A Multifaceted Approach to

Understanding the Botnet

Phenomenon

Moheeb Abu Rajab Jay Zarfoss

Fabian Monrose Andreas Terzis

Computer Science Department
Johns Hopkins University

ABSTRACT

The academic community has long acknowledged the existnce
malicious botnets, however to date, very little is known whibe
behavior of these distributed computing platforms. To thstlof
our knowledge, botnet behavior has never been methodistlty
ied, botnet prevalence on the Internet is mostly a mysteny,the
botnet life cycle has yet to be modeled. Uncertainty abourds
this paper, we attempt to clear the fog surrounding botngtsoh-
structing a multifaceted and distributed measurementgtfuc-
ture. Throughout a period of more than three months, we used t
infrastructure to track 192 unique IRC botnets of size ragdiom

a few hundred to several thousand infected end-hosts. Gultse
show that botnets represent a major contributor to unwahted
ternet traffic—27% of all malicious connection attemptsesbed
from our distributed darknet can be directly attributed tiriet-
related spreading activity. Furthermore, we discovereédence of
botnet infections in 11% of the 800,000 DNS domains we exam-
ined, indicating a high diversity among botnet victims. dalas a
whole, these results not only highlight the prominence dhbts,
but also provide deep insights that may facilitate furtlesearch to
curtail this phenomenon.

Categories and Subject Descriptors

D.4.6 [Operating System$: Security and Protection+avasive Soft-
ware

General Terms
Security, Measurement

Keywords

Botnets, Computer Security, Malware, Network Security

1. INTRODUCTION

Despite the fact that botnets first appeared several years ag
they have only recently sparked the interest of the resezwof
munity. The termbotnetsis used to define networks of infected

Permission to make digital or hard copies of all or part of thiork for

personal or classroom use is granted without fee providatidbpies are
not made or distributed for profit or commercial advantage #yat copies
bear this notice and the full citation on the first page. Toycotherwise, to
republish, to post on servers or to redistribute to listquies prior specific
permission and/or a fee.

IMC’06, October 25-27, 2006, Rio de Janeiro, Brazil.

Copyright 2006 ACM 1-59593-561-4/06/001055.00.

end-hosts, callethots that are under the control of a human op-
erator commonly known as khotmaster While botnets recruit
vulnerable machines using methods also utilized by otheesses
of malware €.g.,remotely exploiting software vulnerabilities, so-
cial engineering, etc.), their defining characteristichie use of
command and contralC&C) channels. The primary purpose of
these channels is to disseminate the botmasters’ commautiasitt
bot armies. These channels can operate over a variety a€&lpg
network topologies and use different communication meisinas,
from established Internet protocols to more recent P2Fopais.
However, the vast majority of botnets today use the InteReday
Chat (IRC) protocol [13] which was originally designed tarfo
large social chat rooms.

While other classes of malware were mostly used to demdastra
technical prominence among hackers, botnets are predattyna
used for illegal activities. These activities range frontogtion of
Internet businesses to e-mail spamming, identity thett sarfitware
piracy. Unfortunately, even with the substantial increimskotnet
activity witnessed over the past few years, little is knovenut the
specifics of this malicious behavior. For instance, questiper-
taining to the prevalence of botnet activity, the numberitiécent
botnet subspecies (and how they can be behaviorally cateddr
and the evolution of a botnet over its lifetime, abound.

This paper presents the results of our effort to addresg tipess-
tions. We argue that a thorough and complete understandiiso
problem calls for a multifaceted measurement approachthBur
more, we believe that this approach must capture the behant
impact of botnets from multiple viewpoints. In that regattds pa-
per makes two key contributions, naméfy) the development of a
multifaceted infrastructure to capture and concurrentigk mul-
tiple botnets in the wild, an{R) a comprehensive analysis of mea-
surements reflecting several important structural and\dera as-
pects of botnets. The infrastructure we developed syrthesnul-
tiple data collection or “sensing” techniques, includingtdbuted
malware collection points to capture botnet binaries, IRE€Kking
to gain an insider perspective of the behavior of live batpand
DNS cache probing to assess the global prevalence of botets
were able to observe more than two hundred botnets and kyctive
track more than a hundred long-lived ones over a period ofemor
than three months. By cross checking the multiple views aeghin
by the different sensing techniques we reveal a number cibeh
ioral and structural features of botnets not previouslyoregd in
the literature.

The remainder of the paper is organized as follows: Section 2
provides background information on botnets and highligineschal-
lenges associated with botnet detection and tracking. \&sepit
the approach we developed to infiltrate large numbers ofdistn
in Section 3, and describe a novel approach for extractifg-in

mation from the malicious binaries collected using ourrdisted
infrastructure. Section 4 presents the analysis of thectdt data.
Related work is presented in Section 5. We conclude in Seétio

2. BACKGROUND

A botnet is a group of infected end-hosts under the command
of a botmaster. Figure 1 illustrates the various stages iypa t
cal botnet life-cycle. Botnets usually commandeer newivisty
remotely exploiting a vulnerability of the software rungion the
victim. Botnets borrow infection strategies from sevetabkses of
malware, including self-replicating worms, e-mail virgsetc. In-
fections can also be spread by convincing victims to run sfome
of malicious code on their machines.g., by executing an email
attachment).

Once infected, the victim typically executes a script (knoas
shellcodg that fetches the image of the actual bot binary from a
specified locatiort. Upon completion of the download, the bot bi-
nary installs itself to the target machine so that it stau®mati-
cally each time the victim is rebooted.

Botmaster
IRC 5. Commands
-
Server(s)
/ DNS
Server
Botnet
% 5. Commands

2. Bot
Download

j)

3. DNS Lookup (*)

1. Exploit
Vulnerable
Host

Figure 1: The life-cycle of a typical botnet infection. Steg with
enclosed asterisk are optional.

As mentioned earlier, the defining characteristic of batrst
manifested by the fact that individual bots are controlledoom-
mands sent by the network’s botmaster. The communicatian-ch

Using a DNS name instead of a hard-coded IP address allows the
botmaster to retain control of her botnet in the event thattirrent

IP address associated with the DNS name of the IRC server gets
black-listed.

Once the IP address of the IRC server is available, the bot at-
tempts to establish an IRC session with the server and jbias t
command and control channel specified in the bot binary. Gene
ally speaking, the bot-to-IRC server communication reggliany
combination of three types of authentication. First, a le#ds to
authenticate itself to the IRC server using B&SS message in or-
der to successfully begin the IRC session with that senecofd,
botmasters normally protect the command and control cHavitte
a password and hence require the bot to authenticate itsfefeo
joining. The passwords corresponding to these two autteitin
phases are contained in the bot binary and authenticationaily
takes place in the clear. The third type of authenticatiohictv
is not part of the IRC protocol, requires the botmaster tdeix
ticate herself to the bot population before she is able teeismy
command. While the first two authentication steps are irgdrtd
thwart outsiders from joining the C&C channel, the last autit
cation phase aims to protect bots from being overtaken bgroth
botmasters attempting to seize control of fledgling botnets

Once the bot successfully joins the specified IRC channau-it
tomatically parses and executes the channel topic. The tapi-
tains the default command that every bot should executeefitp
ing on the channel mode set by the botmaster, botghtbe able
to “hear” all messages exchanged on the channel. This bastadc
behavior of IRC channels is a design feature that makes tfe IR
protocol suitable for supporting large-scale chat roomss we
show later, broadcast via the C&C channel is an invaluablecso
of insider information about the activities and capatabtiof some
botnets. While convenient, one cannot rely on this featoréenfor-
mation extraction, since in some cases, IRC servers digadither
to reduce “chatter” or to limit communication overhead.

