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Abstract— A loop-free path-finding algorithm (LPA) is pre-
sented; this is the first routing algorithm that eliminates the
formation of temporary routing loops without the need for
internodal synchronization spanning multiple hops or the
specification of complete or variable-size path information.
Like other previous algorithms, LPA operates by specify-
ing the second-to-last hop and distance to each destination;
this feature is used to ensure termination. In addition, LPA
uses an inter-neighbor synchronization mechanism to elim-
inate temporary routing loops. A detailed proof of LPA’s
correctness and loop-freedom property is presented and its
complexity is evaluated. LPA’s average performance is com-
pared by simulation with the performance of algorithms rep-
resentative of the state of the art in distributed routing,
namely an ideal link-state (ILS) algorithm, a loop-free al-
gorithm that is based on internodal coordination spanning
multiple hops (DUAL) and a path-finding algorithm without
the inter-neighbor synchronization mechanism. The simu-
lation results show that LPA is a more scalable alternative
than DUAL and ILS in terms of the average number of
steps, messages, and operations needed for each algorithm
to converge after a topology change.

1 Introduction

RIP [9] is widely used in internets today. However, it is
based on the distributed Bellman-Ford algorithm (DBF)
for shortest-path computation [1], which suffers from bounc-
ing effect and counting-to-infinity problems. These prob-
lems are overcome in one of three ways in existing Inter-
net routing protocols. OSPF [16] relies on broadcasting
complete topology information among routers, and orga-
nizes an Internet hierarchically to cope with the overhead
incurred with topology broadcast. BGP [12] exchanges
distance vectors that specify complete path to destina-
tions. EIGRP [2] uses a loop-free routing algorithm called
DUAL [5], which is based on internodal coordination that
can span multiple hops; DUAL also eliminates temporary
routing loops.

Recently, distributed shortest-path algorithms [3, 5, 8,
10, 17, 19] that utilize information regarding the length
and second-to-last hop (predecessor) of the shortest path
to each destination have been proposed to eliminate the
performance problems of DBF. We call these type of algo-
rithms path-finding algorithms. Although these algorithms
provide a marked improvement over DBF, they do not
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eliminate the possibility of temporary loops. All the loop-
free algorithms reported to date rely on mechanisms that
require routers to either synchronize along multiple hops
[5, 11, 15], or exchange path information that can include
all the routers in the path from source to destination [7].
This paper presents the loop-free path-finding algorithm
(LPA) which is the first routing algorithm that is loop-
free at every instant and does not use either of these two
techniques.

Like previous path-finding algorithms, LPA eliminates
the counting-to-infinity problem of DBF using predecessor
information. Because each router reports to its neighbors
the predecessor to each destination, any router can traverse
the path specified by the predecessors from any destination
back to a neighbor router to determine if using that neigh-
bor as its successor would create a path that contains a loop
(i.e., involves the router itself). Furthermore, a router de-
tects a temporary loop within a finite time that depends
on the speed with which correct predecessor information
reaches the router, and not on the distance values of the
paths offered by its neighbors; therefore, temporary loops
are detected much faster than in DBF and its variations.

Of course, updates take time to be propagated and routers
have to update their routing tables using information that
can be out of date, which can lead to temporary loops. In
LPA, when a router detects that it can create a routing ta-
ble loop if it changes its successor to a destination, it blocks
such a potential loop. The router accomplishes this by re-
porting an infinite distance for the destination to all its
neighbors and by waiting for those neighbors to acknowl-
edge its message with their own distances and predecessor
information, before the router changes its successor. Be-
cause of the overhead involved, a router should not send a
query every time it has to change its successor to a desti-
nation; a router decides when to block a potential loop by
comparing the distances reported by its neighbors against
a feasible distance, which is defined to be the smallest value
achieved by the router’s own distance since the last query
sent by the router. The router is forced to block a po-
tential loop with a query only when no neighbor reports
a distance smaller than the router’s own feasible distance.
This feature accounts for the low overhead incurred in LPA
to accomplish loop-free paths at every instant.

The rest of the paper is organized as follows. Section 2
presents the network model assumed in LPA. Section 3 pro-
vides a description of LPA. Section 4 and Section 5 provide
a detailed proof of LPA’s loop-freedom and convergence to



correct routing tables; respectively. Section 6 addresses
the complexity of LPA, analyzes its average performance
by simulation, and compares it with other algorithms. Fi-
nally, Section 7 presents our conclusions.

2 Network Model

A computer network is modeled as an undirected finite
graph represented as G(N, E), where N is the set of nodes
and F is the set of edges or links connecting the nodes. For
simplicity, each node represents a router that is a comput-
ing unit involving a processor, local memory and input and
output queues with unlimited capacity. LPA can be applied
to networks in which nodes represent address ranges [22].
A functional bidirectional link connecting nodes ¢ and j is
represented by (4,j) and is assigned a positive weight in
each direction. The link is assumed to exist in both direc-
tions at the same time. All the messages received (trans-
mitted) by a node are put in the input (output) queue and
are processed on a first-come-first-serve basis. Each node
has a unique identifier. Any link cost can vary in time but
is always positive. The distance between two nodes in the
network is measured as the sum of the link costs of the
shortest path between the nodes. An underlying protocol
assures that:

e Within a finite time, a node detects the existence of a
new neighbor, loss of connectivity with a neighbor, or
the change in the cost of an adjacent link.

e All packets transmitted over an operational link are
received correctly and in the proper sequence within a
finite time. This assumption is made for convenience.
Reliable message transmission can be easily incorpo-
rated into the routing protocol (e.g., [16, 21]).

e All update messages, changes in the link-cost, link fail-
ures and link recoveries are processed one at a time in
the order in which they occur.

When a link fails, the corresponding distance entry in the
node’s distance and routing tables are marked as infinity.
A node failure is modeled as all the links incident on that
node failing at the same time.

A path from node i to node j is a sequence of nodes in
which (i, n1), (ng, ng+1), (nr,j) are the links in the path.
A simple path from i to j is a sequence of nodes in which
no node is visited more than once. The paths between any
pair of nodes and their corresponding distances change over
time in a dynamic network. At any point in time, node ¢
is connected to node j if a path exists from ¢ to j at that
time. The network is said to be connected if every pair of
operational nodes are connected at a given time.

3 LPA Description

3.1 Information Stored and Exchanged

In LPA’s description, the time at which the value of a vari-
able X of the algorithm applies is specified only when it is

necessary; the value of X at time ¢ is denoted by X(t).

Each router maintains a distance table, a routing table
and a link-cost table. The distance table at each router 2
is a matrix containing, for each destination j and for each
neighbor & of router i, the distance and the predecessor
reported by router &, denoted by D;k and pék, respectively.
The set of neighbors of router ¢ is denoted by N;.

