might look like
a multitude of constants, the exact value of these constants
is not important—all that matters is that they represent small
adjustments to the timer parameters and as a function
of the past observed behavior of the loss recovery algorithms.
The adjustments of and +0.1 for are small, as
the adjustment of is not the primary mechanism for
controlling the number of duplicates. The adjustments of

and +0.5 for are sufficiently small to minimize
oscillations in the setting of the timer parameters. Sample
trajectories of the loss recovery algorithms confirm that the

Fig. 10. Dynamic adjustment algorithm for request timer parameters. In our
simulations� = 0:1.

Fig. 11. Parameters for adaptive algorithms.

variations from the random component of the timer algorithms
dominate the behavior of the algorithms, minimizing the effect
of oscillations.

In our simulations we use a multiplicative factor of 3 rather
than 2 for the request timer backoff described in Section III-
B. With a multiplicative factor of 2, and with an adaptive
algorithm with small minimum values for , a single node
that experiences a packet loss could have its backed-off request
timer expire before receiving the repair packet, resulting in an
unnecessary duplicate request.

We have not attempted to devise an optimal adaptive
algorithm for reducing some function of both delay and of the
number of duplicates; such an optimal algorithm could involve
rather complex decisions about whether to adjust mainly
or , possibly depending on such factors as that member’s
relative distance to the source of the lost packet. For a sparse
session in a tree topology, increasing reduces the number
of duplicate requests; our adaptive algorithm relies largely on
increases of to reduce duplicates. Our adaptive algorithm
also decreases for members who have sent requests, if
duplicate requests have come from members further from the
source of the requested packet. (In our simulations “further
from the source” is defined as “at a reported distance greater
than 1.5 times the distance of the current member.”) Our
adaptive algorithm only decreases for members who have
sent requests, or when the average number of duplicates is
already small.
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(a) (b)

Fig. 12. The nonadaptive algorithm.

(a) (b)

Fig. 13. The adaptive algorithm.

Figs. 12 and 13 show simulations comparing adaptive and
nonadaptive algorithms. The simulation set in Fig. 12 uses
fixed values for the timer parameters, and the one in Fig. 13
uses the adaptive algorithm. From the simulation set in Fig. 4,
we chose a network topology, session membership, and drop
scenario that resulted in a large number of duplicate requests
with the nonadaptive algorithm. The network topology is a
bounded-degree tree of 1000 nodes with degree 4 for interior
nodes, and the multicast session consists of 50 members.

Each of the two figures shows ten runs of the simulation,
with 100 loss recovery rounds in each run. The same topology
and loss scenario is used for each of the ten runs, but each
run uses a new seed for the pseudo-random number generator
to control the timer choices for the requests and repairs. In
eachloss recovery rounda packet from the source is dropped
on the congested link, a second packet from the source is
not dropped, and the loss recovery algorithms are run until
all members have received the dropped packet. The-axis of
each graph shows the round number. For each figure, the top
graph shows the number of requests in that round, and the
bottom graph shows the loss recovery delay. Each round of
each simulation is marked with a jittered dot, and a solid line
shows the median from the ten simulations. The dotted lines
show the upper and lower quartiles.

For the simulations in Fig. 12 with fixed timer parameters,
one round differs from another only in that each round uses a
different set of random numbers for choosing the timers.

For the simulations with the adaptive algorithm in Fig.
13, after each round of the simulation each session member
uses the adaptive algorithms to adjust the timer parameters,
based on the results from previous rounds. Fig. 13 shows that

for this scenario, the adaptive algorithms quickly reduce the
average number of repairs, reaching steady state after about
forty iterations. Fig. 13 also shows a small reduction in delay.

To explore the adaptive algorithms in a range of scenarios,
Fig. 14 shows the results of the adaptive algorithm on the
same set of scenarios as that in Fig. 4. For each scenario
(i.e., network topology, session membership, source member,
and congested link) in Fig. 14, the adaptive algorithm is run
repeatedly for 40 loss recovery rounds, and Fig. 14 shows the
results from the 40th loss recovery round. Comparing Figs.
4 and 14 shows that the adaptive algorithm is effective in
controlling the number of duplicates over a range of scenarios.