The steps described so far are shared among all IRC-based bot
nets. The degree of commonality however ends here; diffé@n
nets express the set of the commands and responses exchaaged
tween the botmaster and her bots as extensions on top ofahe st
dard IRC protocol. While the syntax of these commands fottosv
same general structure, they do vary across different kotidis
variability is primarily a result of botmasters’ desire tpéerson-
alize” their bots, and in doing so, complicate the task ofkiag
these botnets in an intelligent manner. Moreover, the teperof
available commands elicit a wide variety of responses, lwiic

nel used to issue commands can be implemented using a varietyturn, greatly complicates the classification of botnet baira.

of protocols é.g, HTTP, P2P, etc.). However, the majority of bot-
nets today use the Internet Relay Chat (IRC) protocol [13e T
IRC protocol was specifically designed to allow for seveaahfs
of communication (point-to-point, point to multi-pointice) and
data dissemination among large number of end-hosts. The-inh
ent flexibility of this protocol, as well as the availabilibf several
open-source implementations, enables third parties tenexit in
ways that suit their needs. These features make IRC theqmioto
of choice for botmasters, as it simplifies the botnet impletaton
and provides a high degree of control over the bots. Thezefor
the rest of this paper, we focus our attention to IRC-baséndte
since IRC is the prominent botnet control mechanism in ugayto
Upon initialization, each bot attempts to contact the IR@ee
address given in the executable. In many cases, this stepesq
resolving the DNS name of the IRC server (Step 3 in Figure 1).

"We observed that botnets using random scanning to spread, us
ally serve the bot binary from the same machine that expldie
remote vulnerability in the first place.

3. MEASUREMENT METHODOLOGY

As Figure 2 illustrates, our data collection methodologgan-
passes three logically distinct phasé$) malware collection(2)
binary analysis via gray-box testing ar(@) longitudinal tracking
of IRC botnets through IRC and DNS trackers.

The goal of the malware collection phase is simply to coléect
many bot binaries as possible. However, developing a Seaadn
robust infrastructure to achieve this goal is a challengiraplem
in its own right, and has been the subject of numerous relsearc
initiatives (.g, [20, 23]). In particular, any malware collection in-
frastructure must support a wide array of data collectiodpamts
and should be highly scalable. Additionally, special measmust
be implemented to prevent any part of the system from paetei
ing in malfeasance. Our system design and implementatiaw dr
on experience learned from earlier work [1, 2, 10, 19, 20, B8}
include several additions that are unique to our goals. latvdi-
lows, we discuss the specifics of our infrastructure.

Honeynet —
[y | ——
S [SEEENE ‘

MNepenthes ! i W™ |
| i Whiwara
. n il < il
o IR - i I 'I |
= % =S
l" | | I VMware
i = j %
. Distributed g Downioad station ! - i
. darknet | £ . L i traces
o " binaries 4
: : - a . g 'J -~
ONS procer DNS names
- <o template + i, o
S .. S 5
IRC tracker | :
i S |
| o Ca] Ca] rl—-H | - — = |
| I | I Ll YRl e — v o
AJL AN \Q.E'--V ALY jRoseer B |
e —aaalig =T — Botware analysis
Drones L N
binarias

Figure 2: Overall data collection architecture.

MALWARE COLLECTION. As we show later, a significant portion
of botnet-related spreading activity is localized, taimgtcertain
parts of the IP space. Any single vantage point is thus likely
miss substantial portions of such scanning activity. Wenafit to
minimize this undesired effect by deploying our collectinchi-
tecture on a conglomeration of distributed darkrfet¥his collec-
tion includes a large locally deployed darknet and 14 disted
nodes using the PlanetLab testbed [18]. These nodes hagssacc
to darknet IP space located in ten different /8 prefixes.

In this distributed darknet, we deploy a modified versiontaf t
nepent hes platform [2]. In shorthepent hes mimics the replies
generated by vulnerable services in order to collect the dtegge
exploit (typically a Windows shellcode). In the case of tharfet-
Lab nodes, several modificationsnepent hes were necessary.
For one, these nodes are setup to deliver traffic destindbtdark-
net as raw packets through a spegabxy interface. However,
sincenepent hes does not support raw sockets, packet transla-
tion is required to transform the raw packets and inject thera
local tunneling interface. To do so, we configuregpent hes to
bind to the tunneling interface using regular sockets andive the
packets via a translation module writtenGhi ck [15]. Moreover,
since PlanetLab nodes do not allow user-level processesdad
privileged ports, th&ll i ck module also performs port translation.
The process is shown pictorially in Figure 3.

To prevent excessive downloads from “heavy hitters” retjues
ing the same URL multiple times, we disable the on-line doadl
modules imepent hes. This precaution also helps curtail reflec-
tion attacks. To retrieve the binaries, we instead genexdits of
the URL targets to be downloaded, and send this list to a machi
designated this task. This download station, filters theienin
the received list and extracts the unique sources and URLk. A

2The term darknet is used to denote an allocated but unusédmpor
of the IP address space.

PlanetLab Node

s|npow 1N 21D
sayuadaN

I

/dev/tun

«—>

> olel] Jawjeq

proxy

Figure 3: PlanetLab configuration.

previously unseen URL targets are subsequently downloaded

Additionally, to complement the role afepent hes, we make
use of a honeynet. The primary reason for doing so is to ensure
catching exploits missed byepent hes. These failures are most
likely due to the responder’s inability to mimic unknown &ip
sequences or to parse certain shellcodes. Currently, mayinet is
composed of a number of honeypots running unpatched iresanc
of Windows XP in a virtualized environment [21]. Each honetyp
instance is assigned a static private-space |IP addressepaeate
VLAN. Infected honeypots are allowed to sustain IRC conioast
with unique botnet IRC servers until the virtual machines -
imaged. At that point, all suspect binaries are retrievectm-
paring the disk contents of the virtual machine to a cleanddfivs
image. As with the binaries collected by the respondersbiha-
ries retrieved from the honeynet are also sent to an anaygjigme
for graybox testing (discussed in Section 3.1).

GATEWAY . The gateway supports a myriad of functions, key among To aid the analysis, we isolate part of our private networkdo-

those being to route darknet traffic to various parts of theriral
network. In our current setting, the gateway forwards tcadfies-
tined to eight /24 prefixes from the local darknet. The seetdcted
prefixes is automatically rotated every day to ensure fullecage

of the darknet. At present, half of the monitored prefixesdire
rected to the local responder, and the other half to the hwatey
In order to keep the number of required honeypots small, vee us
Network Address Translation (NAT) to map each honeypot #® 12
external darknet IP addresses. The use of NAT also reduces ma
agement overhead as the IP addresses of the honeypots ridsed no
changed each time the address space is rotated.

tain a server (configured as a sink for all network traffic) and
virtualized client machine. Each collected binary is exedwn a
clean image of Windows XP instantiated as a virtual machime o
the client. All network traffic is logged during the inspextipe-
riod, and the following actions are performed:

Phase 1: Creation of a network fingerprinSince the server acts
as a network sink, any network activity initiated by the sapd
malware will be detected. Moreover, as each new instancg run
within a clean image of Windows XP, any benign network atyivi
can be easily filtered. The traffic logs are automaticallycpesed

The gateway also serves as a firewall whose main task is to pre-to extract a network fingerpring,..: = (DNS, IPs, Ports, scan),

vent the honeypots from engaging in any outbound attacks-or i
fecting each other. Cross-infections among honeypotseigemted

by configuring each honeypot on a separate Virtual LAN (VLAN)
and terminating any traffic across VLANSs at the gateway. Tite fi
wall prevents abuse by rate-limiting any allowed outbouodnzc-
tions and blocking all outbound traffic on popular vulneeapbrts
(e.g, 135, 139, 445). All remaining outbound traffic is queued to a
detection process that is configured to allow infected hpotsyto
follow the typical infection sequence outlined in Section 2

Specifically, we exploit the fact that bots continuousleatpt to
contact their IRC servers and run an IRC detection moduleeat t
gateway. This module is implemented as an extension to_gmore
[16], and its main function is to detect and manage the IRC con
nections. In short, we issue3¥YN- ACK for the first connection
attempts from the honeynet; once a connection is establighe
detection module searches the application-level trafficéonmon
IRC protocol strings used during the server handshalg NI CK,

JO N, USER). After a valid IRC connection attempt is witnessed,
the detection module establishes a record for that IRC aessid
sends &RST to the originating honeypot. When the honeypot sub-
sequently attempts to reconnect, the connection is allawexio-
ceed to the actual IRC server—subject of course, to ratditigi
Note that sincall outbound connections are analyzed at the appli-
cation level, we can detect IRC traffic on non-standard IR@spo
as well.

