1. Let $f_i(n)$ be a sequence of functions, such that for every i, $f_i(n) = O(n)$. Let $g(n) = \sum_1^n f_i(n)$. Prove or disprove: $g(n) = O(n^2)$.

Answer: Not true. Take $f_i(n) = i \cdot n$. Then $g(n) = \sum_1^n in = n \sum_1^n i = \Theta(n^3)$

2. If $f_1(n) = O(g_1(n))$ and $f_2(n) = O(g_2(n))$. Prove or disprove:
 - $f_1(n) + f_2(n) = O(g_1(n) + g_2(n))$
 Answer: True. We know that there exists positive constants n_1, K_1 (resp. n_2, K_2) such that for $n > n_1$ (resp. $n > n_2$) we have that $f_1(n) \leq K_1 g_1(n)$ (resp. $f_2(n) \leq K_2 g_2(n)$). Hence for every $n > \max\{n_1, n_2\}$, we have that $f_1(n) + f_2(n) \leq \max\{K_1, K_2\} (g_1(n) + g_2(n))$.
 - $f_1(n) \cdot f_2(n) = O(g_1(n) \cdot g_2(n))$
 Answer: True. Analogous to the previous case
 - $f_1(n)^{f_2(n)} = O(g_1(n)^{g_2(n)})$
 Answer: Not true. Take $f_1(n) = 2$, $f_2(n) = n$, $g_1(n) = 0.5$, $g_2(n) = n$.

3. Let $P = \{p_1 \ldots p_n\}$ be a set of n distinct points in the plane. Describe an $O(n \log n)$-time algorithm that finds the triangle with smallest perimeter, whose vertices are three different points of P.

4. You are given two arrays A and B, each contains n numbers, and each is sorted in increasing order. Let S denote the set of all numbers which are either in A, in B or in both. Find in time $O(\log n)$ the median of S. (if you have problem finding this element in $O(\log n)$, find it in time $O(\log^2 n)$).

5. Suggest a data structure that supports grades for a student. The operations on the data structure are as follows:

 Insert(g, d) — Insert the grade g that the student received, for an example that took place at a date d. Each grade is a number between 1 and 100. For example, **insert**(73, "9/16/02").
Average\((d_1, d_2)\) report what is the average of all grades that the student received in exams that took place between date \(d_1\) and date \(d_2\).

Each operation should take time \(O(\log n)\), where \(n\) is the number of grades store in the sata structure.

Answer: Store the grades in a standard search tree, where each node \(\mu\) in the tree stores the total sum \(s_\mu\) of grades and the number \(n_\mu\) of grades in the subtree rooted at \(\mu\). Then when the query \text{Average}(d_1, d_2)\) is submitted, we sum (in \(O(\log n)\) time) the sum of grades and number of grades between \(d_1\) and \(d_2\). To sum of example the number of grades, it is easy to sum the sum of all grades that occur before \(d_1\) the sum of all grades that occur before \(d_2\) and subtract.

To find the sum of all grades that occur before \(d_2\), perform \text{find}(d_2)\) in the tree, and trace the path \(\pi\) that the search for \(d_1\) performed in the tree. For every node \(\mu\) at the tree at which the path turned to the right subtree of a node \(\mu\) sum the value of \(s_{\text{left}(\mu)}\), plus the value stored at \(\mu\) itself. Clealy it is doable in \(O(\log n)\)

6. Assume that each point on the interval \([0, 1]\) could be colored either black or white, and that initially the whole interval is white. We define the operation of reversing the color of a point \(x \in [0, 1]\), as follow: If \(x\) is black before the operation, then its color is white after the operation, and vice versa. Suggest a data structure that support the following operations.

\[
\text{reverse}(x_1, x_2) \rightarrow \text{reverse the color of each point of in the interval } (x_1, x_2), \\
\text{where } 0 < x_1 < x_2 < 1.
\]

\[
\text{report_color}(x) \rightarrow \text{report the color of } x, \text{where } x \in [0, 1].
\]

The running time of each operation should be \(O(\log n)\), where \(n\) here is the number of reverse operations.

Answer: Each \text{reverse}(x_1, x_2)\) command defined an interval, where \(x_1\) is its left endpoint and \(x_2\) is its right endpoint. Observe that a point \(x\) is white (resp. black) iff the different between the number of left endpoints to the left of \(x\), and the number of right endponits to the left of \(x\) is even (resp. odd). From here, the answer is similar to the previous answer.