Simulations in [12] show that the adaptive algorithm works
well in a wide range of conditions. These include scenarios
where only one session member experiences the packet loss;
where the congested link is chosen adjacent to the source of the
packet to be dropped; and for a range of underlying topologies,
including 5000-node trees, trees with interior nodes of degree
10; and connected graphs that are more dense that trees, with
1000 nodes and 1500 edges.

In actual multicast sessions, successive packet losses are not
necessarily from the same source or on the same network link.
Simulations in [12] show that in this case, the adaptive timer
algorithms tune themselves to give good average performance
for the range of packet drops encountered. Simulations in
[12] show that, by choosing different values for AveDelay
and AveDups, tradeoffs can be made between the relative
importance of low delay and a low number of duplicates.

In the simulations in this section, there is only one congested
link, and each packet that is dropped is dropped on only that
one link. More realistic simulations would include scenarios
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(a)

(b)

(c)

Fig. 14. Adaptive algorithm on round 40, for a bounded-degree tree of 1000
nodes with degree 4 and a randomly picked congested link.

with multiple locations for drops of a single packet, and
would use an extended SRM that incorporates local recovery
mechanisms into the loss recovery algorithms.

Similarly, in the simulations in this section, none of the
requests or repairs are themselves dropped. In more realistic
scenarios where not only data messages but requests and
repairs can be dropped at congested links as well, members
have to rely on retransmit timer algorithms to retransmit
requests and repairs as needed. Obviously, this will increase
not only the delay, but also the number of duplicate requests
and repairs in different parts of the network. The use of local
recovery, described in the following section, would help to
reduce the unnecessary use of bandwidth in the loss recovery
algorithms.

B. Local Recovery

With SRM’s global loss recovery algorithm described
above, even if a packet is dropped on a link to a single
member, both the request and the repair are multicast to the
entire group. In cases where the neighborhood affected by
the loss is small, the bandwidth costs of the loss recovery
algorithm can be reduced if requests and repairs are multicast
to a limited area. In this section we suggest that local recovery

can be quite effective in reducing the unnecessary use of
bandwidth.

Scenarios that could benefit from local recovery include
sessions with persistent losses to a small neighborhood of
members and isolated late arrivals to a multicast session asking
for back history. Studies of packet loss patterns in the current
Mbone [37] suggest that packet loss in multicast traffic is most
likely to occur not in the “backbone” but in the “edges” of
the multicast network. In addition, the larger the multicast
group, the more likely it is that a packet will be dropped
somewhere along the multicast tree, even in the absence of
a particular persistent point of congestion. Forward Error
Correction (FEC) [38] and Explicit Congestion Notification
(ECN) [39] both have great potential for reducing the negative
impacts of transient or mild congestion for reliable multicast
applications. However, links with persistent congestion and
presistent packet drops are likely to remain. In this case, local
recovery is needed to ensure that the fraction of bandwidth
used for request and repair messages scales well as the
multicast group grows.

We are not at this stage proposing a complete set of
algorithms for implementing local recovery. We explore in
this section a set of mechanisms that can be used to limit the
scope of a request and of an answering repair. The question
of how a member decides the scope to use for a particular
request is an area for future research.

Local recovery assumes that the member sending the request
has some information about the neighborhood of members
sharing recent losses. We define aloss neighborhoodas a
set of members who are all experiencing the same set of
losses. End nodes should not know about network topology,
but end nodes can learn about “loss neighborhoods” from
information in session messages, without learning about the
network topology.

For each member, we call a loss alocal lossif the number
of members experiencing the loss is much smaller than the
total number of members in the session. To help identify loss
neighborhoods, session messages could report a member’s loss
rate, that is, the fraction of data for which a request timer
was set. In addition, session messages could report a “loss
fingerprint,” i.e., the names of the last few local losses.