Several additional measures were implemented to maxirhize t
information gain from our infrastructure. For instancee ttie-
tection module only allows one honeypot to connect to a parti
ular IRC server at any point in time. Since our honeypots run
on resource-limited virtual machines, having multiple weae in-
stances running on a honeypot is destabilizing. To avoglpghdb-
lem, the gateway detects when a honeypot has been infectéd, a
dynamically inserts rules to block further inbound attaeific to-
wards that honeypot.

Lastly, the gateway performs several miscellaneous cbatrd
management tasks for different components of our architect
These tasks include triggering periodic re-imaging of tohedy-
pots, loading clean Windows images, pre-filtering and adifiinc-
tionality for the download station, and running a local DNSver
to resolve DNS queries from the honeypots.

3.1 Binary analysis via graybox testing

We use graybox analysis to extract the features of susgdicu
naries (regardless of the mechanism by which they wereatelii.
The analysis spans two logically distinct phases perforomedn
isolated network segment. The first phase is aimed at dgriain
network fingerprint of the binary under scrutiny, while thezend
attempts to extract its IRC-specific features. Since nonihese
actions use debuggers, disassemblers, or other intezdotils tra-
ditionally used in binary analysis, both phases are easilyraated.

representing the targets of any DNS requests, the destm@
addresses, the contacted ports (and protocols), and wiethet
default scanning behavior was detected, respectively. éfiealde-
fault scanning behavior as any attempt to contact more thae-a
determined threshold of (=20) distinct destinations on the same
port during the monitored period. At present, this stage$adp-
proximately six minutes to complete per binary, includihg time

to reload the virtual machine.

Phase 2: Extraction of IRC-related featuregVhile the previous
phase extracts the network-level characteristic of an awknbi-
nary, the goal of the second phase is to identify the binaap's
plication level behavior. To extract IRC-related features in-
stantiate a modified version of the UnreallRC daemon [22]hen t
network sink. This IRC server listens on all ports ever obadr

in the network fingerprint created during Phase 1. This isdamp
tant as it is common to observe IRC connections on non-stdnda
ports. As before, a clean image of Windows XP is loaded be-
fore inspecting the binary at hand. When an IRC connection is
detected, our modified server creates an IRC-fingerpjfipt, =
(PASS, NICK, USER, MODE, JOIN), representing an initial pass-
word to establish an IRC session with the server, the forrhtte
nickname and username chosen by the bot, the particularsnode
set, and which IRC channels are automatically joined (wétpa
ciated channel passwords). Taken togetligs; and f;.. provide
enough information to join a botnet in the wild. However, ider

to mimic an actual bot behavior we need to learn the botnéeli's “
alect” (.e., the syntax of the botmaster's commands as well as the
corresponding responses sent by the actual bot).

In order to learn a botnet “dialect” we make the bot connect to
our local IRC server. Once connected, the bot is forced irde-a
fault channel. Next, an IRC query engine is dynamically kzhd
From that point, our query engine essentially plays the ofla
botmaster. That is, for a given bot, we learn how to correatignic
its behavior in the wild by subjecting it to a barrage of conmaiz
This set of commands includes all the IRC commands that vge ori
inally observed in our honeynet traces as well as the command
extracted from the publicly available source code of knowitsb
analogous to the analysis in [3].

The observant reader may wonder how the query engine can co-
erce the bot into communicating since the query engine mageao
able to authenticate itself to the bot. As we noted earliefimas-
ters must generally authenticate themselves using a umgss-
word beforethe bot will be responsive [19]. This authentication
information can be automatically extracted from the ibthe bot
was observed on a honeypot. Fortunately, in the cases whéogn
exists, we can coerce these bots into communicating withaua v
very simple tactic: the standard behavior of IRC-based sote
parse the server's channel topic messagelL(TOPI C) [13] and
execute its instructions, with no authentication. This omand is

normally only sent when a bot first joins a channel, and rugiin
structions from this command allows the botmaster’s migitm

DNS servers in order to infer the footprint of a particulartriet,
defined here as the total number of DNS servers giving cadke hi

become productive as soon as they connect to the C&C server.A cache hitimplies that at least one client machine has gdetie

Hence, we modified our IRC server to allow the query engine to
sendRPL_TOPI C notifications on the fly. Bots accordingly parse
and execute the commands, without the need for authemticati
any requirement to restart the virtual machine instance.

The output of the querying process is a command-respiame
plate that captures the “dialect” of the bot. This template isfate
fed to our IRC tracker (discussed shortly). This learningpo-
nent is a core part of our architecture, and allows for a #igal
longitudinal study of botnet dynamics.

3.2 Longitudinal Tracking of Botnets

As Figure 2 indicates, we track botnets in our study by two in-
dependent means: an “insider’s perspective” made posbiblke
custom lightweight IRC tracker and by probing DNS cachessgr
the globe. The underpinnings of each method are discussed.be

3.2.1 IRC Tracker: A Look From Within

The IRC tracker (also called droné is a modified IRC client
that can join a specified IRC channel and automatically andive
rected queries based on the template created by the gragbiixg
technique. Specifically, given the fingerprifit.. and a template,
the IRC tracker instantiates a new IRC session to the acR@l |
server. At this point, the drone operates in the wild, andgmés to
dutifully follow any commands from the botmaster, and pd=as
realistic responses to her commands. Clearly, our IRC émack
need to be intelligent enough that they appear as respoasde
powerful bots—otherwise, our drones may be exempted from pa
taking in interesting behaviors. In order to appear as reglassi-
ble, several non-trivial tasks must first be accomplishethdithe
template generation phase.

First, traffic must be “filtered” so that inappropriate infioation
is not included in the template. This filtering is performadaa
matically while the actual bot software is executing. Foaraple,
computer statistics such as memory and disk space are ahémge
resemble values consistent with the hardware and softyeefs
cations of a real machine. Second, and more importantlyjynath
bot software is statefull. Hence, a command, for examplstdp a
scan will usually result in a different reply depending orettter or
not scanning was already running. To address this, the IREEyqu
engine exposes the different responses by issuing setswhaads
that require statefull responses in varying combinatiorise IRC
tracker is designed to mimic these state changes when ittlsein
wild so that it responds appropriately.

The efficiency of our approach allows us to run a large number
of drones on a single machine. To improve our mimicry, the IRC
tracker joins and leaves the tracked channels at randonvarsé
Once a drone’s staying interval expires, that drone ledwesérver
for a random interval (of no more than 10 minutes) after which
it restarts and rejoins the same channel under a differest s
that follows the naming convention inscribed in the tenglain
addition, due to the address translation occurring at thevgsy,
each newly instantiated drone is assigned a different eatdP
address.