The routing table at router ¢ is a column vector contain-
ing, for each destination j, the minimum distance (D;), the
predecessor (pj»), the successor (sj»), and a marker (tagj»)
used to update the routing table. For destination j, tagj»
specifies whether the entry corresponds to a simple path
(tagj» = correct), a loop (tagj» = error) or a destination
that has not been marked (tag§ = null).

The link-cost table lists the cost of each link adjacent to
the router. The cost of the link from ¢ to k is denoted by
d;; and is considered to be infinity when the link fails.

An update message from router ¢ consists of a vector of
entries reporting incremental updates to its routing table;
each entry specifies an update flag (denoted by uj,), a desti-
nation j, the reported distance to that destination (denoted
by RD;:), and the reported predecessor in the path to the

destination (denoted by rpé»). The update flag indicates

[

whether the entry is an update (u} = 0), a query (uj = 1)
or a reply to a query (u; = 2). The distance in a query is
always set to co.

Because every router reports to its neighbors the prede-
cessor in the shortest path to each destination, the com-
plete path that a router assumes to any destination (called
its implicit path to the destination) at a given time t s
known by the router’s neighbors at the subsequent time
t" >t This is done by means of a path traversal routine
on the predecessor entries reported by the router. In the
specification of LPA, the successor to destination j for any
router is simply referred to as the successor of the router,
and the same reference applies to other information main-
tained by a router. Similarly, updates, queries and replies
refer to destination j, unless stated otherwise. Figures 1
and 2 specify LPA in pseudo-code. The rest of this section
provides an informal description of LPA.

The procedures used for initialization are Init1 and Init2;
Procedure Message is executed when a router processes an

update message; procedures linkUp, linkDown and linkChange

are executed when a router detects a new link, the failure of
a link, or the change in the cost of a link. We refer to these
procedures as event-handling procedures. For each entry
in an update message, Procedure Message calls procedure
Update, Query, or Reply to handle an update, a query, or
a reply, respectively. An important characteristic of all
event-handling procedures is that they mark tag;» = null
for each destination j affected by the input event.

Router ¢ initializes itself in passive state with an infinite
distance for all its known neighbors and with a zero dis-
tance to itself. After initialization, router ¢ sends updates
containing the distance to itself to all its neighbors.



3.2 Distance Table Updating

When router i receives an input event regarding neighbor k
(an update message from neighbor & or a change in the cost
or status of link (¢, k)), it updates its link-cost table with
the new value of link d;;, if needed, and then executes pro-
cedure DT'. The intent of this procedure is for the router to
erase the outdated path information in the distance table
by making path information from all neighbors consistent
with the latest update. To accomplish this, DT updates
the distance and predecessor of neighbor k as Dj»k = D]’»c

and pj»k = pﬁc for each destination j affected by the input
event. In addition, DT determines whether the path to any
destination j through any of the other neighbor of router
¢ includes neighbor k. This is done by traversing the path
specified by the predecessor entries reported by a neighbor
from destination j towards node ¢. If the path implied by
the predecessor reported by router b (b # k and b € N;) to
destination j includes router k, then node ¢ assumes that
b has outdated path information and substitutes the sub-
path from k& to j reported by b as part of its path to 7 with
the path to i reported by k itself. This is easily done by
updating D;b = Dib + DJ’»C and pj»b = p}“.

The example in Figure 3 illustrates how procedure DT
helps to expedite LPA’s convergence. In the example, router
x has reported to 7 its predecessors to y and j, and ¢ infers
that z’s path to j is zyj. Router ¢ has reported to ¢ its
predecessors to d, @, b and j, and 7 infers that ¢’s path to
j is cdabj. Router a has reported to i its predecessors to
b and j, and ¢ infers that a’s path to j is abj. With these
conditions, assume that @ sends ¢ an update stating that
Dj = oo and pj = null. Router i uses procedure DT to
ensure that the path information from the other neighbors
reflects the most recent update obtained from any other
neighbors for any destination. Since ¢’s path to j includes
a, 1 substitutes the out-of-date subpath abj in ¢’s path in-
formation with the information supplied by a, which makes
the path from ¢ to j non-existent. The path from z to j
does not include a and i does not change z’s information.
Note that ¢ does not have to wait for an update from ¢ to
infer that it should not use ¢ as successor to j.

3.3 Blocking Temporary Loops

The example shown in Figure 4 illustrates the possibility
of looping, even when path information is used. In the
example, it is assumed that a has reported the implicit
path aj to ¢ and that b has reported the implicit path
bedj to i. Furthermore, this path information is outdated,
because ¢ has changed its successor from d to e and the
new path information has not reached i. If link (¢, a) fails,
simply using path information would permit ¢ to use b as
successor to j. However, this would create a temporary
routing loop.

To eliminate temporary loops, a router ¢ forces its neigh-
bors not to use it as a successor (next hop) when it de-
tects the possibility of creating a temporary loop before ¢
changes its own successor. This is done using an interneigh-

bor synchronization mechanism based on the notion of fea-
sible distance.

The feasible distance of router ¢ for destination j (de-

noted by FD;) is the smallest value achieved by its own
distance to j since the last time i initialized itself or sent
a query reporting an infinite distance to j. LPA allows a
router to use a neighbor k as its successor to destination j
only if it satisfies the following condition.
Feasibility Condition (FC): If at time ¢ router i needs
to update its current successor, it can choose as its new
successor 5§ (t) any router n € N;(t) such that Dj»n(t) +
din(t) = Dmin(t) = Min{D; (1) + dis(t)|z € N;(t)} and
D}n(t) < FD; (). If no such neighbor exists and D;: () <
oo, router ¢ must keep its current successor. If Dy,in(t) =
oo then 5§ (t) = null.

FC is used to establish an ordering of routers along a
given loop-free path to j, i.e.; all the routers in a loop-free
path to j have feasible distances to j that decrease as j is
approached. If router ¢ does not find neighbor that satisfies
FC, it is forced to send a query to its neighbors reporting
an infinite distance to j and waits for the replies before it
can change its own route. Because every router uses FC
to decide whether to adapt a successor or to block paths
through itself (as described in Section 3.4), no temporary
loops can exist.

3.4 Routing Table Updating

After procedure DT is executed, the way in which router ¢
updates its routing table for a given destination depends on
whether router 7 is passive or active for that destination.
A router is passive if it has a feasible successor, or has
determined that no such successor exists and is active if it
is searching for a feasible successor. A feasible successor for
router ¢ with respect to destination j is a neighbor router
that satisfies FC.

When router ¢ is passive, it reports the current value of
D;: in all its updates and replies. While router ¢ is active,
it sends an infinite distance in its replies and queries. An
active router cannot send an update regarding the desti-
nation for which it is active, this is because any update
sent during active state would necessarily have to report
an infinite distance to ensure the correct operation of the
inter-neighbor synchronization mechanism used in LPA.