A member should send a request with local scope when
recent losses have been confined to a single loss neighborhood,
and when this local request seems likely to reach some member
capable of answering it. If no repair is received before a
backed-off request timer expires, then the next request can
be sent with a wider scope.

1) Administrative Scoping:One simple and now widely
available mechanism for local recovery is the use of ad-
ministrative scope in IP multicast. If a member believes
that both the loss neighborhood and a potential source of
repairs are contained in the local administratively-scoped
neighborhood, then both the request and the repair can be
sent with administrative scoping, so that both messages are
restricted to that neighborhood. This is most likely to be of
use for larger administratively-scoped neighborhoods.

2) Separate Multicast Groups:Another potential mecha-
nism under investigation is the use of separate multicast
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groups for local recovery [21]. In this scheme, the initial
requestor creates a separate multicast group for local recovery
and invites other nearby members to join that multicast group.
The multicast group must include some member capable of
sending repairs. This mechanism is appropriate when there is
a stable loss neighborhood that results from a particular lossy
link, or when an isolated member joins a group late and asks
for past history. Kasera, Kurose, and Towsley [19] explore
a somewhat-different use of multiple multicast groups for
recovery aimed primarily at reducing the costs of processing
unwanted packets at receivers.

3) TTL-Based Scoping:A third possible mechanism for lo-
cal recovery is for members to usetime-to-live- or TTL-based
scope to limit the reach of request and repair messages. In the
current Mbone, each link (more precisely, each interface or
tunnel) is assigned athreshold, with a default threshold of one.
The threshold is the minimum TTL required for an IP multicast
packet to be forwarded on that link, and is used to control the
scope of multicast packets. Every multicast router decrements
the TTL of a forwarded packet by one. In order to limit the
scope of a request or repair message, the sender simply sets
each packet’s TTL field to an appropriate value. By including
the initial TTL in a separate packet field, members receiving
the request (or reply) message explicitly learn the original TTL
as well as the hop count for the path from the source.

The simplest version of TTL-based local recovery is a one-
step repair algorithm. In this approach, a request sent with
TTL might be answered with a repair sent with TTL ,
where is the number of hops to the original requestor. In
this way, the repair would be guaranteed to reach all of the
members reached by the original request (if we optimistically
assume that multicast routes and thresholds are symmetric).
However, simulations suggest that one-step repair is not very
effective—there is significant unnecessary use of bandwidth
by the repair packets.

A two-step repair message is considerably more effective
in limiting the unnecessary use of bandwidth. In the first
step of the repair, a local repair is sent with the same TTL
used in the request. This TTL should be sufficiently large to
reach the original requestor, given sufficient symmetry, but
not necessarily sufficiently large to reach all of the members
reached by the original request. The local repair includes the
name of the member whose request triggered the repair. In the
second step of the repair, the requestor, upon receiving the first
local repair naming itself as the original requestor, resends the
repair using the same TTL as in the original request. In this
way the repair is received by all of the members who saw the
original request.

We use simulations to explore the optimal behavior that
could be achieved from two-step local recovery. First we
examine networks where all links have a link threshold of
one, and next we examine networks with a range of values
for the link thresholds.

To explore the optimal possible performance, we assume
that the loss neighborhood is stable, and that members have
some method for estimating and , where is the
minimum TTL needed to reach all members in the loss
neighborhood, and is the minimum TTL needed to reach

(a)

(b)

Fig. 15. Local recovery with two-step repairs in bounded-degree trees with
1000 nodes, thresholds of one.

some member not in the loss neighborhood. Further, we
assume that for each loss recovery event, the request/repair
algorithms exhibit their optimal behavior. That is, we assume
that there is a single request and a single repair, and that
both come from the members closest to the point of failure.
We restrict attention to scenarios where the loss neighborhood
contains at most 1/10th of the session members.