3.2.2 DNS Tracking

We gain a second perspective by exploiting the fact that most
bots issue DNS queries to resolve the IP addresses of th€ir IR
servers. Specifically, we probe the caches of a large number o

SCurrently set to 2 hours with a randomized maximum drift
of 25%.

DNS server within the lifetimeTTL) of its DNS entry. While DNS
cache probing has been used recently for a number of purposes
9, 14], we are not aware of any prior effort that used cachbipmp
to infer a botnet’s footprint.

Our original list of 1.6 million DNS servers, denoté&?l was ob-
tained by collecting th&\S records of the DNS domains extracted
from a large list of crawled URLs [17]. The list was then subj®
a number of sanitization steps. First, we filter all name eerfor
sensitive Top Level Domains (TLDsg@. - gov, . m |). Next,
we apply additional filtering to check the consistency ofreaame
server's replies. Namely, for each serverIn we send two con-
secutive DNS queries for an existing known DNS name and gispe
the replies. The firstis a recursive query that forces the B&iSer
to resolve the query completely. The second query is sehttivé
recursion flag turned off to elicit a local answer from thevees
cache. We compare the replies for consistency and alsoavalid
that the value of thdTL field in the second response is smaller
than the one in the first response. All the servers that failafn
these checks, as well as those that did not respond to ouieguer
are removed from the list. At the end of this process we aite lef
with ~ 800,000 name servérsdenotedD, which we use as our
master list.

The DNS probing experiments are then carried out from a num-
ber of machines assigned this task. Each DNS name of a newly
detected IRC server is added to the list of servers to be probe
denoted here a&. For a given IRC server € 7, we probe the
caches of all DNS servers i and record any cache hits. We
deliberately set a low querying rate so that no DNS servenis u
duly burdened. The average probing rate for a single DNSesésv
about 20 queries per day. More recently detected IRC searees
are given priority and are queried more frequently.

Clearly, the number of cache hits for any entryZnis a lower
bound on its true DNS footprint. The discrepancy is due to the
fact that we will only be able to record a cache hit if a bot made
lookup query to its local DNS server, and that entry was cdcte
the time of our probe. Additionally, a cache hit only indiesithat
at least one bot issued a DNS query for that IRC server, but doe
not reveal how many bots actually queried the name servérinwit
the TTL. Finally, even though the list of DNS servers we quisry
large, it is only a subset of the total number of nameserverthe
Internet. With these caveats in mind, we consider the DN8ipgp
results as a mere indication of the relative footprints ey dif-
ferent botnets. As we show later, although the results ddritom
DNS probing are course grain, DNS probing provides an ingudrt
secondary avenue for tracking botnets that disable thedbssa
feature on their IRC channels.

4. RESULTS AND ANALYSIS

In what follows, we present the results and lessons learged b
integrating information from the various data collectidmanels
presented in the previous section. We report on data thatanted
collecting on 2/1/2006 and includg) traffic traces captured at our
local darknet over a period of more than three mon(23,IRC
logs gathered over the span of three months—covering daia fr
more than 100 botnet channels either visited by our IRC &lack
or observed on our honeynet, a(®) results of DNS cache hits
from tracking 65 IRC servers for more than 45 days. Unlikespre

1A handful of servers were also removed after requests fragir th
respective network operators to not participate in theystud

ous botnet-related studies.§, [5, 6]), we focus on correlating the
results from these viewpoints in order to gain a deeper stded-
ing of botnet activity in general. Therefore, whenever alile,
we cross-reference measurements acquired from differeasuore-
ment techniques to provide a more complete picture of thes ph
nomenon.

4.1 Prevalence of the Botnet Phenomenon

In order to provide a high level view of botnet prevalence, we
highlight the contribution of their spreading activity tioet overall
unwanted traffic received at our darknet space. In particwe
examine to what extent the traffic received at this viewpoart be
attributed to botnets spreading activity. Additionallye wrovide
cumulative statistics from our DNS probes showing the totah-
ber of potentially infected networks as well as how thesevogks
are distributed among the top-level domains.

4.1.1 Botnet Traffic Share

Figure 4 shows a two week snapshot of the total incongty
packets to our local darknet versus those originating frarovkn
botnet spreaders. Simply speaking, a botnet spreader iscamge
that successfully completed an exploit transaction thiweted a
bot executable. We extract these botnet spreaders fronraftict
traces by mapping all collected bot binaries to the soutcasde-
liver them. This traffic most likely represents botnets stag to
find new victims.

A number of immediate observations can be inferred from Fig-
ure 4. For one, a rudimentary count of the total numbeBg%N
packets shows that 27% of the incomingSYNs can be attributed
to known botnet spreaders. If we consider the traffic dicbdte
target ports commonly used by botnet spreaderg, (135, 139,
445, 3127), then the total share increasesa@. Of course, it is
well known that a wide variety of non-botnet related malwarech
as worms, may also target these ports, so the precise bodffet t
share can not be easily determined. However, it is intergghat
many of the peaks in the total traffic are synchronized withkge
in the botnet-related traffic.

A closer look at one of these peak periods, shown in Figure 5,
clearly shows a distinct alignment between traffic corresiirag to
known botnet spreaders and all the traffic received at thiengér
Upon further examination of the darknet traces, we fountirtiae
than90% of all the traffic during that peak targeted ports used by
botnet spreaders. Additionally, for the sources that sexed in
sending exploit shellcode, we also examined the activeoretgy
logs for similarities among the downloaded exploits. lagtingly,
more than70% of the sources during peak periods sent shell ex-
ploits similar to those sent by the botnet spreaders. Sipédtterns
were also observed in the traffic traces collected from tlzn&tt
Lab nodes. While these results do not provide an accurataast
for the overall botnet traffic, the amount of botnet-related traffic is
certainly greater thad7%.

4.1.2 Botnet Prevalence: A Global look

To provide a broader view of the scope of botnet activity, we
present the cumulative results of our DNS probing experisien
Over the duration of the monitored period, we tracked cadisddr

1le+06 T T T T T T

All Traffic
Botnet Spreaders

100000

10000

1000

Number of incoming SYN packets (per 10 min.)

o ik |t A
04/21 04/23 04/25 04/27 04/29 05/01 05/03 05/05 05/07 05/09 05/11 05/13
Time

Figure 4: Time series of incomingSYN packets to the darknet.

1e+06 T T T T

All Traffic -
Botnet Spreaders

100000

10000

1000

Number of incoming SYN packets (per 10 min.)

00
04/25 04/25 04/26 04/26 04/27

Time

04/27 04/28 04/28 04/29

Figure 5: Zoomed view showing synchronized peaks.

our dataset are forcomdomains, and32% of the overall DNS
cache hits were from name servers in that TLD. Moreo26f%

of the. comservers (in our data) had at least 1 cache hit. Inter-
estingly, although the total fraction of servers from then TLD

is small 0.2%), 95% of these servers (that is, greater than 1500)
showed evidence of botnet activity for the clients they seffvig-

ure 6 depicts examples of the widespread presence of bathet a
tivity on the Internef The mapping of IP address to geographic
location is based on the IP2Location dataset [11], whiled#rézed
locations are displayed using the GoogleMabsPI. In the sec-
tion that follows we illustrate the size and the evolutionOiIS
footprints for individual botnets.

4.2 Botnets Spreading and Growth patterns

As noted earlier, botnets use a variety of means to spread and
recruit new victims, including (but not limited to) email elv and

a total of 65 IRC server domain names. From the 800,000 probed active scanning to exploit vulnerable services. Scanrsrigyifar

servers, 85,000 (or 11%) were involved in at least one botnet
activity.?