If router ¢ is passive when it processes an update for
destination j, it determines whether or not it has a feasible
successor, 1.e., a neighbor router that satisfies FC.

If router ¢ finds a feasible successor, it sets FD;'» equal
to the smaller of the updated value of Dj» and the present
value of FD;. In addition, it updates its distance, prede-
cessor, and successor making sure that only simple paths
are used, as described in Section 3.5.

Router ¢ then prepares an update message to its neigh-
bors if its routing table entry changes. Alternatively, if
router 7 finds no feasible successor, then it sets FD; =00
and updates its distance and predecessor to reflect the in-
formation reported by its current successor. If Dj» (t) = oo,
then 5? (t) = null. Router i also sets the reply status flag



(r;k = 1) for all k¥ € N; and sends a query to all its neigh-
bors. Router 7 is then said to be active, and cannot change
its path information until it receives all the replies to its
query.

Queries and replies are processed in a manner similar to
the processing of an update described above. If the input
event that causes router ¢ to become active is a query from
its neighbor k, router ¢ sends a reply to router &k reporting
an infinite distance. This is the case, because router k’s
query, by definition, reports the latest information from
router k, and router 7 will send an update to router k£ when
it becomes passive if its distance is smaller than infinity. A
link-cost change is treated as a number of updates.

Once router 17 is active for destination j, it may not have
to do anything more regarding that destination after exe-
cuting procedures RT and DT as aresult of an input event.
However, when router 7 is active and receives a reply from
router k, it updates its distance table and resets the reply
flag (rj, = 0).

Router ¢ becomes passive at time ¢ when it receives
replies from all its neighbors indicating that they have pro-
cessed its query. As a result, router 7 is free to choose any
neighbor that provides the shortest distance, if there is any.
If such a neighbor is found, router ¢ updates the routing ta-
ble with the minimum distance as described for the passive
state and sets FD; = D;

A router does not wait indefinitely for replies from its
neighbors because a router replies to all its queries regard-
less of its state. Thus, there is no possibility of deadlocks
due to the inter-neighbor coordination mechanism.

If router 7 is passive and has already set its distance to
infinity (D; = 00), and receives an input event that implies
an infinite distance to j, then router i simply updates D;k
and d;;, and sends a reply to router k with an infinite
distance if the input event is a query from router k. This
ensures that update messages will stop when a destination
becomes unreachable.

Figure 5 illustrates the interneighbor coordination mech-
anism of LPA. The number adjacent to each link represents
the weight of that link; U indicates updates, ) represents
queries and R replies. The arrowhead from node z to node
y indicates that node y is the successor of node z towards
destination j; i.e., sj = y. The label in the parenthesis
assigned to node « indicates current distance (Df) and the
feasible distance from z to destination j (/Df). Active
nodes are indicated in black.

In the example (Figure 5), we assume that messages
propagate across all links at the same speed, which is con-
sidered a step. Node processes all messages received in the
previous step in zero time.

When link (a, j) fails, node a updates its distance table
by setting the distances from d and b to j equal to oo,
because the paths to j reported by both b and d include a.
After that, node a is unable to find a feasible successor to
j, because Diy = Dig =00 > 1= FDj. Accordingly, it
sends a query to all its neighbors (Figure 5(b)).

When node d receives a’s query, it updates its distance
table as follows: it sets Dj‘-ia = o0 because a reports Dj =

oo, and it sets be = D]‘»lc = 00, because the paths to j
reported by b and d include node a. Because d uses a
to reach j, d must also update its routing table. After
updating its distance table, the neighbor that offers the
shortest distance to j is j itself. Furthermore, D}ij =0<
2 = FD;Z, and d sends an update to all its neighbor with
D]C»l =149 =10 and a reply to node a (Figure 5(c)).

When node b receives a’s query (before receiving a new
update from d), it must set D](?a = D](?d = Dj?c = o0, be-
cause all its neighbors have reported a path to j that in-
clude node a. Because b’s own path to j includes node a,
it must update its routing table. Node b sends a query
to its neighbors because every distance to j through any
neighbor is infinity (Figure 5(c)).

When a receives the replies from d and b, it makes node d
its new successor and also sends a reply to b (Figure 5(d)).
When c¢ receives the update from d and the query from b,
1t makes e its successor, because Dj, =1 <4 = F'D; and
e offers the shortest path to j among all of ¢’s neighbors.
Accordingly, ¢ sends an update with its new distance of 10
and a reply to b’s query.

Finally, when b receives all the replies to its queries, it
sets d as its successor and sends updates accordingly (Fig-

ure 5(e)).

3.5 Ensuring Simple Paths

Procedure T'RT ensures that any finite distance in the rout-
ing table corresponds to a simple path by allowing router ¢
to select successors to destinations as only those neighbors
that satisfy the following property:
Property 1:  Router i sets 5§ = k at time ¢ only if
Di(8)+dig(t) < D;p (t) +dip(t) for every neighbor p other
than k and for every node z in the path from i to j defined
by the predecessors reported by neighbor k.

Let Pjik(t) denote the path from k to j defined by the
predecessors reported by neighbor k to router ¢ and stored
in router ¢’s distance table at time ¢t. Procedure TRT en-
forces Property 1 by traversing all or part of P;k(t) from
j back to k using the predecessor information. This path
traversal ends when either a predecessor z is reached for
which tag® = correct or error, or neighbor k is reached.
If tag. = error, then tag} is set to error also; otherwise,
neighbor k or a correct tag must be reached, in which case
tag;'» is set to correct. Lemma 2 shows that this traversal
correctly enforces Property 1, without having to traverse
an entire implicit path; as the simulation results presented
in Section 6 show, this makes LPA considerably more effi-
cient than other prior path finding algorithms [3, 10, 19].

3.6 Handling Topology Changes

When router ¢ establishes a link with a neighbor k&, it up-
dates its link-cost table and assumes that router & has re-
ported infinite distances to all destinations and has replied
to any query for which router i is active; furthermore, if
router k is a previously unknown destination, router ¢ ini-
tializes the path information of router & and sends an up-



date to the new neighbor k for each destination for which it
has a finite distance. When router 7 is passive and detects
that link (7, k) has failed, it sets d;; = oo, Dzk = oo and ka
= null; after that, router i carries out the same steps used
for the reception of a link-cost change message in passive
state. When router ¢ is active and loses connectivity with
a neighbor k, it resets the reply flag and resets the path
information i.e., assumes that the neighbor k sent a reply
reporting an infinite distance.