Fig. 15 shows the results of such an optimal execution of
the two-step local recovery algorithms in a large bounded-
degree network of degree four, with link thresholds of one.
The -axis in each graph shows the session size. For each
session size, twenty simulations are run, each with a different
session membership, source, and randomly-chosen congested
link for the dropped packet. The results of each simulation are
represented by a jittered dot. The three lines indicate the first,
second, and third quartiles.

In the top graph of Fig. 15, the-axis shows the fraction of
session members reached by the repair. In the bottom graph
of Fig. 15, the -axis shows the number of session members
in the repair neighborhood, that is, the number of session
members reached by the repair, as a multiple of the number of
members in the loss neighborhood. Additional simulations not
reported here show that local recovery with two-step repairs
can work well in networks with a range of topologies and link
thresholds. Simulations in [12] show that, in contrast to two-
step repairs, one-step repairs are fairly inefficient in their use
of bandwidth, even given an optimal setting of the TTL of the
original request.

VIII. R ELATED RESEARCH ONRELIABLE MULTICAST

The literature is rich with architectures for reliable multicast
[9], [26]. Several of the centralized approaches to reliable
multicast are discussed briefly in [11], [12]. In this section
we focus on those approaches to reliable multicast that are
more closely related to SRM.
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The Xpress Transport Protocol (XTP) [34], [35] is designed
for either unicast or one-to-many multicast communication.
Reliable communication is based on negative acknowledg-
ments. The sender may also initiate a synchronizing hand-
shake, to determine the status of the receivers. In this case,
receivers each use a “slotting” technique to wait a random
delay before sending their control packet, to reduce a control
packet implosion. The combined slotting and damping tech-
niques proposed in [34] to reduce NACK suppression have
been described earlier in this paper. In XTP receivers or routers
can impose a maximum data rate and maximum burst size on
the sender.

Several proposals for reliable multicast usesecondary
servers(also calledDesignated Routersor Group Controllers
in different proposals), to handle retransmissions within a
subgroup of the multicast group. One such protocol, Log-
based Receiver-reliable Multicast (LBRM) [14], was designed
to support Distributed Interactive Simulation (DIS). The
receiver-based reliability is provided by primary and secondary
logging servers. Receivers request retransmissions from the
secondary logging servers, which requests retransmissions
from the primary logging server. Both the source and
the secondary logging servers use either deterministic or
probabilistic requests to select between unicast and multicast
retransmissions.

LBRM uses a variable heartbeat scheme that sends heartbeat
messages (e.g., session messages) more frequently immedi-
ately after a data transmission. In an environment when the
basic transmission rate is low, this variable heartbeat enables
receivers to detect losses sooner, with no penalty in terms
of the total number of heartbeat messages transmitted. While
the variable heartbeat scheme would not be appropriate for an
application such as wb, where the original congestion could
itself result from many senders sending data at the same time,
the variable heartbeat scheme could be quite useful for an
application with a natural limit on the worst-case number of
concurrent senders, and would be easily implementable in
SRM.

Like LBRM and SRM, the Reliable Multicast Transport
Protocol (RMTP) [20] also includes among its goals scalability
and receiver-based reliability. RMTP accomplishes this by
using Designated Routers (DRs) in each region of the multicast
group, where the DRs receive incoming acknowledgment and
perform retransmissions as needed. RMTP uses windowed
flow control tuned to the requirements of the worst-case
receiver. The problem of dynamically choosing DRs for a
given multicast tree is left for continued research.

A Local Group Concept is proposed in [13], where the mul-
ticast group is divided into Local Groups, each represented by
a Group Controller that handles retransmissions for members
in the Local Group. The Group Controller is not a router or a
separate server, but simply one of the members of the multicast
group. Hofmann in [13] aims at the dynamic generation of
Local Groups and of Group Controllers, but does not explore
in detail the algorithms for finding the nearby Local Group,
responding to the failure of a local Group Controller, or
choosing a new Group Controller.