Table 1 presents a breakdown of the top level domains fortwhic
botnet activity was detected. For exampé% of the servers in

SWe consider hits from the primary and secondary nameseofers
the same domain as a single hit.

the most prevalent spreading mechanism. Unlike traditimoams
that exhibit a monotonic scanning behavior, botnets ekbibhav-
ior that varies across different classes of botnets as wekt@po-
rally for a single botnet. For the most part, botnets obskimehe

SAdditional maps can be found &ttt p: // hi nrg. cs. j hu.
edu/ bot nets/.

Fraction of | Percentage of Normalized

TLD | svrs probed| all cache hits hit ratio
.com .55 82% 29%
.net 134 5.5% 8.1%
kr .015 3.2% 40%
.org .037 2.4% 13%
.cn .002 0.9% 95%
.ru .017 0.6% 7.3%
.de .016 0.48% 6%
.edu .01 0.4% 8%
.ro .004 0.32% 0.4%
Jp .022 0.25% 2.2%
other .21 4.45% N/A

Table 1. TLD statistics of DNS servers supporting clients in
volved in at least one botnet.

Toorang
Russia

Canata Kinggom:

Unitéd States e Turkey

North v
Atiantic Ocean 113, jran A
e

s M| Ubya Tegypth s
Arabia

Indian
Ocean

Australia

Figure 6: Geographic location of the DNS cache hits for one of
the tracked botnets. The star indicates the location of theRC
server.

wild can be grouped into two broad types) (vorm-like botnets
that continuously scan certain ports following a specifigea se-
lection algorithm andI() botnets with variable scanning behavior.
In the second case, bots are equipped with a number of sgannin
algorithms €.g, uniform, non-uniform, localized) and only scan
after receiving a command over the command and control @&ann
Of the 192 IRC bots we captured, 34 were Typéd.[exhibited
a worm-like behavior). Upon infection, a bot of this type imm
diately starts scanning the IP space looking for new victird-
ditionally, these bots initiate connections to a hard-cbtist of

identify their activity with high accuracy.

Table 2 summarizes the most common scanning practices used
by Type-Il botnets. As the table shows, localized and naferm
scanning are the predominant scanning techniques. Whemaket
ters become active, 28% of their commands are scan relatgd. B
contrast, 80% of the time, the default channel topic is tmnsca
Approximately 85% of the botmaster-issued scan commands are
targeted to a specific prefix /8 or /16 prefix. Additionally,tice
that most of the targeted scanning activity is aimed at /8voet
prefixes, while the localized scanning mostly targets tlvall616
subnet of the victim. Finally, we note that bots are equippét
a set of flexible options to fine tune their scanning activithiese
options include choosing the target vulnerability, thensdag rate,
the number of threads to use, the number of packets to setithan
duration of scanning. This flexibility produces heterogarebot-
net growth patterns that are distinct from those created tyms
or Type-I botnets.

Default | Botmaster
Topic | Command
Localizedscanning| 66% 15%
-Class A 11% 18%
-Class B 89% 82%
Targetedscanning 32% 87.4%
-Class A 80% 88%
-Class B 20% 12%
Uniform scanning 2% 0.3%

Table 2: Breakdown of scan-related commands seen on tracked
botnets during the measurement period.

We use two approaches to examine the different growth pestter
observed in botnets. First, we plot the cumulative numbendjue
DNS cache hits for individual botnets over time. Figure 7vgfio
examples of three predominant growth patterns extractad fsur
data. As the graphs indicate, footprint growth exhibitéadént pat-
terns across different botnets. To better understand plesshuses
behind such patterns, we cross reference each growth pattdr
the corresponding inside behavior learned from the IRCktac
By correlating the two traces, we noticed that botnets wiimis
exponential growth patterns (Figure 7.a) exhibit persistandom
scanning activity that does not change over time—for exanfpr
one of the botnets the topic of the channel was set to randomly
scan port 445 indefinitely, and remained unchanged for oxer o

DNS names corresponding to IRC servers (some of which may be month. This growth pattern is more closely related to thatofm

public). We found that all these IRC servers and/or the cann
the bots tried to join were unreachable—either becausetthene|
was banned by the public IRC server, or because the DNS name di
not resolve to a valid IP address. However, due to their entel
ing scanning activity, the infected population of such wdike
botnets continue to grow over time, and may become fairlgdar
in size. Indeed, Dagost al. [6] reported botnets exhibiting this
same behavior with a footprint of up to 350,000 infected nraeh
Finally, because the IRC servers corresponding to Typetidie
were for the most part unavailable, they were exempted fram o
DNS probes.

infections, which is a direct result of their monolithic spding
behavior.

Figure 7.b shows another common pattern representativetef b
nets with intermittent activity profiles. For example, Betrll
from that figure corresponds to a botnet that infected ourefion
pots on3/ 13/ 2006, after which the IRC server went down for the
period betweerd/ 12- 4/ 30/ 2006. Shortly after the IRC server
becomes available, the growth slope drastically increasésour
the honeypots were re-infected by the same botnet. Fintléy,
third growth behavior shown in Figure 7.c was generally obsg
in botnets using time-scoped scanning commands targgiewfic

Type-Il botnets are the more prevalent class seen today. Thenetwork prefixes as opposed to continuous scanning usiagjized

associated bots do not scan by default, but instead waitofmes
command. As such, the majority of our analysis is focusechan t
class. Such botnets are much more difficult to track due tw the
intermittent and continuously changing behavior. Thishhidluid
nature also complicates the task of generating signathegscan

or random scanning strategies.

To confirm these trends, we also examine botnet growth by-leve
aging the insider information learned by our tracker. Irstbase,
the results apply to the set of botnets that relay bot message
changes to the IRC channel. Overdl2% of the botnets we ob-

2500

5000

Botnet lIl ——
4500 F Botnet IV

Botnet | —
Botnet Il

2000 - 4000 -
3500 -
1500 - 3000 -
2500 -
1000 2000
1500 -

500 - 1000

Cumulative number of unique name servers
Cumulative number of unique name servers

500

3500

Botnet V —
Botnet VI

3000 -

2500 -

2000 -

1500 -

1000 -

Cumulative number of unique name servers

0 L L L L L L L
03/25 04/01 04/08 04/15 04/22 04/29 05/06 05/13

Date
(a) Semi-Exponential

0 - L L L L L L
03/25 04/01 04/08 04/15 04/22 04/29 05/06 05/13

Date
(b) Staircase

500 R
03/25 04/01 04/08 04/15 04/22 04/29 05/06 05/13
Date

(c) Linear

Figure 7: DNS views showing examples from multiple botnets ith the three predominant growth patterns.

16000

4500

Botnet | Botnet Il ——
Botnet Il Botnet IV
14000 1 4000 -

12000 - 3500 1

3000 -
10000
2500 -
8000 -
2000
6000 -
1500

4000 - 1000 L

Number of unique new IP addresses
Number of unique new IP addresses

2000 | 500 |

12000

Botnet V —
Botnet VI

10000

8000

6000

4000

Number of unique new IP addresses

2000

0 L L L L L L
02/04 02/18 03/04 03/18 04/01 04/15 04/29 05/13

(@ Semi-EkBeonentiaI

0 L L L L L L L L
05/07 05/07 05/08 05/08 05/09 05/09 05/10 05/10 05/11 05/11

(b) Stgiercase

0 . el
02/04 02/11 02/18 02/25 03/04 03/11 03/18 03/25 04/01
Time

(c) Linear

Figure 8: View from IRC tracker showing multiple botnets wit h the three predominant growth patterns.

served broadcast their messages to the C&C channel. Frasa the
messages we estimate the evolution of a botnet by countimg th
unique sources for messages broadcast to the chanfFiglure 8
provides examples of the predominant growth patterns ebetda
from the tracker logs. For illustrative purposes, we onlgtgiot-
nets of comparable sizes on a given plot. These trends cottfam
heterogeneity observed from the DNS experiments. A clasek |

at the IRC tracker log shows that, for the most part, these/iro
patterns are a result of the aforementioned reasons.