It follows from the above description that the order in
which router i processes updates, queries and replies does
not change with the establishment of new links or link fail-
ures. The addition or failure of a router is handled by its
neighbors as if all the links connecting to that router were
coming up or going down at the same time.

4 Loop Freedom in LPA

The successor graph for destination j € G, denoted by
S;(G), is a directed graph in which nodes are the same as
the nodes of G and where directed links are determined
by the successor entries in the nodal routing tables. Loop
freedom of routing tables is guaranteed at all times in G if
S;(G) is always a directed acyclic graph. If G is connected
in steady state, when all routing tables are correct, S;(G)
must be a directed tree whose links point to j.

It is clear that S;(G) would be loop free at every instant

if a router sent a query reporting an infinite distance to
its neighbors every time it needed to change successors,
because no router would change S;(G) before blocking any
potential loop by sending an infinite distance “upstream”
the loop. However, it is not obvious that loop freedom is
maintained at every instant when routers use F'C' to decide
if they have to send a query before changing S;(G). The
following theorem shows that this is the case, i.e., that
LPA is free of loops at every instant. The proof is by
contradiction.
Proposition 1: If a loop is formed in the successor graph
S;(G) for the first time at time ¢, then some router 7 in
that loop must choose an upstream router as its successor
at time .

By assumption, S;(G) is a directed acyclic graph before
the loop is formed at time ¢. If a loop has to be formed at
time ¢, there must be at least one router & € S;(G) that
changes its successor because the successor information can
be changed only when an update occurs or when the router
detects a change in a link cost or status. This implies that
an upstream router will be chosen by some router z in the
loop. O

Theorem 1 In a network G, the successor graph S;(G) is
loop-free at every instant t.

Proof: The proof is by contradiction to FC.

Let G be a stable topology and let the successor graph
S;(G) be loop-free at every instant before t. Let Cj(t) be
the loop formed in the successor graph at time t. It is ev-
ident that no loops can be created unless routers change
successors and modify the successor graph S;(G), and it

follows from Proposition 1 that at least one router must
change its successor at time ¢ and choose an upstream
neighbor for a loop to be formed.

At time ¢t = 0, when the network is first initialized, each
router knows only how to reach itself. This is equivalent to
saying that at time 0, S;(G) is a disconnected graph of one
or more components, each with a single router. Therefore
S;(G) is loop-free at time t = 0.

Let t > 0, and assume that a loop Cj(t) is formed when
router ¢ makes router a (=s[1, new]) its new successor (Fig-
ure 6). This implies the path from a to j at time ¢, denoted
by P,;(t), includes Pg;(t).

Let path Pg;(t) consist of a chain of routers {a, s[2, new],

., 1}, as shown in Figure 6. Router s[k, new] is the kth hop
in the path P,; at time ¢ and s[k 4+ 1, new] is its successor
at time t. Router s[k,new] sets SJ[k neu] = slk + 1, new]
at time t4[1 41 new] < t and makes no more updates to its
successor in the time interval (t,[541 new), t]; therefore,

s[k,new s[knew
5]'[ ](ts[k+1,new]) = 3]'[ ](t)
s[k,new s[k,new
DJ[ ](ts[k+1,new]) = DJ[ ](t)

Similarly, router s[k + 1, old] is router s[k, new]’s suc-
cessor just before node s[k, new] becomes the kth hop of
path Pg;(t) by making router s[k + 1, new] its successor at
time ts[k+1,new] <t

Because all the routers in C;(¢) must have a successor at
time t, all of them must be passive at that time. If all the
routers in C}(t) have always been passive before time ¢, it
follows from Theorem 1 in [5] that router ¢ cannot create
Cj(t); the proof of that theorem is based on the fact that
FD;» can only decrease as long as router ¢ is passive. The
rest of the proof needs to show that C;(¢) cannot be formed
if at least one router in Pg;(?) was temporarily active before
time .

Consider the case in which node slk, new] € Pg;(t) is
already passive before it updates its distance and successor
to join Pg;(t) at time t,[p41, new] < t. According to LPA,
DI Nt new)) = RO "Nt it new)); further-
more, according to F'C' it must be true that

Ds[k, new)

s[k, new
j s[k+1, new](ts[k+1y new]) = D [ ]

j slk+1, new](t)
s[k, new]
FD; (1)

<
s[k, new
< Dj[ ](ts[k+1, old])

Hence, if router s[k — 1, new] processed the update that
node s[k, new] sent at time ¢,[;41, new], then

s[k—1, new] _ sk, new]
Dj s[k, new] (t) - D] (t)
_ sk ,new]
- Dj s[k+1, new](t) + ds[k,new]s[k+1, new](t)
sk ,new]
> D] s[k+1, new](t)

However, if s[k — 1, new] did not process the update that
node s[k, new] sent at time #[;41, new), then

D‘?’[k—l, new](t) _

s[k, new]
j sk, new] D

; (tspe+1, otd))

[&,
> Dj s[ kr-L}-elw new) (t)



because router s[k + 1, new] must be a feasible succes-
sor for router s[k,new] to make it its successor at time
ts[k+1, new]. Lherefore, if router s[k, new] is already pas-
sive when it changes successor at time #;[z41, new], then

s[k—=1, new] s[k, new]
Dj s[k, new] ( ) > DJ s[k+1, new](t)'

Alternatively, consider the case in which router s[k, new]
is active from time #; < to time #5341, new] When it be-

comes passive again to join P,;(t). In this case, regardless

of the value of D;[k’ new](tk), router s[k, new] must have

sent a query to its neighbors with RD;[k’ new](tk)

time g, and all of those neighbors must acknowledge that

= oo at

value of RD;[k’ new](tk) before router s[k, new] can make
any changes to its distance at time ¢,[;41, new-

When router s[k — 1, new] makes router sk, new] its
successor when it joins Puj(t) at time £y new) < ¢, it may
or may not have processed any update or query sent by
node s[k, new] at time t,[;41, new] < t when that node
joins Pg;(t). In the first case,

D.?[k‘—l, new](t) —

j s[k, new]

s[k, new
RD][ ](ts[k+1, new])

s[k, new
D][ ](ts[k+1, new])

s[k, new]
ik vl

s[k, new]
> FD; (t)

s[k, new]
> D] s[k+1, new](t)

In the second case, D*[¥ kl new] (1) =
j sk, new]

sk, new](tk)

RD® "Y(t,); this

is impossible, because RD]- = oo and node s[k —
1, new] could not have chosen a neighbor reporting an
infinite distance as its successor.