Perhaps the most well-known work on reliable multicast
is the ISIS distributed programming system developed at
Cornell University [2], [15]. ISIS provides causal ordering
and, if desired, total ordering of messageson top ofa reliable
multicast delivery protocol. Therefore the ISIS work is to some
extent orthogonal to the work described in this paper, and
further confirms our notion that a partial or total ordering,
when desired, can always be added on top of a reliable
multicast delivery system.

There is also a growing literature on the analysis of reliable
multicast schemes. As one example, Bhagwat, Mishra, and
Tripathi [4] consider the performance of one-to-many reli-
able multicast with a block-based ACK scheme. The paper
investigates the regime where transfer sizes are large, receivers
have limited buffering, and all retransmissions come from the
original sender.

Pejhan, Schwartz, and Anastassiou [29] compare several
retransmission schemes for multicast protocols for real-time
media. The retransmission schemes are intended for real-time
media with playback times, so that packets received after
the playback time are dropped. They assume that receivers
unicast NACKs to the sender, and retransmissions are done
by the sender. Note that these assumptions differ from those
of SRM, which is intended for applications without fixed
deadlines by which packets have to be received, and which
allows retransmissions from members other than the original
source.

IX. FUTURE WORK

A. Future Work on Scalable Session Messages

The SRM framework outlined in this paper assumes that
members of the multicast group send session messages and
estimate the distance to each of the other group members.
For larger groups, we are investigating a hierarchical approach
for scalable session messages [33], where members in a local
area dynamically select one of the local members to be the
representative, as far as session messages are concerned. The
representatives would each send global session messages, and
maintain an estimate of their distance in seconds from each
of the other representatives. All other members would send
local session messages with limited scope sufficient to reach
their representative.

B. Future Work on Local Recovery

Section VII-B has shown that local recovery can be effective
in limiting the unnecessary use of bandwidth in loss recovery
events, if members can estimate the scope to use in sending
local requests. While we discuss in [12] some of the issues in
implementing TTL-based local recovery, there are many open
questions about which mechanisms should be used to define
local-recovery neighborhoods, how individual members should
determine whether to send requests with local or global scope,
etc. For local recovery based on separate multicast groups,
there is ongoing research on algorithms for initiating, joining,
and leaving such multicast groups, and for soliciting additional
members to join such groups.
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In many topologies, the effectiveness of local recovery could
be improved by adding members to the multicast group in
strategic locations. For example, consider the known stable
topologies discussed in [14], where losses are expected to
occur mainly on the tail circuits, rather than in the backbone
or in the LAN’s, and the design priority is to keep unnecessary
traffic off of the tail circuits. The addition of a session member
(i.e., cache) on a node near the local end of the tail circuit,
coupled with a local-recovery neighborhood defined to include
all members on that end of the tail circuit, would allow local
recovery to continue for losses on the local area without adding
any unnecessary traffic to the tail circuit itself. For losses on
the tail circuit itself, a larger local recovery area that spanned
the tail circuit just into the backbone would isolate individual
local recovery to independent tail circuits.

C. Future Work on Congestion Control

SRM’s basic framework for congestion control assumes
that the members of the multicast session have an estimate
of the available bandwidthfor the session, and constrain the
data transmitted to be within this estimated bandwidth. This
framework raises several somewhat separate issues, such as
how members determine this available bandwidth; how to
detect congestion or avoid potential congestion; and given
available bandwidth, which piece of data a member should
send first.

Multicast congestion control is a relatively new area for
research. For unicast traffic, there is a single path from source
to receiver, with a feedback loop provided by returning packets
sent by the receiver. In contrast, in a multicast group there
could be several sources, and the various communication
paths from an active source to the members of the multicast
group can have a range of bandwidth, propagation delay, and
competing congestion. In this case, how does one define and
detect congestion?