4.3 Botnet Structures

Of the 318 total malicious binaries we collected, 60% wer€ IR
bots; only a handful used HTTP for the command and cofitelr
tracker traces reveal four predominant IRC structures:

e All the bots connect to a single IRC server. This architec-
ture is prevalent among the smaller class of botnets (tiigica
having on the order of a few hundred online users), and it is
not uncommon to see such botnets reaching the server’s ca-
pacity. 70% of the botnets we observed fell into this catggor

e By leveraging the server linking capability of the IRC pro-
tocol [13], different IRC servers can be connected to form

presence of bridged structures by examining the servarsstat
messages (from the tracker’s logs) and seeing whether-multi
ple servers are in use. The discrepancy between local versus
total online users can also disclose whether or not bridging
is in place. Our analysis shows that 30% of the botnets were
bridged on multiple servers, 50% of which were bridged be-
tween two servers only. Roughly 25% of the bridged servers
were also known public servers.

Several seemingly unrelated botnets appear, on closer-exam
ination, to be very similar when compared in terms of their
naming conventions, channel names, and operators’ user IDs
In many cases, these botnets seem to belong to the same bot-
master(s).

Lastly, we observe several instances where a selected group
of bots were commanded to download an updated binary,
which subsequently moved the bots to a different IRC server.
We return to this point with an in-depth look at different
forms of bot migration in Section 4.7.

4.4 Effective Botnet Sizes
The results of Section 4.2 argue that a botnet'’s footprinttoa

an IRC network supporting large numbers of users. Infer- come fairly large in sizeg.g, more than 15,000 bots). That said,
ring the exact structure of a bridged botnet, however, can the predominant structures we observed were botnets mdibgge

be complicated without explicit information. We infer the

single or few servers. For that reason, it is doubtful thesghstruc-
tures could support such large numbers of online bots. There

"There is of course caveat in using IP address (albeit real or we draw a distinction between a botnet’s footprint and theer

“cloaked” [13]) for this purpose. However, without a betteea-

sure of uniqueness at hand, we assume for now that IP addresse
are a reasonable measure for uniqueness among membersef a si
gle botnet.

SWe did observe bots that attempted to spread themselvesitly se

of bots connected to the IRC channel at a specific time, whieh w
term at the botnet’sffective size

Figure 9 plots the number of online bots versus time for sdver
“chatty” servers that broadcast join/leave informationfeembers

ing messages to contacts on the compromised machines’ {M lis on the channel. The plots reveal a number of important ckerrac

thereby enticing the unsuspecting users to download theadal

istics, most notably that the maximum size of the online patxn

3000 — . . .
2500
2000 ﬁ
1500

1000

Number of on-line Bots

500 - i]

0
04/05 04/07 04/09 04/11 04/13 04/15 04/17 04/19 04/21 04/23 04/25
Date

Figure 9: Evolution of effective size for three of the botnes in
our study.

is (in general) significantly smaller than the botnet’s foott. For
instance, the average footprint for the botnets depictdeigare 9
was greater tham0, 000, while at most~ 3, 000 bots were online

at the same time. While the effective size has less impactiog |
term activities {.e., executing commands posted as channel topics),
it significantly affects the number of minions available i@eute
timely commandse.g, DDoS attacks).

Another interesting observation is the strong 24 hour dilipat-
tern in the botnet effective size. The notable synchroioman the
peaks is the composition of online populations belongindjffer-
ent time zones. Indeed, this observation confirms the pafiest
noted and studied by Dagat al. in their analysis of the connec-
tion attempts from Type-I bots to black-holed IRC serveis [6

45 Lifetime

The wide discrepancy between the footprint and the effectiv
size is likely due to the relatively long lifetime of a typldaotnet.
Under these conditions, bot death raeg(as a result of patching)
can significantly impact a botnet’s effective size. Addiadly, as
we show shortly, the high churn rate of bots connected toRt |
channel significantly contributes to this disparity.

Figure 10 illustrates the distributions of channel occugyaimes
for a number of botnets. These results were inferred by ingck
unique joins and quits for the IRC servers that broadcadt suc
formation. As the graph shows, botnet IRC channels exhigt h
churn rates, implying that bots generally do not stay longhmn
IRC channel. The average staying time for all bots acrossdie
nets we tracked is approximately 25 minutes, with 90% of them
staying for less than 50 minutes.

Although we can not explain with certainty what causes thgh h
churn rate, some likely causes include client instabilgyaaesult
of the infection, machine hibernation, and (as we have &atjy
seen) botmasters commanding bots to leave the channelly,Last
inspection of the traces also shows that botmasters havertgest
staying times among all users on the channel. Their fasomat
with keeping a close watch on the activities of the bots urtileir
control, as well as the desire to keep their operator statuthe
channel, is probably the impetus behind their behavior.

With regards to botnets lifetimes, our data shows that histaee
generally long-lived. Those that were shutdown remaindgtvec
on average, for about 47 days before ceasing operation. 4mon
all the botnets we tracked, 84% of the IRC servers were ity

0.1

0.01

0.001

CCDF

1le-04

le-05

1le-06

1e-07 . : . :
0.01 0.1 1 10 100

Bot Staying time (min.)

S
oL

00
Figure 10: CCDF of bot channel occupancy.

the end of the monitoring period, 55% of which were still aely
scanning the Internet. A rather troubling finding is that ag¢he
botnets with the longest lifetimes were those that useitdratd-
dresses rather than DNS names for their IRC servers; wedtack
three such botnets for nearly three months with footprirteed-
ing 3,500 bots. Lastly, several botnets were available mérmit-
tently, but as soon as they were re-activated, they quiddgained
momentum due to the continual connection attempts of thoen-z
bies. These observations raise serious concerns aboufebtve-
ness of current measures in curtailing the botnet problem.

4.6 Botnet Software Taxonomy

Ofthe 192 confirmed IRC-based bot executaBl&38 responded
to the probes of the IRC query engine (Phase 2 of the graylstx te
ing process described in Section 3.1). The collected resgowere
used to assess the threads that the bots start after theyeaged.
Table 3 tabulates the percentage of binaries that reponredds
of each type. For example, almd®% of the bots run a utility
thread that disables anti-virus and firewall processesingnon the
infected host (the so-called “AV/FW Killer”). Likewise, mg bots
run ani dent d [12] server which is used to identify the user on the
client-end of a TCP connection; this feature is required oye
IRC servers and is used to verify that only intended bots @in
specific IRC channel. The registry monitor thread checksrfod-
ifications to the system’s registry and is presumably usealed
the bot of any attempts to disable it.

[Utility Software Thread | Frequency (%) |

AVIFW Killer 49
Identd Server 43
System Security Monitor 40
Registry Monitor 38

Table 3: The percentage of bots that launched the respective
services on the victim machines.

The System Security Monitor is also related to bot self-dsée
in that it periodically calls theecur e() function. This function
is often called manually by the botmaster to perform ruditagn
security “tightening” tasks, such as disabling DCOM seggiand
file sharing. To our surprise, we witnessed newer versiorthef
secure command that actually patched the LSASS vulnesabili

9These binaries were unique based on their MD5 sums.

The number of reported exploit modules bundled within bet bi
naries varied from 3 to 29, with an average of 15 exploits per b
nary® The three most popular exploits weDEOML35, L SASS-
445, andNTPASS, all of which appear in over5% of the binaries.
We also note that several executables reported identisailtse
with the exception of their exploit capabilities. This islicative
of the modularity of bot software, in that new exploit modutean
be added with relative ease.