From the above argument it follows that,
s[k, new] is passive at time ¢, then

if a router

Ds[k—l,new]

js[k,new]

Dy e ()

However, because all the routers in the loop Cj(t) are pas-
sive at time ¢, traversing path P,;(¢) leads to the erroneous
conclusion D%, (t) > Di,(t). This implies that a loop can-
not be formed when S;(G) is loop free before time ¢ and
G has a stable topology. On the other hand, the handling
of queries and replies in LPA is not modified with the es-
tablishment or failure of links, and G is loop-free when it
is first stored before any router has a finite distance to any
other node. Therefore, the theorem is true. O

5 Correctness of LPA

To prove that LPA converges to correct routing-table val-
ues in a finite time, we assume that there is a finite time 7,
after which no more link-cost or topology changes occur.
Procedure DT makes node ¢ update its distance table in a
way that the routing information assumed from all neigh-
bors is consistent, as discussed in section 3.2. However,
LPA is correct even if such consistency of neighbor infor-
mation is not enforced, and is not assumed in the following
proof.

Lemma 1 LPA is lwve.

Proof: Consider the case in which the network has a
stable topology. When a router is in the active state and
receives a query from a neighbor, the router replies to the
query with an infinite distance. The router updates its
distance table entries when either an update or a reply
message is received in active state. On the other hand,
when a router in passive state receives a query from its
neighbor, it computes the feasible distance and updates
its distance and routing tables accordingly. If the router
finds a feasible successor, it replies to its neighbor’s query
with its current distance to the destination. If the router
it forwards the query to
the rest of its neighbors and sends a reply with an infinite
distance to the neighbor who originated the query. Accord-
ingly, in a stable topology, a router that receives a query
from a neighbor for any destination must answer with a re-
ply within a finite time, which means that any router that
sends a query in a stable topology must become passive
after a finite time.

Consider now the case in which the network topology
changes. When a link fails or is reestablished, an active
router that detects the link status change simply assumes
that the router at the other end of the link has reported an
infinite distance and has replied to the ongoing query. Be-
cause an active router must detect the failure or establish-
ment of a link within a finite time, and because router fail-
ures or additions are treated as multiple link failures or ad-
ditions, it follows from the previous case that no router can
be active for an indefinite period of time, and the lemma
is true. O

can not find feasible successor,

Lemma 2 TRT correctly enforces Property 1.

Proof: TRT correctly enforces Property 1 if the tag value
given by TRT at router ¢ for destination j equals correct.
This is true only when the neighbor n that router ¢ chooses
as successor to j offers the smallest distance from 7 to each
node in its reported implied path from n to j.

First note that, procedure DT is executed before TRT
and ensures that router i sets D%, = oo if its neighbor b
reports a path to b that includes i. Therefore, TRT deals
with simple paths only.

According to procedure TRT, there are two cases in
which a router stops tracing the routing table: (1) the
trace reaches node i itself (i.e., pt,, = i), and (2) a node
on the path to j is found with tagl = correct. We prove
that the correct path information is reached in both cases.

Case 1: Assume that TRT is executed for destination
j after an input event. The tag for each destination af-
fected by the input event is set to null before procedure
TRT is executed. Therefore, if TRT is executed for desti-
nation j and node i (the source) is reached, the tag of each
node in the path from i to j through neighbor n must be
null. Therefore, the distance from ¢ to j through n is the
shortest path among all neighbors, because node i chooses
the minimum in row entry among its neighbors for a given
destination j, and the lemma is true for this case.



Case 2: If node z; with tagfs1 = correct is reached, then
it must be true that either node 7 or a node x5 with tag;,
= correct 1s reached from z;.

If node 7 is reached from 1, then it follows from Case
1 that neighbor n offers the smallest distance among all
of ¢’s neighbors to each node in the implied subpath from
n to x; reported by neighbor n. Furthermore, because z;
is reached from j, node n must also offer the smallest dis-
tance among all of ¢’s neighbors to each node in the implied
subpath from 21 to j reported by n. Therefore, it follows
from Case 1 that the lemma is true. Otherwise, if z5 is
reached, the argument used when ¢ is reached from z; can
be applied to 5. Because router i always sets tagi = cor-
rect and TRT deals with simple paths only, this argument
can be applied recursively only for a maximum of h < oo
times until ¢ is reached, where A is the number of hops in
the implicit path from n to j reported by n to i. Therefore,
Case 2 must reduce to Case 1 and it follows that the lemma
is true. O

Lemma 3 The change in the cost or status of a link s
reflected in the distance and the routing tables of a router
adjacent to the link within a finite time.

Proof: Regardless of the state in which router ¢ is for
a given destination j, it updates its link-cost and distance
table within a finite time after it is notified of an adjacent
link changing its cost, failing, or starting up. On the other
hand, router ¢ is allowed to update its routing table for
destination j only when it is in passive state for that desti-
nation. However, because LPA is live (Lemma 1), if router
1 1s active for destination j, it must receive all the replies
to its query regarding j within a finite time, i.e., when it
becomes passive. When router ¢ becomes passive for des-
tination j, it executes Procedure TRT, which updates the
routing-table entry for destination j using the most recent
information in router ¢’s distance table. This implies that
any change in a link is reflected in the distance and routing
tables of a neighbor router within a finite time 7". O

Given Lemma 3 and our assumption about time 7%, a
finite time must exist when all routers adjacent to the links
that changed cost or status have updated their link cost
and status information, and after which no more link-cost
or topology changes occur. Let T' denote that time, where
T.<T < 0.

Theorem 2 After a finite ttme t > T, the routing tables
of all routers must define the final shortest path to each
destination.

Proof: Let T(H) be the time at which all messages sent
by routers with shortest paths having # — 1 hops (H >
1) to a given destination j have been processed by their
neighbors.

Assume that destination j is reachable from every router.

For any router a adjacent to j, it follows from Lemma 3
that, if router a’s shortest path to j is the link (a, j), then
router a must update D} = dg; by time 7' = 7'(0) and the
theorem is true for H = 0.

Because LPA is loop free at every instant (Theorem 1),
the number of hops in any shortest path (as implied by

the successor graph) is finite. Accordingly, the proof can
proceed by induction on H.

Assume that the theorem is true for some H > 0. Ac-
cording to this inductive assumption, by time T'(H), router
¢ must have a correct routing-table entry for every desti-
nation for which it has a shortest path of H hops or less.
Property 1 must be satisfied for all such destinations and
LPA enforces it correctly (Lemma 2). On the other hand,
from the definition of T'(H + 1), it follows that any update
messages sent by routers with shortest paths of H hops
or less to j or any other destination have been processed
by their neighbors by time T'(H + 1). Therefore, if router
i’s shortest path to destination 7 has H + 1 hops, Prop-
erty 1 must be satisfied at router i for that destination by
time T'(H + 1), because all possible predecessors for desti-
nation j must satisfy Property 1 at router ¢ and that router
must have the correct information for link (1,33) at time
T(0) < T(H 4 1) (Lemma 2). It follows that the theorem
is true for the case of a connected network.