With multicast traffic, there are application-specific policy
decisions about whether or not to tune the congestion control
procedures to the needs of the worst-case receiver; these
questions do not arise with unicast transmissions. Tuning the
sending rate to the worst-case receiver is only viable for
a multicast group with a controlled membership; otherwise,
the multicast group would be vulnerable to denial-of-service
attacks by members joining the group from an extremely-
low-bandwidth path. Given an uncontrolled membership, and
a group where the bandwidth along different paths in the
multicast group differs substantially, the sender could tune the
sending rate to the needs of the majority of receivers, requiring
that receivers on more congested paths unsubscribe from the
multicast group.

A receiver-based approach under investigation for the video
tool vic [23] is to divide the total data transmission into
several substreams, with each being sent to a separate multicast
group [24]. Members that detect congestion unsubscribe from
higher-bandwidth groups. When this approach is used for reli-
able multicast, reliable delivery would be provided separately
within each group. This implies that unsubscribing receivers
would either not receive all of the data, or would receive some

of the data later, at a slower rate than that used for the rest
of the multicast group. In either case, we can exploit this
tradeoff through the use of progressively refinable or layered
data representations.

While considerable research has been done on layering
techniques for video, layering techniques are application-
specific, and layering for wb data remains an area for further
research. Possibilities would be to encode embedded images
using Progressive-JPEG or some other layered scheme, or
to tradeoff free-hand drawing resolution for rate (i.e., one
could send line drawings at 50 points/s for good interactive
performance over a high rate channel but at 1 point/s over a
constrained, low-rate channel).

As another approach to bandwidth adaptation, receivers
could reserve resources where such network services were
available; an example of such services are the guaranteed
and controlled load services currently being developed for
the Internet [3]. Such resource reservation could comple-
ment other congestion control mechanisms of the multicast
session.

D. Future Work on an SRM “Toolkit”

Although we have proposed SRM as a framework that
applies to many different applications, we have developed just
one such application, wb. Further, because we based the imple-
mentation on ALF and deliberately factored many application
semantics into the design of the wb transport, it is relatively
difficult to extract and re-use wb’s network implementation in
another application. However, this limitation resulted from our
lack of prior experience with ALF-based design and we argue
now that an ALF protocol architecture does not necessarily
preclude substantial code re-use.

Based on our subsequent experience with another ALF
architecture—the Real-time Transport Protocol (RTP) [30] that
underlies the MBone tools vic and vat—we know that the core
of an ALF based design can be easily tailored for a range of
application types. For example, we developed a generic RTP
toolkit as an object-oriented class hierarchy, where the base
class implements the common RTP framework and derived
subclasses implement application-specific semantics. Our RTP
toolkit supports a wide range of applications including lay-
ered video, traditional H.261-coded video, LPC-coded audio,
generic audio/video recording and playback tools, and RTP
monitoring and debugging tools. Each of these tools shares
most of its network implementation with all of the others, yet
each still reflects its individual semantics through ALF—RTP
is not a generic protocol layer.

In current work, we are applying these same design prin-
ciples to both the next generation of the wb protocol as well
a new set of SRM-based applications. We are developing a
object-oriented SRM toolkit that in a base class implements
the SRM framework described in Section III and in a derived
subclass reflects application semantics like those described
in Section II-C. For example, the application portion of
the SRM class hierarchy determines the packet generation
order and priority, that is, whether to send answer repairs
before sending new data, or favoring repairs of one source
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over another, etc. At the same time, the SRM base class
handles the more generic SRM functionality like the timer
adaptatation algorithms and the basic request/repair event
scheduling.

X. CONCLUSIONS

This paper has described in detail SRM, a framework
for scalable reliable multicast. The SRM framework meets
a minimal reliability definition of delivering all data to all
group members, deferring more advanced functionality, when
needed, to individual applications. SRM is based on the
assumptions of IP multicast delivery and of unique persistent
names for both data and sources.

This paper has focused on SRM’s request and repair al-
gorithms for the reliable delivery of data. The paper has not
proposed a complete set of algorithms for implementing local
recovery, but has explored a model for local recovery with
two-step repairs. Future work on scalable session messages,
local recovery, congestion control, and an SRM “toolkit” have
also been discussed.
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