Service Pack
OS version| % inf. || None | SP1] SP2] SP3+
Win XP 82.6 47 | 52| .01 n/a
Win 2000 16.1 .09 | .0O5| .03 | .83
Win Server| 1.3 57 | .43 | nfa| nla

Table 4: Distribution of exploited hosts extracted from thelRC
tracker logs.

Table 4 indicates that the botnets we tracked target a @it
of operating systems. It is noteworthy that even the latestion of
Windows XP (Service Pack 2) is not immune to attacks. Given th
danger that bots pose to end-users, and to the Internet@ragewe
were interested to see if off-the-shelf anti-virus produaffer pro-
tection against IRC bots. To answer this question, we stdjeall
confirmed IRC-bot binaries to virus scans using the Open&our
ClamAV tool [4] and Norton’s anti-virus, each using their shoe-
cent definitions. The results were somewhat reassuringn@a
classified 137 of 192 binaries as malicious, and Norton Aécetd
179.

Figure 11 depicts the categorization of the 192 binariesdas
ClamAV's report!. Despite all the binaries having unique MD5
sums, several inspected binaries seem to be logically algui
The superfluous differences are mainly due to different gomé-
tion parameters (such as contacting a different IRC semehan-
nel, etc) or can be manifestations of polymorphism.

35

30 - 1

20 1

15 + 9

10 1

Percentage of all captured executables

HINNTE FTT N T
0, 80, o 00, 20,10, 0 8o, 0 0, 06, 0 O T
% %\;\60/ &O/‘ o@o,%goé%éggo ,5%060/ 60/;760,/06 g‘l’éooéo?oéz%o /CZ&,) éof"/},
S 700, : g s
K S, v % % 0% R
%, %,

Figure 11: Breakdown of captured IRC-bots based on Cla-
mAV'’s classification

OMany “different” exploits were variants of the same vulriility,
such as the DCOM vulnerability for different ports.

4.7 Insights from the “Insider’s view”

The tracker observed botmasters of varying skill levelsigra
ing from novices frustrated with their lack of success at atgan
ing a handful of bots to botmasters performing far more sstphi
cated behaviors. For example, our traces show ihdtotmasters
share information regarding what prefixes they should natiéc
(i) tweak their bots to keep chatter on the C&C channel to a min-
imum, and {ii) actively probe selected bots to detect and isolate
“misbehavers” i¢e. bots that do not seem to respond to their com-
mands) and similarly, look for “super-bots” with valuabésources
(e.g, high bandwidth network links and storage capacities).

Our inside look has also afforded us the opportunity to véte
several instances during which bots were commanded to teigra
either by being instructed to move to a new IRC channel/sawe
to download replacement software that pointed them to armdifft
C&C server. Figure 12 provides a snapshot of one such magrati
instance captured by the IRC tracker. By simultaneouslyigiar
pating in two separate botnets, the tracker was able to sstttee
surge in membership in one botnet immediately after a migmnat
command was issued in the other. Additionally, we obseresd s
eral instances of cloning.€., instantiating multiple IRC sessions to
a specified server). Many of the cloning events we witnessed ¢
be attributed to attacks intended to overwhelm another |€¢es;
other events may be evidence of some form of bot “leasing”.

800 T T

Po'pulation'- Botnet | ——
Population- Botnet Il

700 r

600 r

500 r

400

300 r

Number of on-line Bots

200 r

100 r

oFTTTT e
12:00 16:00 20:00 00:00 04:00 08:00 12:00 16:00
Time (hh:mm)

Figure 12: Migration of a botnet as observed by our IRC
Tracker.

Command Type | Frequency (%) |

Control 33
Scanning 28
Cloning 15
Mining 7
Download 7
Attack 7
Other 3

Table 5: Relative frequency of commands observed across all
tracked botnets.

In addition to cloning, the botnets we tracked were used for a
variety of purposes (as indicated by the commands issueldiy t

1we choose to show results for ClamAV simply because its tepor '?>For example, we observed botmasters alerting each othepid a

was more descriptive compared to Norton AV.

scanning certain address prefixes.

100 %

T

80 %

T

60 %

40 %

T

20 %

T

NN
Small (<250)

0%
Large (1500,8000) Medium (250,1500)

Click Fraud E=—==3
Hosting
Identity Theft
Piracy ===

Download
Mining £zzz2
Scanning

Unknown C——
Attack
Cloning E====
Control m—

Figure 13: Percentage of command types as a function of ob-
served botnet size.

botmasters). The relative frequency of commands issuessacr

learned from multiple data collection mechanisms inclgdiret-
work traces collected from darknets, DNS cache probes, and “
sider” views of botnet activity, made possible by an “activene”
that mimics the behavior of an actual bot learned throughtyra
testing. This infrastructure is broader both in scale arapscand
allows us to draw deeper conclusions about several prdyioums
known aspects of botnet behavior.

Cookeet al. presented an initial look at the prevalence of bot-
nets by measuring the elapsed time before an un-patcheensyst
was infected by a botnet [5]. They also highlighted the pib¢n
threat from a new generation of botnets that use P2P pratdool
their C&C channels. More recently, Barfoed al. presented an al-
ternative perspective based on an in-depth analysis ofdftbtare
source code [3]. Our study complements these efforts byigiray
multifaceted observations gleaned from real-world bobegtavior
and via graybox testing of bot binaries gathered by our ithsted
collection platform.

Malware collection infrastructures have been the coroesof
a number of recent initiatives. Indeed, implementing aaddaland
stable collection infrastructure is an important resegmablem in
its own right. Vrableet al. presented Potemkin, a scalable virtual
honeynet system [23]. While Potemkin can be very useful inéto

all botnet instances is summarized in Table 5. One can se¢e tha detection (as it enables malware collection at a |arge ;Gale in-

in addition to control command®.@.,channel joins and leaves),
scanning commands are relatively popular. The mining cajeg
includes commands that collect information about the ciipeb
of the machines the bots run om.g., processor specs, physical
memory, etc.), while the attack category includes diredeas by
the botmaster for the bots to use their arsenal of flooditated
commands to attack other networked computers.

What is not evident from Table 5 is the diversity in botnetgesa
We have observed markedly different patterns of behaviotheé
botmasters’ personal traits and a difference in the opmratiutility
across different botnets. In the interest of space, we ptesdy
how the relative frequency of command types varies acrosgebn
of different sizes. Similar inferences can be made whendistare
grouped according to other criteria.

As Figure 13 illustrates, small botnets(, those with fewer than
250 online nodes) receive a larger portion of control andimgin
commands. This behavior corresponds to “hands-on” boergst
that devote considerable time and effort to manually cdrbeir
botnets, something that is possible only for small numbérsa
chines. On the other hand, medium and large botnets havgex lar
percentage of cloning and download commands. Cloning cat-be
tributed to the use of a botnet to attack another botnet bylaaa-
ing its IRC server with a barrage of join requests. This tégpha is
effective only when a considerable number of machinesgpaie
in the attack.

5. RELATED WORK

Despite their relatively long presence in the Internet, few

appropriate for long term botnet tracking which requirehtéques
such as the IRC tracker discussed earlier.

The lightweight responder is a central component in our &totn
measurement infrastructure. However, the ability of suespon-
ders to faithfully emulate complex, stateful protocols imited.
More recently, Cuiet al. [24] presented RolePlayer—a protocol
independent lightweight responder that tries to overcoamesof
these limitations by reverting to a real server when the ardpr
fails to produce the proper response. Instead, our infresire
employs deep interaction honeypots to complement theeaotiv
sponder and capture any sessions it misses. To furthereedtiac
tasks performed by these honeypots, we are currently exignd
our malware collection system so that the honeypots onlyllean
potential exploit attempts that the lightweight resposdeain not
parse.