Consider the case in which j is not accessible to a con-
nected component C' of the network. Assume that there is
a router ¢ € C such that D;'» < oo at some arbitrarily long
time. If that is the case, 7 must satisfy Property 1 through
at least one of router i’s neighbors at that time; the same
applies to such a neighbor, and to all the routers in at least
one path from i to j defined by the routing tables of routers
in C. This is not possible, because C' is finite and LPA is
always free of loops and live, which implies that, after a
finite time ¢; > 7', all paths to j defined by the successor
entries in the routing tables of routers in C' must lead to
routers that have set their distance to j equal to co. There-
fore, because C' is finite, LPA is live, and messages take a
finite time to be transmitted, it follows that destination j
will fail to satisfy Property 1 at each router within a finite
time ¢ > t;, and routers must then set their distances to
infinity, and the theorem is true. O

Theorem 3 A finite time aftert, no new update messages
are being transmitted or processed by routers in G, and all
entries in distance and routing tables are correct.

Proof: After time T, the only way in which a router
can send an update message is after processing an update
message from a neighbor. Accordingly, the proof needs to
consider three cases, namely: router i receives an update,
a query, or a reply from a neighbor.

Consider an arbitrary router i € G. Because LPA is live
(Theorem 1) and router ¢ obtains its shortest distance and
corresponding path information for destination j in a finite
time after T' (Theorem 2), router ¢ must be passive within
a finite time t; > T

If router ¢ receives an update for destination j from
router k after time ¢;, router ¢ must execute Procedure
Update. If router 7 has no path to destination j, D; must
be infinity and router & must report an infinite distance
as well, because router ¢ achieves its final shortest-path at
time %;; in this case, router ¢ simply updates its distance
table. On the other hand, if router ¢ has a path to desti-
nation j, then D; < oo and router ¢ must find that FC is



satisfied and execute Procedure TRT. Because an update
entry is added only when the shortest distance or prede-
cessor to j change, router ¢ can send no update or query of
its own.

If router ¢ receives a query from a neighbor for destina-
tion j after time ¢;, it must execute Procedure Query. If
router 7 has no physical path to destination j, D; must be
infinity and router &£ must report an infinite distance in its
query, because router ¢ achieves its final shortest-path at
time t;; in this case, router 7 simply updates its distance
table and sends a reply to router k& with an infinite dis-
tance. On the other hand, if router ¢ has a physical path
to destination j, it must determine that FC is satisfied
when it processes router k’s query. Accordingly, it simply
sends a reply to its neighbor with its current distance and
predecessor to router j. Therefore, router ¢ cannot send an
update or query of its own when it processes a query from
a neighbor after time ¢;.

After time t;, router ¢ cannot receive a reply from a
neighbor, unless it first sends a query after time ¢;, which
is impossible according to the above two paragraphs.

It follows from the above that, for any given destina-
tion, no router in G can generate a new update or query
after it reaches its final shortest path and predecessor to
that destination. Because every router must obtain its fi-
nal shortest distance and predecessor to every destination
within a finite time (Theorem 2), the theorem is true. O

6 Performance of LPA

6.1 Complexity

This section compares LPA’s worst-case performance with
respect to the performance of DBF, DUAL, and ILS. This
comparison is made in terms of the overhead required to
obtain correct routing-table entries assuming that the al-
gorithm behaves synchronously, so that every router in the
network executes a step of the algorithm simultaneously
at fixed points in time. At each step, the router receives
and processes all the inputs originated during the preceding
step and if required, sends update messages to the neigh-
boring routers at the same step. The first step occurs when
at least one router detects a topological change and issues
update messages to its neighbors. During the last step,
at least one router receives and processes messages from
its neighbors and after which the router stops transmit-
ting any update messages till a new topological change has
taken place. The number of steps taken for this process is
called the time complezity (TC); the number of messages
required to accomplish this is called the communication
complezity (CC).

DBF has a worst-case time complexity of O(|N|) and
worst-case communication complexity of O(]N?|), where
|N| is the number of routers in the network G [5]. ILS
requires that each change in the cost or status of a link be
communicated to all the routers in the network; accord-
ingly, it has T'C' = O(d) (where d is the network diameter),
because a link-state update must traverse the whole net-

work, and CC' = O(F), because each update traverses each
link at most once in ILS but each link has two states, one
in each direction of the link. On the other hand, DUAL
has TC' = O(z) and CC = O(z), where z is the number of
routers affected by the single topology change [5].

In [21], it is shown that the time complexity of an algo-
rithm like LPA is O(z) in the worst-case, where  is the
number of routers affected in the change.

6.2 Average Performance

We compare LPA’s performance by simulation with the
performance of ILS, DUAL and a path-finding algorithm
similar to LPA that we simply call the basic path finding
algorithm (BPFA) [19]. The key differences between LPA
and BPFA are that BPFA has no interneighbor coordina-
tion to block temporary loops, and each update causes a
node to update its entire routing table, just like in other
path-finding algorithms [3, 10].

A set of counters were used to instrument the simula-
tions. These counters can be reset at various points. When
the event queue empties, that is, when the algorithm con-
verges, the values of these counters are printed. During
each simulation step, a router processes input events re-
ceived during the previous step one at a time, and generates
messages as needed for each input event it processes. To
obtain the average figures, the simulation makes each link
(router) in the network fail, and counts the steps and mes-
sages needed for each algorithm to recover. It then makes
the same link (router) recover and repeat the process. The
average is then taken over all link (router) failures and re-
coveries. The routing algorithm was allowed to converge
after each such change. The average is taken over all fail-
ures and recoveries. In all cases, routers were assumed to
perform computations in zero time and links were assumed
to provide one time unit of delay. For the failure and recov-
ery runs, the costs were set to unity. Both the mean and
the standard deviation were computed for each counter;
the four counters used are

e FEuvents: The total number of updates and changes in
link status processed by routers.

e Packets: The total number of packets transmitted over
the network. Each packet may contain multiple up-
dates.

e Duration: The total elapsed time it takes for the al-
gorithm to converge.

e Operations: The total number of operations performed
by the algorithm. The operation count is incremented
when an event occurs.

In this paper, we focus on simulation results for the
ARPANET topology; similar simulation results for other
network topologies appear elsewhere [18].

The simulation results for a single resource change are
shown in Table 1. The table shows the average number
of events (updates and link-status changes processed by
routers), the average number of update messages, the aver-
age number of steps and the average number of operations



required by all the routers in the network for BPFA, LPA,
DUAL and ILS to converge after a single topology change.