Finally, Dagonet al. [6] provide an initial analytical model for
capturing the spreading behavior of botnets. Their modalmes
botnets spreading through uniform scanning. As our resihitsv,
this behavior is only exhibited by a narrow class of wornellbot-
nets, while botnets in general exhibit heterogeneous dprgde-
havior. Our findings can be used to develop more realisticetsod
that better reflect such behaviors.

6. CONCLUSIONS

Botnets pose one of the most severe threats to the Intermet. D
spite this fact, our knowledge of botnet behavior is, at iesbm-
plete. To improve our understanding, we present a compoigte
that combines measurements from multiple independentcesur

mal studies have examined the botnet problem. The Honeynet Doing so not only produces a richer set of insights, but allewa

group [19] was among the first to perform an informal study of
the botnet problem. In a related study, Freilietgal. [8] presented

a proposal for countering certain classes of DDoS attadiginat-
ing from botnets through a multi-step process: first bot basaare
collected using honeypots and active responders, themiiafiion
necessary to join the botnets is extracted by running thvseibs
on honeypots and allowing them to contact the actual IRCeserv
Finally, a “silent drone” infiltrates the botnets to coll@tfiormation
that can be useful in dismantling them. Our study is focused o
broader understanding of the botnet phenomenon throughlta mu
faceted, longitudinal tracking approach that integratésrimation

us to validate the results collected by the different datpussition
methods.

In summary, our results show that botnets are a major cartnib
to the overall unwanted traffic on the Internet. While bashebn-
tribution to the aggregate traffic can be mostly attributeddans
used to recruit new victims, botnet scanning behavior iskedily
different from that seen by autonomous malwagg(,worms) be-
cause of its manual orchestration. We found that IRC is ttél
dominant protocol used for C&C communications, and thaises
is adapted to satisfy different botmasters’ needs. Monedle ef-
fective sizes of the botnets we studied ranges from a few fieaisd

to a few thousands of online bots. On the other hand, botrét fo
prints are usually much larger than their effective sizebisTis-
crepancy can be explained by the high churn rate within adip#n
bot's average channel occupancy is less than half an howall{i
our graybox testing technique enabled us to understanced df
sophistication reached by bot software today, which inetuself-
protection mechanisms and modular packages with multiphela
vectors.

Acknowledgments

This work is supported in part by National Science Foundatio
grant SCI-0334108. We thank the anonymous reviewers far the
insightful comments.

Data Availability

To promote further research and awareness of the botnelepnob
the datasets collected from our distributed platform arailable
to the research community. Additional information on howgts
timely access to this data is availablettt p: // hi nrg. cs.

j hu. edu/ bot net s/ .

7. REFERENCES

[1] Paul Baecher, Thorsten Holz, Markus Kotter, and Georg
Wicherski. The Malware Collection Tool (mwcollect). Avail
able atht t p: / / www. mrecol | ect. org/.

Paul Baecher, Markus Koetter, Thorsten Holz, Maxiraifli
Dornseif, and Felix Freiling. The Nepenthes Platform: An
Efficient Approach to Collect Malware. IRroceedings of the
9t" International Symposium on Recent Advances in Intru-
sion Detection (RAID)Sept. 2006.

Paul Barford and Vinod Yagneswaran. An Inside Look at-Bot
nets. To appear iSeries: Advances in Information Security,
Springer 2006.

Clam AntiVirus. Available athttp://ww. cl amav.
net/.

Evan Cooke, Farnam Jahanian, and Danny McPherson. The
Zombie Roundup: Understanding, Detecting, and Disturbing
Botnets. InProceedings of the first Workshop on Steps to Re-
ducing Unwanted Traffic on the Internet (STRU,Jgages 39—
44, July 2005.

David Dagon, Cliff Zou, and Wenke Lee. Modeling Botnet
Propagation Using Time Zones. Rroceedings of tha 3"
Network and Distributed System Security Symposium NDSS
February 2006.

Edward W. Felten and Michael A. Schneider. Timing attack
on web privacy. InCCS '00: Proceedings of the 7th ACM
conference on Computer and communications secyrétges
25-32, New York, NY, USA, 2000. ACM Press.

Felix Freiling, Thorsten Holz, and Georg Wicherski. Bet
Tracking: Exploring a root-cause methodology to prevent
denial-of-service attaks. IProceedings ofl0*” European
Symposium on Research in Computer Security, ESQRICS
pages 319-335, September 2005.

Luis Grangeia. DNS Cache Snooping or Snooping the
Cache for Fun and Profit, Available dittp://ww.
sysval ue. com paper s/ DNS- Cache- Snoopi ng/

fil es/ DNS_Cache_Snoopi ng_1. 1. pdf , 2004.

(2]

(3]

[4]
(5]

(6]

[7]

(8]

[9]

[10] Honeyd Virtual Honeypot Frameworkht t p:// waw.
honeyd. or g/ .
[11] IP2LOCATION, Bringing Geography to the Internet. Alai

able atht t p: // www. i p2l ocati on. con .

[12] M. St. Johns. RFC 1413: Identification protocol, Jaguar
1993.

[13] C. Kalt. Internet Relay Chat: Client Protocol. RFC 2§1r2
formational), April 2000.

[14] Dan Kaminsky. Welcome to Planet Soryt t p: / / vwwv.
doxpar a. coni .

[15] Eddie Kohler, Robert Morris, Benjie Chen, John Jaripattd
M.Frans Kaashoek. The Click Modular Rout&CM Trans-
actions on Computer Systeni8(3):263—297, 2000.

[16] Willaim Metcalf. Snort In-line. Available athttp://
snort-inline.sourceforge. net/.

[17] Alexandros Ntoulas, Junghoo Cho, and Christopherdblst

What's New on the Web? The Evolution of the Web from a

Search Engine Perspective.Pnoceedings of the3'" Inter-

national World Wide Web (WWW) Conferenpages 1-12,

2004.

Larry Peterson, Tom Anderson, David Culler, and Tinyoth

Roscoe. A Blueprint for Introducing Disruptive Technology

into the InternetSIGCOMM Computer Communication Re-

views 33(1):59-64, 2003.

Honeynet Project and Research Alliance. Know your en-

emy: Tracking Botnets, March 2005. Skét p: / / wwww.

honeynet . or g/ papers/ bots/.

Niels Provos. A virtual honeypot framework. IRroceed-

ings of the USENIX Security Symposjyages 1-14, August

2004.

Jeremy Sugerman, Ganesh Venkitachalam, and Beng-

Hong Lim. Virtualizing I/O Devices on VMware Worksta-

tion’s Hosted Virtual Machine Monitor. INSENIX Annual

Technical Conferenge2001. Available athtt p:// ww.

vmar e. cont .

The UnreallRC Team. Unrealircd. Selett p:// vwwv.

unreal ircd. com

Michael Vrable, Justin Ma, Jay Chen, David Moore, Erik

Vandekieft, Alex C. Snoeren, Geoffrey M. Voelker, and Stefa

Savage. Scalability, Fidelity and Containment in the P&dam

Virtual Honeyfarm.Proceedings of ACM SIGOPS Operating

System Reviev@9(5):148-162, 2005.

Nick Weaver Weidong Cui, Vern Paxson and Randy H. Katz.

Protocol-Independent Adaptive Replay of Application Dia-

log. In Proceedings of the3' Annual Network and Dis-

tributed System Security Symposium (NDSS), San Diego, CA

Feb 2006.

(18]

[19]

[20]

[21]

(23]

[24]