BPFA incurs fewer steps in the average than the rest of
the algorithms after single failures. This is because Pro-
cedure DT of LPA, which is the basis of BPFA’s opera-
tion, prevents the formation of temporary loops without
the need for any internodal coordination. However, the
results obtained for LPA after router or link failures are
very encouraging. Because of the inter-neighbor synchro-
nization scheme used in LPA, it can be expected that at
least two additional steps are needed for convergence after
a router failure, in addition to the steps required to prop-
agate link-failure updates across the network. This is be-
cause a wave of queries must propagate from the routers de-
tecting the failure of the links adjacent to the failed router,
to the routers that are the farthest from the sources of
updates.

The small difference between the number of steps re-

quired in LPA and BPFA indicates that LPA’s inter-neighbor

coordination mechanism achieves loop freedom at every
instant with little overhead. Another important point of
comparison between LPA and BPFA is the number of oper-
ations they require. In BPFA, the entire shortest-path tree
defined in the routing table has to be traversed every time
a router processes an input event. In contrast, in LPA,
Procedure TRT traverses only those routing-table entries
affected by the input event. The results clearly show that
considerable efficiency is gained by the tagging mechanism
used in LPA.

The graphs in Figures 7 and 8 depict the number of mes-
sages exchanged before LPA; DUAL and ILS converge for
every link failing and recovering in the ARPANET topol-
ogy after a single topology change. Similar graphs for each
node failing and recovering are given in Figures 9 and 10,
respectively. All topology changes were performed one at
a time and the algorithms were allowed to converge after
each such change before the next resource change occurs.
The ordinates of the graphs represent the identifiers of the
links and the nodes, while the data points show the number
of messages exchanged after each resource change in each
of these figures.

The simulation results show that LPA and DUAL have
better overall average performance than ILS after the re-
covery of a single router or link. In the average, LPA re-
quires fewer steps, messages, and CPU cycles than DUAL
does after a single resource failure or addition. LPA also
requires a comparable number of steps and update mes-
sages than ILS does after a single resource failure, but re-
quires orders of magnitude fewer operations. Furthermore,
the number of entries per update message in LPA is very
small.

In the case of ARPANET, up to eight steps are needed
to reach the farthest router, and two more steps are needed
to handle the last query and reply after that. The simula-
tion results show that approximately nine steps are needed
in the average case for LPA’s convergence after a router
failure, compared to ILS’s eight or nine steps.

In summary, the above results indicate that LPA consti-

tutes a more scalable solution for routing in large internets
than ILS and DUAL. Dynamics of LPA is discussed in [20].

6.3 Comparison with Prior Path-Finding
Algorithms

LPA is the first path-finding algorithm that provides loop
freedom at every instant. Reference [3] discusses loop free-
dom; however, the path finding algorithm presented in that
work does not provide loop-free paths at every instant. The
approach proposed in [3] relies on each router sending a
query to its neighbors with the intended new routing-table
entries, and waiting for the neighbors’ replies before mak-
ing the change. Data packets are held at a router waiting
for its neighbors’ replies. This approach incurs substantial
communication overhead, because a router sends queries
every time it tries to change its routing table, and also
incurs unnecessary queueing delays for data packets.

Routing algorithms have been proposed in the past that
provide loop-free paths at every instant by blocking po-
tential loops. However, in these algorithms [7, 6], a router
sends path information to its neighbors in update messages
containing explicit labels of variable size that can contain
the complete path in some cases. In contrast, LPA uses
fixed-size entries in update messages, because path infor-
mation is obtained from the predecessor entries.

LPA updates routing table entries using Procedure TRT,
which ensures that only simple paths are used. This mech-
anism is similar to those proposed in [3, 17]; however, Pro-
cedure DT in LPA makes a router check the consistency of
predecessor information reported by all its neighbors each
time an input event is processed. In contrast, earlier path
finding algorithms [3, 17, 10] check the consistency of the
predecessor information only for the neighbor associated
with the input event.

LPA is more scalable than the algorithms in [3, 10], be-
cause LPA updates only those entries of the distance and
routing tables that are affected by the input event, rather
than the entire tables, using tags similar to those used in
[17]. In contrast, the algorithm in [10] uses a breath-first
search on the entire distance table each time a router pro-
cesses an input event; the algorithm reported in [3] makes
sure that Property 1 is satisfied by all destinations every
time an input event is processed, much like BPFA does.

7 Conclusions

We have presented and verified the first routing algorithm
(LPA) that eliminates the formation of temporary rout-
ing table loops without internodal synchronization span-
ning multiple hops or the communication of complete or
variable-length path information. LPA is based on the no-
tion of using information about the second to last hop (pre-
decessor) of shortest paths to ensure termination, and an
efficient inter-neighbor coordination mechanism to elimi-
nate temporary loops. The worst-case complexity of LPA
for single recovery or failure is O(z), « being the number



of routers affected by this recovery or failure. The perfor-
mance comparison of LPA and BPFA confirms that LPA
achieves loop-freedom with very limited additional over-
head compared to similar path-finding algorithms. Our
simulation results show that taking the average number of
steps, messages, and operations into account, LPA is more
efficient than DUAL and ILS. LPA works correctly when
routing information is aggregated (e.g., masks are used to
reduce routing-table size) [22] and paves the way towards
developing an efficient routing protocol based on LPA for
very large internetworks that is as simple as RIPv2 [13]
and much more efficient than OSPF [16].
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Procedure Initl
when router i initializes itself
do begin
set a link-state table with
costs of adjacent links;
N — {i};N; — {= | d;5 < o0}
for each (z € N;)
do begin
N — N Ugz; tagl + null;
5L« null; pl, «— null;
D} — o0; FD! — oo
end »
sz — i pg — i tag: +— correct;
D: — 0; FD: — 0;
for each (n € N;) do
for each j € N call Init2(n, j5);
for each (n € N;) do
add (0, i, 0, i) to LIST;(n);
call Send
end

Procedure Init2(z, j)
begin
Di_ o+ ooipk  — null;
ri o~ 0
jz

end

Procedure Send
begin
for each (n € Nj)
do begin
if (LIST;(n) is not empty)
then send message with
LIST;(n) to n
empty LIST;(n)
end
end

Procedure Reply(j, k)

begin
rt
ik
if (r;n =0,Vn € N;)

+— 03

then if ((3z € N; | D;I < o0)
or (D} < 0))
then call PU(j)

else call AU(j, k)
end

Procedure Message
when Touter i receives a message
on link (i, k)
begin
for each entry (u”,j, RD¥ rpk)
such that j # i ~ T
do begin
if (5 ¢ N)
then begin
if (RD;? = o0)
then delete entry
else begin
N — NU{j}; FD}
for each z= € N;
call Init2(z, j)
tag? «— null;
call DT (3, k)
end

= oo;

end
else
tag; — null; call DT (4, k)
end
for each entry ('u.—);, 7, RD;?, Tp—);) left
such that j # i
do case of value of u®
0: [Entry is an update]
call Update(j, k)
1: [Bntry is a query]
call Query (s, k)
2: [Entry is a reply]
call Reply(j, k)
end
if (i = 5)
begin
do case of value of u’
1: add (2, 5, 0, null) to LIST; (k)
end
end
call Send
end

Procedure Update(j, k)
begin
if (7‘—;1: =0,Vz € N;)
then begin »
if ((s; =k) or (D;k +d; < D;))
then call PU(j)
end

else call AU(j, k)
end

Procedure PU(j)
begin

end

DT

FCSET « {n | n € N;, D} +dip =DT

min = Min{D}_ +d; Ve €N}

D?n < FD'};
if (FCSET # 0) then begin

call TRT(j, DT,

min)

FD! — Min{D% FD!}
7 J J

end

else begin

Fp?:oo;r;le, Vz € N;;
D! = D" d. i
7 js’,+ ist’
3
i ot
P e
3

i (D} = oo) then s% «— mull;
Vv x € N; do begin

if (query and x = k)

then r;k

else add (1, j, oo, null)
to LIST;(x)

— 0;

end
end

Procedure Query(j, k)

beg

end

in
i (
the

r;z = 0Vz € N;)
n begin
. T __ T P
if (Dj =ooand DY = o)
then add (2, j, D;, p;)
to LIST;(k)
else begin
call PU(j);
add (2, 7, D, ph)
to LIST;(k);
end

else

begin

end

add (2, j, oo, null) to LIST;(k)
call AU(j, k)

Figure 1: LPA Specification
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Procedure TRT(j, DT,
begin
if (DY +d'., = DT,
7 st st

min) Procedure Link_Down (i, k)
when link (i, k) fails do begin
d;3 — oo;
for each j € N do begin

min)

then ns — st call DT (g, k);
else ms b | {b € Ny and DY, +dj3 = DTy} if (k = s}) then tag: — null
= — 3 end )
if (pL,, = ns) tagh = correct for k, DY, — oo;
while (D 5 +dijp, = p;k — null; N; — N; — {k};
Min{D}, +d;; Y b€ N;} delete vt
and (D}, < o0) and (taglh = nuil)) 7

for each j € (N — i) |k:s;
f i call Update(j, k)
if (pL .5 =1 or tagl = correct) call Send
then tag® + correct; end
7 Procedure Link_Change (i, k, d;)
when d;j changes value do begin

H
— .
do x Pr ons

else tag’ «— error;

if (tagl = correct) old +— d;p; d;; + new link cost;
7 for each j € N — i do begin

then begi
en begin call DT (5, k);

if (DY # DT, i i
M (DL # DTy 0T Py # 75 ) if (D} > DI, +d;) then begin
. i
then add (0, 5, DTpin, Py, ) tagl «— null;
to LIST;(z) Vz € Nj; )
i i i i call Update(s, k)
D} — DTppini 05 = 2} .5 5% — ns; ond
end else begin
else begin if (k = s;) call Update(j, k)
if (D! < o0) end
then add (0, 7, oo, null) end
to LIST;(z) VY € Ny; call Send
DY +— oo; pb +— null; end
7 7 Procedure AU (j, k)
sk nu; begin )
end if (k = s%) then
end 13 z 13 T 13
Procedure Link_Up (i, k, d;x) Dy Do+ dins Py = Pyys
when link (i, k) comes up do end
begin Procedure DT (j, k)
d;j, +— cost of new link; begin
if (k @ N) then begin Dl — RD;;; Ph = ,p;;;
N — N U {k}; tag; + null; for each neighbor b do begin
D} «— oo; FD} + oo; h — 3;
4 . . i H
py — mully s} — null; i (p), # null)
for each = € N; do begin
do call Init2(z, k) while (h # i or k or b)
end do h «— p! ;
N; — N; U {k}; if (b = k) then
for each j € N do i i ki k
. Dt D RDk; pt s
call Init2(k, j); o T Prp T 7 Py T TR
for each j € N — k | D! < oo do end
7€ Ip; < if (b = i) then
L opi i
add (0, j, D Pj) to LIST;(k); D« ooj pl, — null;
call Send ena 7
end end

Figure 2: LPA Specification (cont...)
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Figure 3: Updating Mechanism
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Figure 5: Example of LPA’s Operation
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Figure 6: Loop in G



Table 1: Simulation Results for ARPANET

Parameter BPFA LPA DUAL ILS
mean | sdev mean | sdev mean | sdev mean | sdev
|| Link Failure
Event Count 962.1 392.9 587.3 | 381.5 720.9 | 449.1 160.0 0.0
Packet Count 96.5 45.9 126.1 | 59.8 266.8 97.3 158.0 0.0
Duration 7.16 1.75 9.24 3.39 15.1 3.45 8.5 0.74

Operation Count || 843.90 | 594.5 || 385.6 | 190.8 || 813.9 | 449.1 || 25600.2 | 57. 121

|| Link Recovery

Event Count 638.2 | 370.3 || 2424 | 112.8 || 362.2 | 147.6 162.7 15.4

Packet Count 108.6 48.9 33.0 | 255 79.3 21.3 160.7 15.4

Duration 6.89 1.51 5.96 | 2.75 7.3 1.46 7.84 0.67
Operation Count || 1144.9 | 620.1 || 213.2 | 56.4 454.2 | 147.6 || 26900.8 | 2477 .9

|| Router Failure

Event Count 1350.8 | 373.8 || 646.5 | 424.4 || 1050.4 | 300.8 218.8 67.1

Packet Count 96.6 75.9 144.7 | 55.3 382.6 | 81.2 2121 65.1

Duration 5.4 3.4 9.12 2.4 17.8 9.2 8.6 0.72
Operation Count || 1803.8 | 407.4 || 589.5 | 271.3 || 1320.8 | 563.5 || 33356.7 | 10 766.2

|| Router Recovery

Event Count 980.4 | 699.7 | 551.6 | 296.4 || 691.9 | 235.5 301.2 45.3

Packet Count 107.2 80.1 68.06 | 42.03 || 207.9 | 46.7 294.5 42.9

Duration 5.27 2.56 778 | 3.33 8.5 0.73 9.6 1.14
Operation Count || 3252.0 | 1911.5 || 542.0 | 224.4 || 957.6 | 347.3 || 50102.2 | 79 30.4
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Figure 7: ARPANET Link Failure

70



MESSAGES

250 T T T T T T

LPA

DUAL +

ILS =
200 r 1

o o Q [
150 1 1
100 1
50 [ 1
0

0 10 20 30 40 50 60
LINK RECOVERIES

Figure 8: ARPANET Link Recovery
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Figure 9: ARPANET Node Failure
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Figure 10: ARPANET Node Recovery
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